Для чего нужны регистры еах евх есх

Индексные регистры

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Регистры общего назначения

Они называются ЕАХ, ЕВХ, ЕСХ и EDX (Аккумулятор, База, Счетчик и Данные). Кроме названий, они больше ничем другим не отличаются друг от друга (рис.5.2), поэтому рассмотрим только первый регистр – ЕАХ. Регистр ЕАХ может быть разделен на две части – 16-разрядный регистр АХ (который также присутствует в 80286) и верхние 16 битов, которые никак не называются.

В свою очередь, регистр АХ может быть разделен (не только в 80386, но и в 80286) на два 8-битных регистра – АН и AL. Таким образом обеспечивается совместимость 32-разрядных процессоров с системами команд 16- и 8-разрядных процессоров семейства х86. Если мы заносим в регистр ЕАХ значение 0x12345678, то регистр АХ будет содержать значение 0x5678 (0x56 в АН и 0x78 в AL), а значение 0x1234 будет помещено в верхнюю часть регистра ЕАХ.

«Младшие» регистры других регистров общего назначения называются по такому же принципу (рис.5.2): ЕВХ содержит ВХ, который, в свою очередь, содержит ВН и BL и т.д.

К регистрам общего назначения иногда относят и индексные регистры процессора – ESI, EDI и ЕВР (или SI, DI и ВР для 16-разрядных действий). Обычно эти регистры используются для адресации памяти: обращения к массивам, индексирования и т.д. Отсюда их имена: индекс источника (Source Index), индекс приемника (Destination Index), указатель базы (Base Pointer).

Хранить в них только адреса совсем необязательно: регистры ESI, EDI и ЕВР могут содержать произвольные данные. Эти регистры программно доступны, то есть их содержание может быть изменено программистом. Другие регистры лучше «руками не трогать». Регистры ESI, EDI и ЕВР существуют только в 16-разрядной и 32-разрядной версии.

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Рис. 5.2. Регистры общего назначения, индексные и указательные

Источник

Регистры ассемблера: виды, назначение и особенности команд

Ячейки процессора, которые также называются регистры ассемблера, из-за управляющего ими низкоуровневого языка программирования представляют собой некий блок свободных элементов в памяти. Их характерной особенностью является сверхбыстрый доступ к памяти. Чаще всего применяются регистры во время выполнения команд процессора и для программиста недоступны. Например, во время выборки из имеющейся сверхбыстрой памяти следующей по номеру команды ее код в двоичной системе помещается в регистр.

Напрямую обратиться к регистру невозможно. Кроме того, имеется ряд доступных блоков памяти, однако обратиться к ним возможно только из оболочки операционной системы. К таковым относят управляющие сегментные регистры, а также теневые системы дескрипторов. Применяют в своей работе данные регистры исключительно девелоперы ОС.

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх Вам будет интересно: Как записать гитару в FL Studio: простейшие методы

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Виды регистров

Для различных нужд во время программирования применяются разные регистры Assembler. Используют их в зависимости от целей. К примеру, регистр счетчика применяется для организации как простых, так и вложенных циклов. Ниже перечислены основные типы регистров ассемблера:

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх Вам будет интересно: Как сделать визитку в иллюстраторе своими силами

Фактически все регистры занимают в памяти 32 бита. То есть могут содержать числа от нуля до 4294967295. Некоторые из регистров разделены на несколько частей по 16 и 8 бит. Это позволяет управлять либо частью блока памяти, либо ячейкой целиком, записывая в нее только часть данных.

