Для чего нужны полупроводниковые соединения
Применение полупроводников
Увеличение проводимости полупроводников происходит с повышением температуры, так как этому способствует рост количества носителей заряда. Зависимость проводимости полупроводников представляется как:
Где E является энергией активации, k – постоянной Больцмана. Около абсолютного нуля все полупроводники становятся изоляторами. Зависимость их сопротивления от температуры позволяет применять в различных областях техники.
Термисторы
Приборы, которые основываются на зависимости величины сопротивления от температуры, называются термисторами.
Для их производства применяют полупроводники, обладающие существенной величиной отрицательного сопротивления. Их изготавливают в форме цилиндрических стержней, бусин, нитей, располагаемых в баллончиках из стекла, керамики или металла с изоляцией.
Параметры, характеризующие термисторы:
По предназначению термисторы классифицируют на:
Фотосопротивления
Электроны в полупроводниках способны переходить в зону проводимости не только при повышении температуры, но и при поглощении фотона (внутренний фотоэффект). Существуют полупроводники, энергия перехода электронов у которых составляет десятые доли электрон-вольта, то есть на сопротивление подобных проводников оказывает влияние не только видимый свет, но и инфракрасное излучение.
Прибор, который основывается на изменении сопротивления полупроводников под действием освещенности, называют фотосопротивлением. Для видимой части спектра применяют полупроводники из селена, германия, сернистого кадмия, таллия. Для инфракрасной – сернистый, селенистый и теллуристый свинец.
Вольт-амперные характеристики фотосопротивлений обладают линейным характером. Фотосопротивления являются инерционными, то есть достижение максимума фототока происходит не мгновенно, спад – при прекращении подачи света.
Фотосопротивления применимы для автоматики, сортировке изделий по покраске или размерам.
Варисторы
Опытным путем было доказано, в небольших полях закон Ома для полупроводников считается применимым. У разных веществ величина критического поля имеет отличия. Она зависит от природы полупроводника, температуры, концентрации примесей.
Электропроводность полупроводника от напряженности поля определяется законом Пуля:
Где α является коэффициентом, зависящим от температуры, E k – напряженность критического поля.
Полупроводники, проводимость которых растет с увеличением напряженности электрического поля, называют варисторами (ограничители перенапряжений).
Примерами полупроводников варисторов считаются такие, в состав которых входит карбид кремния, используемый в виде дисков в разрядниках, защищающих высоковольтные линии электропередач.
Полупроводниковые выпрямители
Некоторые проводники после контакта характеризуются явлением, при котором ток хорошо проходит в одном направлении и практически не идет в обратном. Существование такого эффекта обусловлено наличием разного типа проводимости полупроводников. Односторонняя проводимость разнородных полупроводников используется в диодах, триодах. Чаще всего применяют германий и кремний. Такие триоды и диоды имеют большой срок работы с малыми габаритами, высоким коэффициентом выпрямления, экономят энергию.
Униполярная проводимость между проводником применяется в вентильных элементах.
Термоэлементы
Термоэлементы изготавливают из полупроводников. Из чего состоят полупроводники? Они включают в себя два полупроводника, соединенные металлической пластиной. Нагрев полупроводника происходит на месте соединения, на противоположных концах происходит охлаждение. К свободным концам присоединяют внешнюю цепь, так как они считаются полюсами термоэлемента. Термоэлектрические батареи создают из термоэлементов. Определение термоэлектрической ЭДС Ε возможно по формуле:
При пропускании электротока через термоэлемент, имеет место появление эффекта Пельтье, то есть один спай нагревается, другой охлаждается. Данное явление применимо в холодильной камере.
Происходит отступление от закона Ома в полупроводниках с сильными электрическими полями. С чем это связано?
Необходимо записать закон Ома в дифференциальной форме:
Значение I является силой тока, σ – коэффициентом проводимости, E – напряженностью электрического поля.
Определение силы тока происходит по формуле:
Ответ: отступление закона Ома связано с влиянием сильных полей на подвижность электронов и их концентрацию.