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Регистры ассемблера получили название согласно выполняемым функциям:

Особенности использования регистров

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Регистры общего назначения

Регистры указатели

Для работы со стеком в assembler разработчиками предусмотрено два вида регистра. Для доступа к ним осуществляется операция прибавления к указателю вершины абстрактного типа значений битности определенного типа данных, который был помещен в стек. Все расчеты проводятся вручную. Таким образом сохраняется большое количество данных и передается в подпрограммы – процедуры и массивы. Среди регистров указателей в ассемблере выделяют:

Регистры-индексы

Индексные блоки памяти требуются для расширенной индексации. Кроме того, они участвуют в работе некоторых арифметических операций и обработки байтовых строк – последовательности байт, содержащих произвольное значение. В assembler включено два регистра, которые отвечают за индексирование ESI и EDI. Опишем их:

Сегментные регистры

Являются первыми блоками в памяти. Называются текущими сегментами. Программному обеспечению разрешается распределять более четырех блоков памяти. Однако при этом обязательно занести адреса блоков в ячейки памяти между сегментными регистрами. Данный вид блоков памяти является строго специфичным, благодаря чему невозможно заполнять их отдельным видом данных. Порядок блоков регистров в памяти может меняться. Хранение сегментных регистров производится в произвольном порядке в случайных местах памяти.

Регистр указателя команд

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Данный вид относится к командным. С помощью данного указателя осуществляется вывод регистра ассемблера в листинг. Включает данные по поводу смещения на следующую команду относительно предыдущей. При разработке программного обеспечения практически не используется, однако требуется для просмотра листинга выполнения кода. Таким образом отслеживают ошибки.

Регистр флагов ассемблера

Отвечает за текущее состояние центрального процессора. Состоит из 16 бит, из которых могут быть заняты только 9. Заполнение данного блока памяти осуществляется после выполнения, пропуска или кода ошибки в результате предыдущей команды. Кроме того, часть битов используется процессором и может инициализироваться и удаляться посредством определенной системы команд. Таким образом осуществляется управление системой команд.

Источник

Регистры

Таблица 6.1. Регистры общего назначения

Доступ к младшему байту (биты 0-7)

Доступ к старшему байту (биты 8-1 5)

Здесь хранятся возвращаемые значения целых функций

Здесь хранится базовый адрес объекта в памяти

Эти регистры используются счетчиками инструкций циклов

Здесь хранятся 32 старших бита 64-битных значений

Здесь хранится исходный адрес инструкций перемещения или сравнения в памяти

Здесь хранится целевой адрес инструкций перемещения или сравнения в памяти

Указатель стека. Этот регистр изменяется неявно при вызове функции, возврате из функции, отведении места в стеке для локальных переменных и очистке стека

Указатель база/кадр. Этот регистр содержит адрес стекового кадра для процедуры

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Рис. 6.1. Окно Registers из Visual C++

С окном Registers связана одна незначительная особенность: при обновлении флажков цвет значения регистра EFL не изменяется (в отличие от обычных регистров, значения которых при обновлениях выделяются другим цветом). Но необходимость просматривать индивидуальные значения флажков возникает довольно редко. Для облегчения разметки изменяющихся флажков можно сделать следующее: нажать кнопку New Text File (в панели Standard ) и открыть новый временный файл. Затем скопировать (в буфер обмена) существующие флажки из окна Registers и вставить их в окно временного текста, чтобы сравнить их значения до и после изменения.

Таблица 6.2. Значения флажков окна Registers

Источник

Операнды в языке ассемблера

Операнд – объект, над которым выполняется машинная команда.

Операнды ассембле­ра описываются выражениями с числовыми и текстовыми константами, мет­ками и идентификаторами переменных с использованием знаков операций и некоторых зарезервированных слов.

Операнды могут комбинироваться с арифметическими, логическими, побитовы­ми и атрибутивными операторами для расчета некоторого значения или опреде­ления ячейки памяти, на которую будет воздействовать данная команда или ди­ректива.

Способы адресации операндов

Под способами адресации понимаются существующие способы задания адреса хранения операндов:

Операнд задается на микропрограммном уровне (операнд по умолчанию): в этом случае команда явно не содержит операнда, алгоритм выполнения команды использует некоторые объекты по умолчанию (регистры, признаки и т.д.).

Операнд задается в самой команде (непосредственный операнд): операнд является частью кода команды. Для хранения такого операнда в команде выделяется поле длиной до 32 бит. Непосредственный операнд может быть только вторым операндом (источником). Операнд-получатель может находиться либо в памяти, либо в регистре.

Операнд находится в одном из регистров (регистровый операнд): в коде команды указываются именами регистров. В качестве регистров могут использоваться:

Прямая адресация : эффективный адрес определяется непосредственно полем смещения машинной команды, которое может иметь размер 8, 16 или 32 бита.

Косвенная адресация в свою очередь имеет следующие виды:

Косвенная базовая (регистровая) адресация. При такой адресации эффективный адрес операнда может находиться в любом из регистров общего назначения, кроме sp/esp и bp/ebp (это специфические регистры для работы с сегментом стека). Синтаксически в команде этот режим адресации выражается заключением имени регистра в квадратные скобки [].

Данный способ адресации позволяет динамически назначить адрес операнда для некоторой машинной команды и применяется при организации циклических вычислений и при работе со структурами данных, массивами.

Косвенная базовая (регистровая) адресация со смещением предназначена для доступа к данным с известным смещением относительно некоторого базового адреса, используется для доступа к элементам структур, когда смещение элементов известно заранее, на стадии разработки программы, а базовый (начальный) адрес структуры должен вычисляться динамически, на стадии выполнения программы. Модификация содержимого базового регистра позволяет обратиться к одноименным элементам различных экземпляров однотипных структур данных.

Косвенная индексная адресация. Для формирования эффективного адреса используется один из регистров общего назначения, но обладает возможностью масштабирования содержимого индексного регистра.

Значение эффективного адреса второго операнда вычисляется выражением mas+( esi *4) и представляет собой смещение относительно начала сегмента данных.

Наличие возможности масштабирования существенно помогает в решении проблемы индексации при условии, что размер элементов массива постоянен и составляет 1, 2, 4 или 8 байт.

Данный вид адресации также может использоваться со смещением.

Косвенная базовая индексная адресация. Эффективный адрес формируется как сумма содержимого двух регистров общего назначения: базового и индексного. В качестве этих регистров могут применяться любые регистры общего назначения, при этом часто используется масштабирование содержимого индексного регистра.

В случае использования косвенной базовой индексной адресация со смещением эффективный адрес формируется как сумма трех составляющих: cодержимого базового регистра, cодержимого индексного регистра и значения поля смещения в команде.

При использовании подобного выражения для перехода нельзя забывать о длине самой команды, в которой это выражение используется, так как значение счетчика адреса соответствует смещению в сегменте кода данной, а не следующей за ней команды. В приведенном выше примере команда jmp занимает 2 байта. Длина этой и некоторых других команд может зависит от того, какие в ней используются операнды. Команда с регистровыми операндами будет короче команды, один из операндов которой расположен в памяти. В большинстве случаев эту информацию можно получить, зная формат машинной команды.

Операторы в языке ассемблера

Операнды являются элементарными компонентами, из которых формируется часть машинной команды, обозначающая объекты, над которыми выполняется операция. В более общем случае операнды могут входить как составные части в более сложные образования, называемые выражениями . Выражения представляют собой комбинации операндов и операторов , рассматриваемые как единое целое. Результатом вычисления выражения может быть адрес некоторой ячейки памяти или некоторое константное (абсолютное) значение.
Выполнение операторов ассемблера при вычислении выражений осуществляется в соответствии с их приоритетами. Операции с одинаковыми приоритетами выполняются последовательно слева направо. Изменение порядка выполнения возможно путем расстановки круглых скобок, которые имеют наивысший приоритет.

Характеристика основных операторов.

Операторы сдвига выполняют сдвиг выражения на указанное количество разрядов. Например,

Операторы сравнения (возвращают значение истина или ложь) предназначены для формирования логических выражений. Логическое значение истина соответствует логической единице, а ложь – логическому нулю. Логическая единица – значение бита равное 1, логический ноль – значение бита, равное 0.