Произвести описание процесса появления термоэлектродвижущей силы в полупроводниках.
Рост кинетической энергии теплового движения электронов в полупроводниках возможен при увеличении абсолютной температуры. Если создается разность температур в полупроводнике, то можно получить рост концентрации электронов на конце при имеющейся там высокой температуре.
Отсюда следует, что будет наблюдаться диффузия свободных электронов по направлению от горячего конца к холодному. Холодный конец получит отрицательный зарядой, а горячий – положительный. Продолжение диффузии идет до тех пор, пока разность потенциалов не компенсирует диффузионный поток при помощи возникшего электрического тока обратного направления. Данное равновесие способно определить термо ЭДС.
Типы полупроводников. Свойства, практическое применение.
Здравствуйте, дорогие друзья. В этой статье речь пойдет о полупроводниках. Мы рассмотрим типы полупроводников, их свойства и практическое применение.
Почему именно полупроводниковый диод, транзистор или тиристор? Потому, что основу этих радиокомпонентов составляют полупроводники – вещества, способные, как проводить электрический ток, так и препятствовать его прохождению.
По своим электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками электрического тока.
Самым известным полупроводником является кремний (Si). Но, кроме него, есть много других. Примером могут служить такие природные полупроводниковые материалы, как цинковая обманка (ZnS), куприт (Cu2O), галенит (PbS) и многие другие. Семейство полупроводников, включая полупроводники, синтезированные в лабораториях, представляет собой один из наиболее разносторонних классов материалов, известных человеку.
Характеристика полупроводников
Из 104 элементов таблицы Менделеева 79 являются металлами, 25 – неметаллами, из которых 13 химических элементов обладают полупроводниковыми свойствами и 12 – диэлектрическими. Основное отличие полупроводников состоит в том, что их электропроводность значительно возрастает при повышении температуры. При низких температурах они ведут себя подобно диэлектрикам, а при высоких — как проводники. Этим полупроводники отличаются от металлов: сопротивление металла растёт пропорционально увеличению температуры.
Другим отличием полупроводника от металла является то, что сопротивление полупроводника падает под действием света, в то время как на металл последний не влияет. Также меняется проводимость полупроводников при введении незначительного количества примеси.
Полупроводники встречаются среди химических соединений с разнообразными кристаллическими структурами. Это могут быть такие элементы, как кремний и селен, или двойные соединения, как арсенид галлия. Многие органические соединения, например полиацетилен (СН)n, – полупроводниковые материалы. Некоторые полупроводники проявляют магнитные (Cd1-xMnxTe) или сегнетоэлектрические свойства (SbSI). Другие при достаточном легировании становятся сверхпроводниками (GeTe и SrTiO3). Многие из недавно открытых высокотемпературных сверхпроводников имеют неметаллические полупроводящие фазы. Например, La2CuO4 является полупроводником, но при образовании сплава с Sr становится сверхроводником (La1-xSrx)2CuO4.
Учебники физики дают полупроводнику определение как материалу с электрическим сопротивлением от 10-4 до 107 Ом·м. Возможно и альтернативное определение. Ширина запрещённой зоны полупроводника — от 0 до 3 эВ. Металлы и полуметаллы – это материалы с нулевым энергетическим разрывом, а вещества, у которых она превышает З эВ, называют изоляторами. Есть и исключения. Например, полупроводниковый алмаз имеет запрещённую зону шириной 6 эВ, полуизолирующий GaAs – 1,5 эВ. GaN, материал для оптоэлектронных приборов в синей области, имеет запрещённую зону шириной 3,5 эВ.
Типы полупроводников, энергетический зазор
Валентные орбитали атомов в кристаллической решётке разделены на две группы энергетических уровней – свободную зону, расположенную на высшем уровне и определяющую электропроводность полупроводников, и валентную зону, расположенную ниже. Эти уровни, в зависимости от симметрии решётки кристалла и состава атомов, могут пересекаться или располагаться на расстоянии друг от друга. В последнем случае между зонами возникает энергетический разрыв или, другими словами, запрещённая зона.