Назначение операторов сравнения приведено в таблице

Оператор Условие
eq==
ne!=
lt
ge>=

Логические операторы выполняют над выражениями побитовые операции. Выражения должны быть константными. Например,

Индексный оператор [ ]. Транслятор воспринимает наличие квадратных скобок как указание сложить значение выражения за [] со значением выражения, заключенным в скобки. Например,

Наличие индексного оператора указывает транслятору, что необходимо получить значение по вычисленному адресу.

Оператор переопределения типа ptr применяется для переопределения или уточнения типа метки или переменной, определяемых выражением. Тип может принимать одно из следующих значений.

Тип Пояснение Назначение
byte1 байтпеременная
word2 байтапеременная
dword4 байтапеременная
qword8 байтпеременная
tword10 байтпеременная
nearближний указательфункция
farдальний указательфункция

В примере для сравнения значения по адресу esi с константой необходимо явно указать, данные какого типа будут сравниваться.

Оператор переопределения сегмента : (двоеточие) вычисляет физический адрес относительно конкретно задаваемой сегментной составляющей, в качестве которой могут выступать:

Оператор именования типа структуры . (точка) также заставляет транслятор производить определенные вычисления, если встречается в выражении.

Оператор получения сегментной составляющей адреса выражения seg возвращает физический адрес сегмента для выражения, в качестве которого могут выступать метка, переменная, имя сегмента, имя группы или некоторое символическое имя.

Оператор получения смещения выражения offset позволяет получить значение смещения выражения в байтах относительно начала того сегмента, в котором выражение определено. Например,

Оператор type возвращает число байтов, соответствующее определению указанной переменной:

Оператор width возвращает размер в битах объекта типа RECORD или его поля.

Источник

ЛЕКЦИЯ № 17. Структуры команд на Ассемблере

Машинная команда представляет собой закодированное по определенным правилам указание микропроцессору на выполнение некоторой операции или действия. Каждая команда содержит элементы, определяющие:

1) что делать? (Ответ на этот вопрос дает элемент команды, называемый кодом операции (КОП).);

2) объекты, над которыми нужно что-то делать (эти элементы называются операндами);

3) как делать? (Эти элементы называются типами операндов – обычно задаются неявно).

Приведенный на рисунке 20 формат машинной команды является самым общим. Максимальная длина машинной команды – 15 байт. Реальная команда может содержать гораздо меньшее количество полей, вплоть до одного – только КОП.

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Рис. 20. Формат машинной команды

Опишем назначения полей машинной команды.

Необязательные элементы машинной команды, каждый из которых состоит из 1 байта или может отсутствовать. В памяти префиксы предшествуют команде. Назначение префиксов – модифицировать операцию, выполняемую командой. Прикладная программа может использовать следующие типы префиксов:

1) префикс замены сегмента. В явной форме указывает, какой сегментный регистр используется в данной команде для адресации стека или данных. Префикс отменяет выбор сегментного регистра по умолчанию. Префиксы замены сегмента имеют следующие значения:

а) 2eh – замена сегмента cs;

б) 36h – замена сегмента ss;

в) 3eh – замена сегмента ds;

г) 26h – замена сегмента es;

д) 64h – замена сегмента fs;

е) 65h – замена сегмента gs;

2) префикс разрядности адреса уточняет разрядность адреса (32– или 16-разрядный). Каждой команде, в которой используется адресный операнд, ставится в соответствие разрядность адреса этого операнда. Этот адрес может иметь разрядность 16 или 32 бит. Если разрядность адреса для данной команды 16 бит, это означает, что команда содержит 16-разрядное смещение (рис. 20), оно соответствует 16-разрядному смещению адресного операнда относительно начала некоторого сегмента. В контексте рисунка 21 это смещение называется эффективный адрес. Если разрядность адреса 32 бит, это означает, что команда содержит 32-разрядное смещение (рис. 20), оно соответствует 32-разрядному смещению адресного операнда относительно начала сегмента, и по его значению формируется 32-битное смещение в сегменте. С помощью префикса разрядности адреса можно изменить действующее по умолчанию значение разрядности адреса. Это изменение будет касаться только той команды, которой предшествует префикс;

Для чего нужны регистры еах евх есх. Смотреть фото Для чего нужны регистры еах евх есх. Смотреть картинку Для чего нужны регистры еах евх есх. Картинка про Для чего нужны регистры еах евх есх. Фото Для чего нужны регистры еах евх есх

Рис. 21. Механизм формирования физического адреса в реальном режиме

3) префикс разрядности операнда аналогичен префиксу разрядности адреса, но указывает на разрядность операндов (32– или 16-разрядные), с которыми работает команда. В соответствии с какими правилами устанавливаются значения атрибутов разрядности адреса и операндов по умолчанию?

В реальном режиме и режиме виртуального 18086 значения этих атрибутов – 16 бит. В защищенном режиме значения атрибутов зависят от состояния бита D в дескрипторах исполняемых сегментов. Если D = 0, то значения атрибутов, действующие по умолчанию, равны 16 бит; если D = 1, то 32 бит.

Значения префиксов разрядности операнда 66h и разрядности адреса 67h. С помощью префикса разрядности адреса в реальном режиме можно использовать 32-разрядную адресацию, но при этом необходимо помнить об ограниченности размера сегмента величиной 64 Кбайт. Аналогично префиксу разрядности адреса вы можете использовать префикс разрядности операнда в реальном режиме для работы с 32-разрядными операндами (к примеру, в арифметических командах);

4) префикс повторения используется с цепочечными командами (командами обработки строк). Этот префикс «зацикливает» команду для обработки всех элементов цепочки. Система команд поддерживает два типа префиксов:

а) безусловные (rep – OOh), заставляющие повторяться цепочечную команду некоторое количество раз;

б) условные (repe/repz – OOh, repne/repnz – 0f2h), которые при зацикливании проверяют некоторые флаги, и в результате проверки возможен досрочный выход из цикла.

Обязательный элемент, описывающий операцию, выполняемую командой. Многим командам соответствует несколько кодов операций, каждый из которых определяет нюансы выполнения операции. Последующие поля машинной команды определяют местоположение операндов, участвующих в операции, и особенности их использования. Рассмотрение этих полей связано со способами задания операндов в машинной команде и потому будет выполнено позже.

3. Байт режима адресации modr/m.

Значения этого байта определяет используемую форму адреса операндов. Операнды могут находиться в памяти в одном или двух регистрах. Если операнд находится в памяти, то байт modr/m определяет компоненты (смещение, базовый и индексный регистры), используемые для вычисления его эффективного адреса (рисунок 21). В защищенном режиме для определения местоположения операнда в памяти может дополнительно использоваться байт sib (Scale-Index-Base – масштаб-индекс-база). Байт modr/m состоит из трех полей (рис. 20):

1) поле mod определяет количество байт, занимаемых в команде адресом операнда (рис. 20, поле смещение в команде). Поле mod используется совместно с полем r/m, которое указывает способ модификации адреса операнда «смещение в команде». К примеру, если mod = 00, это означает, что поле смещение в команде отсутствует, и адрес операнда определяется содержимым базового и (или) индексного регистра. Какие именно регистры будут использоваться для вычисления эффективного адреса, определяется значением этого байта. Если mod = 01, это означает, что поле смещение в команде присутствует, занимает 1 байт и модифицируется содержимым базового и (или) индексного регистра. Если mod = 10, это означает, что поле смещение в команде присутствует, занимает 2 или 4 байта (в зависимости от действующего по умолчанию или определяемого префиксом размера адреса) и модифицируется содержимым базового и (или) индексного регистра. Если mod =11, это означает, что операндов в памяти нет: они находятся в регистрах. Это же значение байта mod используется в случае, когда в команде применяется непосредственный операнд;

2) поле reg/коп определяет либо регистр, находящийся в команде на месте первого операнда, либо возможное расширение кода операции;

3) поле r/m используется совместно с полем mod и определяет либо регистр, находящийся в команде на месте первого операнда (если mod =11), либо используемые для вычисления эффективного адреса (совместно с полем смещение в команде) базовые и индексные регистры.