Расположение и заполнение уровней определяет электропроводные свойства вещества. По этому признаку вещества делят на проводники, изоляторы и полупроводники. Ширина запрещённой зоны полупроводника варьируется в пределах 0,01–3 эВ, энергетический зазор диэлектрика превышает 3 эВ. Металлы из-за перекрытия уровней энергетических разрывов не имеют.
Полупроводники и диэлектрики, в противовес металлам, имеют заполненную электронами валентную зону, а ближайшая свободная зона, или зона проводимости, отгорожена от валентной энергетическим разрывом – участком запрещённых энергий электронов.
Типы полупроводников, ширина запрещенной зоны
В диэлектриках тепловой энергии либо незначительного электрического поля недостаточно для совершения скачка через этот промежуток, электроны в зону проводимости не попадают. Они не способны передвигаться по кристаллической решётке и становиться переносчиками электрического тока.
Чтобы возбудить электропроводимость, электрону на валентном уровне нужно придать энергию, которой бы хватило для преодоления энергетического разрыва. Лишь при поглощении количества энергии, не меньшего, чем величина энергетического зазора, электрон перейдёт из валентного уровня на уровень проводимости.
В том случае, если ширина энергетического разрыва превышает 4 эВ, возбуждение проводимости полупроводника облучением либо нагреванием практически невозможно – энергия возбуждения электронов при температуре плавления оказывается недостаточной для прыжка через зону энергетического разрыва. При нагреве кристалл расплавится до возникновения электронной проводимости. К таким веществам относится кварц (dE = 5,2 эВ), алмаз (dE = 5,1 эВ), многие соли.
Примесная и собственная проводимость полупроводников
Чистые полупроводниковые кристаллы имеют собственную проводимость. Такие полупроводники именуются собственными. Собственный полупроводник содержит равное число дырок и свободных электронов. При нагреве собственная проводимость полупроводников возрастает. При постоянной температуре возникает состояние динамического равновесия количества образующихся электронно-дырочных пар и количества рекомбинирующих электронов и дырок, которые остаются постоянными при данных условиях.
Наличие примесей оказывает значительное влияние на электропроводность полупроводников. Добавление их позволяет намного увеличить количество свободных электронов при небольшом числе дырок и увеличить количество дырок при небольшом числе электронов на уровне проводимости.
Примесные полупроводники – это проводники, обладающие примесной проводимостью. Примеси, которые с лёгкостью отдают электроны, называются донорными. Донорными примесями могут быть химические элементы с атомами, валентные уровни которых содержат большее количество электронов, чем атомы базового вещества. Например, фосфор и висмут – это донорные примеси кремния.
Энергия, необходимая для прыжка электрона в область проводимости, носит название энергии активизации. Примесным полупроводникам необходимо намного меньше ее, чем основному веществу. При небольшом нагреве либо освещении освобождаются преимущественно электроны атомов примесных полупроводников. Место покинувшего атом электрона занимает дырка. Но рекомбинации электронов в дырки практически не происходит. Дырочная проводимость донора незначительна. Это происходит потому, что малое количество атомов примеси не позволяет свободным электронам часто приближаться к дырке и занимать её. Электроны находятся около дырок, но не способны их заполнить по причине недостаточного энергетического уровня.
Типы полупроводников, собственная проводимость
Незначительная добавка донорной примеси на несколько порядков увеличивает число электронов проводимости по сравнению с количеством свободных электронов в собственном полупроводнике. Электроны здесь – основные переносчики зарядов атомов примесных полупроводников. Эти вещества относят к полупроводникам n-типа.
Примеси, которые связывают электроны полупроводника, увеличивая в нём количество дырок, называют акцепторными. Акцепторными примесями служат химические элементы с меньшим числом электронов на валентном уровне, чем у базового полупроводника. Бор, галлий, индий – акцепторные примеси для кремния.
Одноэлементные полупроводники
Самым распространённым полупроводником является, конечно, кремний. Вместе с германием он стал прототипом широкого класса полупроводников, обладающих подобными структурами кристалла.