4. Байт масштаб – индекс – база (байт sib).

Используется для расширения возможностей адресации операндов. На наличие байта sib в машинной команде указывает сочетание одного из значений 01 или 10 поля mod и значения поля r/m = 100. Байт sib состоит из трех полей:

1) поля масштаба ss. В этом поле размещается масштабный множитель для индексного компонента index, занимающего следующие 3 бита байта sib. В поле ss может содержаться одно из следующих значений: 1, 2, 4, 8.

При вычислении эффективного адреса на это значение будет умножаться содержимое индексного регистра;

2) поля index. Используется для хранения номера индексного регистра, который применяется для вычисления эффективного адреса операнда;

3) поля base. Используется для хранения номера базового регистра, который также применяется для вычисления эффективного адреса операнда. В качестве базового и индексного регистров могут использоваться практически все регистры общего назначения.

5. Поле смещения в команде.

8-, 16– или 32-разрядное целое число со знаком, представляющее собой, полностью или частично (с учетом вышеприведенных рассуждений), значение эффективного адреса операнда.

6. Поле непосредственного операнда.

Необязательное поле, представляющее собой 8-, 16– или 32-разрядный непосредственный операнд. Наличие этого поля, конечно, отражается на значении байта modr/m.

2. Способы задания операндов команды

В этом случае команда явно не содержит операндов. Алгоритм выполнения команды использует некоторые объекты по умолчанию (регистры, флаги в eflags и т. д.).

Например, команды cli и sti неявно работают с флагом прерывания if в регистре eflags, а команда xlat неявно обращается к регистру al и строке в памяти по адресу, определяемому парой регистров ds: bx.

Операнд задается в самой команде (непосредственный операнд)

Операнд находится в коде команды, т. е. является ее частью. Для хранения такого операнда в команде выделяется поле длиной до 32 бит (рисунок 20). Непосредственный операнд может быть только вторым операндом (источником). Операнд-получатель может находиться либо в памяти, либо в регистре.

Например: mov ax,0ffffti пересылает в регистр ах шестнадцатеричную константу ffff. Команда add sum, 2 складывает содержимое поля по адресу sum с целым числом 2 и записывает результат по месту первого операнда, т. е. в память.

Операнд находится в одном из регистров

Регистровые операнды указываются именами регистров. В качестве регистров могут использоваться:

1) 32-разрядные регистры ЕАХ, ЕВХ, ЕСХ, EDX, ESI, EDI, ESP, ЕВР;

2) 16-разрядные регистры АХ, BX, СХ, DX, SI, DI, SP, ВР;

3) 8-разрядные регистры АН, AL, ВН, BL, СН, CL, DH, DL;

4) сегментные регистры CS, DS, SS, ES, FS, GS.

Например, команда add ax,bx складывает содержимое регистров ах и bх и записывает результат в bх. Команда dec si уменьшает содержимое si на 1.

Операнд располагается в памяти

Это наиболее сложный и в то же время наиболее гибкий способ задания операндов. Он позволяет реализовать следующие два основных вида адресации: прямую и косвенную.

В свою очередь, косвенная адресация имеет следующие разновидности:

1) косвенную базовую адресацию; другое ее название – регистровая косвенная адресация;

2) косвенную базовую адресацию со смещением;

3) косвенную индексную адресацию со смещением;

4) косвенную базовую индексную адресацию;

5) косвенную базовую индексную адресацию со смещением.

Операндом является порт ввода/вывода

Помимо адресного пространства оперативной памяти, микропроцессор поддерживает адресное пространство ввода-вывода, которое используется для доступа к устройствам ввода-вывода. Объем адресного пространства ввода-вывода составляет 64 Кбайт. Для любого устройства компьютера в этом пространстве выделяются адреса. Конкретное значение адреса в пределах этого пространства называется портом ввода-вывода. Физически порту ввода-вывода соответствует аппаратный регистр (не путать с регистром микропроцессора), доступ к которому осуществляется с помощью специальных команд ассемблера in и out.

in al,60h; ввести байт из порта 60h

Регистры, адресуемые с помощью порта ввода-вывода, могут иметь разрядность 8,16 или 32 бит, но для конкретного порта разрядность регистра фиксирована. Команды in и out работают с фиксированной номенклатурой объектов. В качестве источника информации или получателя применяются так называемые регистры-аккумуляторы ЕАХ, АХ, AL. Выбор регистра определяется разрядностью порта. Номер порта может задаваться непосредственным операндом в командах in и out или значением в регистре DX. Последний способ позволяет динамически определить номер порта в программе.

Операнд находится в стеке

Команды могут совсем не иметь операндов, иметь один или два операнда. Большинство команд требуют двух операндов, один из которых является операндом-источником, а второй – операндом назначения. Важно то, что один операнд может располагаться в регистре или памяти, а второй операнд обязательно должен находиться в регистре или непосредственно в команде. Непосредственный операнд может быть только операндом-источником. В двухоперандной машинной команде возможны следующие сочетания операндов:

1) регистр – регистр;

4) непосредственный операнд – регистр;

5) непосредственный операнд – память.

У данного правила есть исключения, которые касаются:

1) команд работы с цепочками, которые могут перемещать данные из памяти в память;

2) команд работы со стеком, которые могут переносить данные из памяти в стек, также находящийся в памяти;

3) команд типа умножения, которые, кроме операнда, указанного в команде, используют еще и второй, неявный операнд.

Из перечисленных сочетаний операндов наиболее часто употребляются регистр – память и память – регистр. Ввиду их важности рассмотрим их подробнее. Обсуждение мы будем сопровождать примерами команд ассемблера, которые будут показывать, как изменяется формат команды ассемблера при применении того или иного вида адресации. В связи с этим посмотрите еще раз на рисунке 21, на котором показан принцип формирования физического адреса на адресной шине микропроцессора. Видно, что адрес операнда формируется как сумма двух составляющих – сдвинутого на 4 бита содержимого сегментного регистра и 16-битного эффективного адреса, который в общем случае вычисляется как сумма трех компонентов: базы, смещения и индекса.

3. Способы адресации

Перечислим и затем рассмотрим особенности основных видов адресации операндов в памяти:

1) прямую адресацию;

2) косвенную базовую (регистровую) адресацию;

3) косвенную базовую (регистровую) адресацию со смещением;

4) косвенную индексную адресацию со смещением;

5) косвенную базовую индексную адресацию;

6) косвенную базовую индексную адресацию со смещением.

Это простейший вид адресации операнда в памяти, так как эффективный адрес содержится в самой команде и для его формирования не используется никаких дополнительных источников или регистров. Эффективный адрес берется непосредственно из поля смещения машинной команды (см. рис. 20), которое может иметь размер 8, 16, 32 бит. Это значение однозначно определяет байт, слово или двойное слово, расположенные в сегменте данных.

Прямая адресация может быть двух типов.

Относительная прямая адресация

Используется для команд условных переходов, для указания относительного адреса перехода. Относительность такого перехода заключается в том, что в поле смещения машинной команды содержится 8-, 16– или 32-битное значение, которое в результате работы команды будет складываться с содержимым регистра указателя команд ip/eip. В результате такого сложения получается адрес, по которому и осуществляется переход.

Абсолютная прямая адресация

В этом случае эффективный адрес является частью машинной команды, но формируется этот адрес только из значения поля смещения в команде. Для формирования физического адреса операнда в памяти микропроцессор складывает это поле со сдвинутым на 4 бита значением сегментного регистра. В команде ассемблера можно использовать несколько форм такой адресации.