Структура кристаллов Si и Ge та же, что у алмаза и α-олова. В ней каждый атом окружают 4 ближайших атома, которые образуют тетраэдр. Такая координация называется четырехкратной. Кристаллы с тетрадрической связью стали базовыми для электронной промышленности и играют ключевую роль в современной технологии. Некоторые элементы V и VI группы таблицы Менделеева также являются полупроводниками. Примеры полупроводников этого типа – фосфор (Р), сера (S), селен (Se) и теллур (Те). В этих полупроводниках атомы могут иметь трехкратную (Р), двухкратную (S, Se, Те) или четырехкратную координацию. В результате подобные элементы могут существовать в нескольких различных кристаллических структурах, а также быть получены в виде стекла. Например, Se выращивался в моноклинной и тригональной кристаллических структурах или в виде стекла (которое можно также считать полимером).
Типы полупроводников, кремний
Двухэлементные соединения
Свойства полупроводников, образуемых элементами 3 и 4 групп таблицы Менделеева, напоминают свойства веществ 4 группы. Переход от 4 группы элементов к соединениям 3–4 гр. делает связи частично ионными по причине переноса заряда электронов от атома 3 группы к атому 4 группы. Ионность меняет свойства полупроводников. Она является причиной увеличения кулоновского межионного взаимодействия и энергии энергетического разрыва зонной структуры электронов. Пример бинарного соединения этого типа – антимонид индия InSb, арсенид галлия GaAs, антимонид галлия GaSb, фосфид индия InP, антимонид алюминия AlSb, фосфид галлия GaP.
Ионность возрастает, а значение её еще больше растёт в соединениях веществ 2—6 групп, таких как селенид кадмия, сульфид цинка, сульфид кадмия, теллурид кадмия, селенид цинка. В итоге у большинства соединений 2—6 групп запрещённая зона шире 1 эВ, кроме соединений ртути. Теллурид ртути – полупроводник без энергетического зазора, полуметалл, подобно α-олову.
Полупроводники 2-6 групп с большим энергетическим зазором находят применение в производстве лазеров и дисплеев. Бинарные соединения 2– 6 групп со суженным энергетическим разрывом подходят для инфракрасных приемников. Бинарные соединения элементов 1–7 групп (бромид меди CuBr, иодид серебра AgI, хлорид меди CuCl) по причине высокой ионности обладают запрещённой зоной шире З эВ. Они фактически не полупроводники, а изоляторы. Нитрид галлия — соединение 3-5 групп с широким энергетическим зазором, нашёл применение в полупроводниковых лазерах и светодиодах, работающих в голубой части спектра.
Типы полупроводников, полупроводниковые материалы
Типы полупроводников, оксиды
Оксиды металлов преимущественно являются прекрасными изоляторами, но есть и исключения. Примеры полупроводников этого типа – оксид никеля, оксид меди, оксид кобальта, двуокись меди, оксид железа, оксид европия, оксид цинка. Так как двуокись меди существует в виде минерала куприта, её свойства усиленно исследовались. Процедура выращивания полупроводников этого типа еще не совсем понятна, поэтому их применение пока ограничено. Исключение составляет оксид цинка (ZnO), соединение 2—6 групп, применяемый в качестве преобразователя и в производстве клеящих лент и пластырей.
Положение кардинально изменилось после того, как во многих соединениях меди с кислородом была открыта сверхпроводимость. Первым высокотемпературным сверхпроводником, открытым Мюллером и Беднорцем, стало соединение, основанное на полупроводнике La2CuO4 с энергетическим зазором 2 эВ. Замещая трёхвалентный лантан двухвалентным барием или стронцием, в полупроводник вводятся переносчики заряда дырки. Достижение необходимой концентрации дырок превращает La2CuO4 в сверхпроводник. В данное время наибольшая температура перехода в сверхпроводящее состояние принадлежит соединению HgBaCa2Cu3O8. При высоком давлении её значение составляет 134 К.
ZnO, оксид цинка, используется в варисторах, голубых светодиодах, датчиках газа, биологических сенсорах, покрытиях окон для отражения инфракрасного света, как проводник в ЖК-дисплеях и солнечных батареях. dE=3.37 эВ.
Слоистые кристаллы
Двойные соединения, подобные дииодиду свинца, селениду галлия и дисульфиду молибдена, отличаются слоистым строением кристалла. В слоях действуют ковалентные связи значительной силы, намного сильнее ван-дер-ваальсовских связей между самими слоями. Полупроводники такого типа интересны тем, что электроны ведут себя в слоях квази-двумерно. Взаимодействие слоёв изменяется введением сторонних атомов – интеркаляцией.
Типы полупроводников, слоистые кристаллы
MoS2, дисульфид молибдена применяется в высокочастотных детекторах, выпрямителях, мемристорах, транзисторах. dE=1,23 и 1,8 эВ.
Органические полупроводники
Примеры полупроводников на основе органических соединений – нафталин, полиацетилен (CH2)n, антрацен, полидиацетилен, фталоцианиды, поливинилкарбазол. Органические полупроводники обладают преимуществом перед неорганическими: им легко придавать нужные качества. Вещества с сопряжёнными связями вида –С=С–С=, обладают значительной оптической нелинейностью и, благодаря этому, применяются в оптоэлектронике. Кроме того, зоны энергетического разрыва органических полупроводников изменяются изменением формулы соединения, что намного легче, чем у обычных полупроводников. Кристаллические аллотропы углерода фуллерен, графен, нанотрубки – тоже полупроводниками.
Магнитные полупроводники
Соединения с магнитными ионами европия и марганца обладают любопытными магнитными и полупроводниковыми свойствами. Примеры полупроводников этого типа – сульфид европия, селенид европия и твёрдые растворы, подобные Cd1-xMnxTe. Содержание магнитных ионов влияет на то, как в веществах проявляются такие магнитные свойства, как антиферромагнетизм и ферромагнетизм. Полумагнитные полупроводники – это твёрдые магнитные растворы полупроводников, которые содержат магнитные ионы в небольшой концентрации. Такие твёрдые растворы обращают на себя внимание своей перспективностью и большим потенциалом возможных применений. Например, в отличие от немагнитных полупроводников, в них можно достигнуть в миллион раз большего фарадеевского вращения.
Сильные магнитооптические эффекты магнитных полупроводников позволяют использовать их для оптической модуляции. Перовскиты, подобные Mn0,7Ca0,3O3, своими свойствами превосходят переход металл-полупроводник, прямая зависимость которого от магнитного поля имеет следствием явление гигантской магнето-резистивности. Применяются в радиотехнических, оптических приборах, которые управляются магнитным полем, в волноводах СВЧ-устройств.
Разнообразие полупроводниковых материалов
Помимо упомянутых выше полупроводниковых веществ, есть много других, которые не попадают ни под один из перечисленных типов. Соединения элементов по формуле 1-3-52 (AgGaS2) и 2-4-52 (ZnSiP2) образуют кристаллы в структуре халькопирита. Связи соединений тетраэдрические, аналогично полупроводникам 3–5 и 2–6 групп с кристаллической структурой цинковой обманки. Соединения, которые образуют элементы полупроводников 5 и 6 групп (подобно As2Se3), – полупроводниковые в форме кристалла или стекла. Халькогениды висмута и сурьмы используются в полупроводниковых термоэлектрических генераторах. Свойства полупроводников этого типа чрезвычайно интересны, но они не обрели популярность по причине ограниченного применения. Однако то, что они существуют, подтверждает наличие ещё до конца не исследованных областей физики полупроводников.
Видео, типы полупроводников
Типы, применение и примеры полупроводников
полупроводник они являются элементами, которые избирательно выполняют функцию проводников или изоляторов, в зависимости от внешних условий, которым они подвергаются, таких как температура, давление, излучение и магнитные или электрические поля..
В периодической таблице присутствуют 14 полупроводниковых элементов, среди которых кремний, германий, селен, кадмий, алюминий, галлий, бор, индий и углерод. Полупроводники представляют собой кристаллические твердые тела со средней электропроводностью, поэтому их можно использовать в качестве проводника и изолятора двойным способом..
Если они используются в качестве проводников, при определенных условиях условия допускают циркуляцию электрического тока, но только в одном направлении. Кроме того, они не имеют такой высокой проводимости, как у проводящих металлов..
Полупроводники используются в электронных приложениях, особенно для изготовления таких компонентов, как транзисторы, диоды и интегральные схемы. Они также используются в качестве аксессуаров или аксессуаров для оптических датчиков, таких как твердотельные лазеры, и некоторых силовых устройств для систем передачи электроэнергии..
В настоящее время этот тип элементов используется для технологических разработок в области телекоммуникаций, систем управления и обработки сигналов, как в быту, так и в промышленности..
тип
Существуют различные типы полупроводниковых материалов в зависимости от присутствующих в них примесей и их физической реакции на различные воздействия окружающей среды..
Собственные полупроводники
Те элементы, молекулярная структура которых состоит из одного типа атома. К таким типам полупроводников относятся кремний и германий..
Молекулярная структура собственных полупроводников является тетраэдрической; то есть он имеет ковалентные связи между четырьмя окружающими атомами, как показано на рисунке ниже.
Каждый атом собственного полупроводника имеет 4 валентных электрона; то есть 4 электрона, вращающиеся во внешнем слое каждого атома. В свою очередь каждый из этих электронов образует связи со смежными электронами.
Таким образом, каждый атом имеет 8 электронов в своем наиболее поверхностном слое, который образует прочный союз между электронами и атомами, составляющими кристаллическую решетку..
Из-за этой конфигурации электроны не могут легко перемещаться внутри структуры. Таким образом, в стандартных условиях собственные полупроводники ведут себя как изолятор.
Однако проводимость собственного полупроводника возрастает всякий раз, когда температура увеличивается, поскольку некоторые валентные электроны поглощают тепловую энергию и отделяются от связей.
Эти электроны становятся свободными электронами и, если на них правильно воздействует разница в электрическом потенциале, они могут способствовать циркуляции тока в кристаллической решетке..
В этом случае свободные электроны переходят в зону проводимости и переходят к положительному полюсу источника потенциала (например, батареи)..
Движение валентных электронов вызывает вакуум в молекулярной структуре, что приводит к эффекту, подобному тому, который мог бы вызвать положительный заряд в системе, поэтому они рассматриваются как носители положительного заряда..
Затем имеет место обратный эффект, поскольку некоторые электроны могут выпадать из зоны проводимости до тех пор, пока валентный слой не высвободит энергию в процессе, который получает название рекомбинации..
Внешние полупроводники
Они соответствуют включением примесей в собственные проводники; то есть путем включения трехвалентных или пятивалентных элементов.
Этот процесс известен как легирование и направлен на повышение проводимости материалов, улучшение физических и электрических свойств этих.
Подставляя собственный атом полупроводника на атом другого компонента, можно получить два типа внешних полупроводников, которые подробно описаны ниже..
Полупроводник типа Р
В этом случае примесь является трехвалентным полупроводниковым элементом; то есть с тремя (3) электронами в своей валентной оболочке.
Нарушающие элементы в структуре называются легирующими элементами. Примерами этих элементов для полупроводников P-типа являются бор (B), галлий (Ga) или индий (In).
Не имея валентного электрона для образования четырех ковалентных связей собственного полупроводника, полупроводник P-типа имеет зазор в недостающем звене.
Это делает прохождение электронов, которые не принадлежат к кристаллической сети через эту дырку с носителем положительного заряда.
Из-за положительного заряда зазора звена этот тип проводников называется буквой «Р» и, следовательно, они распознаются как акцепторы электронов..
Поток электронов через зазоры связи создает электрический ток, который течет в направлении, противоположном току, получаемому от свободных электронов..
Полупроводник типа N
Навязчивый элемент в конфигурации дается пятивалентными элементами; то есть те, которые имеют пять (5) электронов в валентной зоне.
В этом случае примесями, которые включены в собственный полупроводник, являются такие элементы, как фосфор (P), сурьма (Sb) или мышьяк (As).
Присадки имеют дополнительный валентный электрон, который, не имея ковалентной связи для присоединения, автоматически может свободно перемещаться по кристаллической сети..
Здесь электрический ток циркулирует через материал благодаря избытку свободных электронов, обеспечиваемых легирующей добавкой. Поэтому полупроводники N-типа считаются донорами электронов..
черты
Полупроводники характеризуются двойной функциональностью, энергоэффективностью, разнообразием применений и низкой стоимостью. Наиболее выдающиеся характеристики полупроводников подробно описаны ниже.
— Его реакция (проводник или изолятор) может варьироваться в зависимости от чувствительности элемента к освещению, электрическим полям и магнитным полям окружающей среды..
— Если полупроводник подвергается воздействию низкой температуры, электроны будут удерживаться вместе в валентной зоне, и, следовательно, не будут возникать свободные электроны для циркуляции электрического тока..
Напротив, если полупроводник подвергается воздействию высоких температур, тепловая вибрация может влиять на прочность ковалентных связей атомов элемента, оставляя свободные электроны для электропроводности..
— Проводимость полупроводников варьируется в зависимости от доли примесей или легирующих элементов внутри собственного полупроводника..
Например, если 10 миллионов атомов бора включены в миллион атомов кремния, это соотношение увеличивает проводимость соединения в тысячу раз по сравнению с проводимостью чистого кремния..
— Составные или внешние полупроводники могут иметь оптические и электрические свойства, значительно превосходящие свойства собственных полупроводников.Примером этого аспекта является арсенид галлия (GaAs), преимущественно используемый в радиочастотных и других применениях оптоэлектронных приложений..
приложений
Полупроводники широко используются в качестве сырья при сборке электронных элементов, которые являются частью нашей повседневной жизни, таких как интегральные схемы.
Одним из основных элементов интегральной схемы являются транзисторы. Эти устройства выполняют функцию обеспечения выходного сигнала (колебательный, усиленный или выпрямленный) в соответствии с конкретным входным сигналом..
Кроме того, полупроводники также являются основным материалом диодов, используемых в электронных схемах для обеспечения прохождения электрического тока только в одном направлении..
Для конструкции диодов образуются внешние полупроводниковые соединения типа P и типа N. Посредством чередующихся элементов носителя и доноров электронов активируется механизм баланса между обеими зонами..
Таким образом, электроны и дыры в обеих зонах пересекаются и дополняют друг друга при необходимости. Это происходит двумя способами:
— Происходит перенос электронов из зоны N-типа в зону P. В зоне N-типа преобладает зона положительного нагружения..
— Представлен проход электрононосных дырок из зоны P-типа в зону N-типа. Зона P-типа приобретает преимущественно отрицательный заряд.
Наконец, создается электрическое поле, которое вызывает циркуляцию тока только в одном направлении; то есть из зоны N в зону P.
Кроме того, используя комбинации внутренних и внешних полупроводников, можно получить устройства, которые выполняют функции, аналогичные вакуумной трубке, объем которой в сотни раз превышает ее объем..
Этот тип приложений применяется к интегральным схемам, таким как микропроцессорные микросхемы, которые покрывают значительное количество электрической энергии.
Полупроводники присутствуют в электронных устройствах, которые мы используем в нашей повседневной жизни, таких как оборудование коричневой линии, такое как телевизоры, видеоплееры, звуковое оборудование; компьютеры и сотовые телефоны.
примеров
Наиболее распространенным полупроводником в электронной промышленности является кремний (Si). Этот материал присутствует в устройствах, которые составляют интегральные схемы, которые являются частью нашей повседневной жизни..
Германий и кремниевые сплавы (SiGe) используются в высокоскоростных интегральных схемах для радаров и усилителей электрических инструментов, таких как электрогитары.
Другим примером полупроводника является арсенид галлия (GaAs), широко используемый в усилителях сигнала, в частности, сигналы с высоким коэффициентом усиления и низким уровнем шума..