Но такая адресация применяется редко – обычно используемым ячейкам в программе присваиваются символические имена. В процессе трансляции ассемблер вычисляет и подставляет значения смещений этих имен в формируемую им машинную команду в поле «смещение в команде». В итоге получается так, что машинная команда прямо адресует свой операнд, имея, фактически, в одном из своих полей значение эффективного адреса.

Остальные виды адресации относятся к косвенным. Слово «косвенный» в названии этих видов адресации означает то, что в самой команде может находиться лишь часть эффективного адреса, а остальные его компоненты находятся в регистрах, на которые указывают своим содержимым байт modr/m и, возможно, байт sib.

Косвенная базовая (регистровая) адресация

При такой адресации эффективный адрес операнда может находиться в любом из регистров общего назначения, кроме sp/esp и bp/ebp (это специфические регистры для работы с сегментом стека). Синтаксически в команде этот режим адресации выражается заключением имени регистра в квадратные скобки []. К примеру, команда mov ах, [есх] помещает в регистр ах содержимое слова по адресу из сегмента данных со смещением, хранящимся в регистре есх. Так как содержимое регистра легко изменить в ходе работы программы, данный способ адресации позволяет динамически назначить адрес операнда для некоторой машинной команды. Это свойство очень полезно, например, для организации циклических вычислений и для работы с различными структурами данных типа таблиц или массивов.

Косвенная базовая (регистровая) адресация со смещением

Этот вид адресации является дополнением предыдущего и предназначен для доступа к данным с известным смещением относительно некоторого базового адреса. Этот вид адресации удобно использовать для доступа к элементам структур данных, когда смещение элементов известно заранее, на стадии разработки программы, а базовый (начальный) адрес структуры должен вычисляться динамически, на стадии выполнения программы. Модификация содержимого базового регистра позволяет обратиться к одноименным элементам различных экземпляров однотипных структур данных.

К примеру, команда mov ax,[edx+3h] пересылает в регистр ах слова из области памяти по адресу: содержимое edx + 3h.

Команда mov ax,mas[dx] пересылает в регистр ах слово по адресу: содержимое dx плюс значение идентификатора mas (не забывайте, что транслятор присваивает каждому идентификатору значение, равное смещению этого идентификатора относительно начала сегмента данных).

Косвенная индексная адресация со смещением

Этот вид адресации очень похож на косвенную базовую адресацию со смещением. Здесь также для формирования эффективного адреса используется один из регистров общего назначения. Но индексная адресация обладает одной интересной особенностью, которая очень удобна для работы с массивами. Она связана с возможностью так называемого масштабирования содержимого индексного регистра. Что это такое?

Посмотрите на рисунок 20. Нас интересует байт sib. При обсуждении структуры этого байта мы отмечали, что он состоит из трех полей. Одно из этих полей – поле масштаба ss, на значение которого умножается содержимое индексного регистра.

К примеру, в команде mov ax,mas[si*2] значение эффективного адреса второго операнда вычисляется выражением mas+(si)*2. В связи с тем, что в ассемблере нет средств для организации индексации массивов, то программисту своими силами приходится ее организовывать.

Наличие возможности масштабирования существенно помогает в решении этой проблемы, но при условии, что размер элементов массива составляет 1, 2, 4 или 8 байт.

Косвенная базовая индексная адресация

При этом виде адресации эффективный адрес формируется как сумма содержимого двух регистров общего назначения: базового и индексного. В качестве этих регистров могут применяться любые регистры общего назначения, при этом часто используется масштабирование содержимого индексного регистра.

Косвенная базовая индексная адресация со смещением

Этот вид адресации является дополнением косвенной индексной адресации. Эффективный адрес формируется как сумма трех составляющих: содержимого базового регистра, содержимого индексного регистра и значения поля смещения в команде.

К примеру, команда mov eax,[esi+5] [edx] пересылает в регистр еах двойное слово по адресу: (esi) + 5 + (edx).

Команда add ax,array[esi] [ebx] производит сложение содержимого регистра ах с содержимым слова по адресу: значение идентификатора array + (esi) + (ebx).

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *