Для чего нужны средства измерения

Средства измерений

Средствами измерений называют применяемые при измерениях технические средства, имеющие нормированные метрологические свойства. В этом определении основную смысловую нагрузку, вскрывающую метрологическую суть средств измерений (СИ), несут слова «нормированные метрологические свойства». Наличие нормированных метрологических свойств означает, вопервых, что средство измерений способно хранить или воспроизводить единицу (или шкалу) измеряемой величины, и, во-вторых, размер этой единицы остается неизменным в течение определенного времени.

Если бы размер единицы был нестабильным, нельзя было бы гарантировать требуемую точность результата измерений.

Отсюда следуют три вывода:

• измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, способно хранить единицу, достаточно стабильную (неизменную во времени) по размеру;

• техническое средство непосредственно после изготовления еще не является средством измерения; оно становится таковым только после передачи ему единицы от другого, более точного средства измерений (эта операция называется калибровкой);

• необходимо периодически контролировать размер единицы, хранимый средством измерения, и при необходимости восстанавливать его прежнее значение путем проведения новой калибровки.

По назначению различают рабочие средства измерений, применяемые для проведения технических измерений, и метрологические, предназначенные для проведения метрологических измерений.

Метрологические средства измерений называются эталонами.

Так как измеряются свойства, общие в качественном отношении многим объектам или явлениям, то эти свойства в чем-то должны проявляться, как-то должны обнаруживаться. Технические устройства, предназначенные для обнаружения (индикации) физических свойств, называются индикаторами. Стрелка магнитного компаса, например, — индикатор напряженности магнитного поля; осветительная электрическая лампочка — индикатор электрического напряжения в сети; лакмусовая бумага — индикатор активности ионов водорода в растворах.

С помощью индикаторов устанавливается наличие измеряемой физической величины и может регистрироваться изменение ее размера. В этом отношении индикаторы играют ту же роль, что и органы чувств человека, но значительно расширяют их возможности. Человек, например, слышит в диапазоне частот от 16 Гц до 20 кГц, в то время как техническими средствами обнаруживаются звуковые колебания в диапазоне от инфранизких (доли герца) до ультравысоких (десятки и сотни килогерц) частот. Видят люди в узком оптическом диапазоне электромапштных волн, а инструментально регистрируются электромагнитные колебания от сверхнизкочастотных радиоволн с частотой, составляющей доли герца, до жесткого гамма-излучения с частотой порядка 1022 Гц. В то же время не создано еще технических устройств, которые могли бы соперничать с обонянием человека или животных.

Так как индикаторы должны обнаруживать проявление свойств окружающего мира, важнейшей их технической характеристикой является порог обнаружения (иногда его называют порогом чувствительности). Чем меньше порог обнаружения, тем более слабое проявление свойства регистрируется индикатором. Современные индикаторы обладают очень низкими порогами обнаружения, лежащими на уровне фоновых помех и собственных шумов аппаратуры. Последние имеют тепловую природу, поэтому для их снижения чувствительные элементы и электронные узлы особо чувствительных индикаторов охлаждают до температуры, близкой к абсолютному нулю. Селекцию (выделение) сигналов на фоне помех осуществляют с помощью специальных фильтров и накопителей. За счет этих и некоторых других мер порог чувствительности радиотелескопов, например, в сантиметровом диапазоне радиоволн доведен до 10-18 Вт.

Индикаторы являются средствами измерений по шкале порядка. Для измерения по шкале отношений необходимо сравнить неизвестный размер с известным и выразить первый через второй в кратном или дольном отношении. Если физическая величина известного размера есть в наличии, то она непосредственно используется для сравнения. Так, длину измеряют линейкой, плоский угол — транспортиром, массу с помощью гирь и весов, электрическое сопротивление — с помощью магазина сопротивлений. Если же физической величины известного размера в наличии нет, то сравнивается реакция (отклик) прибора на воздействие измеряемой величины с проявившейся ранее реакцией на воздействие той же величины, но известного размера. Так измеряют: силу электрического тока — амперметром, электрическое напряжение — вольтметром, скорость — спидометром, давление — манометром, термодинамическую температуру — термометром и т. д. При этом предполагается, что соотношение между откликами такое же, как и между сравниваемыми размерами. Для облегчения сравнения отклик на известное воздействие еще на стадии изготовления прибора фиксируют на шкале отсчетного устройства в выбранных единицах измерений, после чего разбивают шкалу на деления в кратном и дольном отношении. Эта процедура называется градуировкой. При измерениях она позволяет по положению указателя получать результат сравнения непосредственно на шкале отношений.

Все технические средства, предназначенные для измерений, называются средствами измерений.

Кроме индикаторов к ним относятся вещественные меры, измерительные преобразователи, измерительные приборы, измерительные установки, измерительные системы, технические системы и устройства с измерительными функциями, стандартные образцы.

Вещественные меры предназначены для воспроизведения физической величины заданного размера, который характеризуется так называемым номинальным значением. При условии что указывается точность, с которой воспроизводится номинальное значение физической величины, гиря является мерой массы, конденсатор — мерой емкости, кварцевый генератор — мерой частоты электрических колебаний и т. д. Различают однозначные и многозначные меры, а также наборы мер. Например, гиря и измерительный конденсатор постоянной емкости — это однозначные меры, измерительная линейка и конденсатор переменной емкости — многозначные меры, а набор гирь и набор измерительных конденсаторов являются наборами мер. Измерения методом сравнения с мерой выполняют с помощью специальных технических устройств — компараторов. Компараторами служат равноплечие весы, измерительный мост и т. д. Иногда в качестве компаратора выступает человек.

Измерительные преобразователи — это средства измерений, перерабатывающие измерительную информацию в форму, удобную для дальнейшего преобразования, передачи, хранения, обработки, но, как правило, недоступную для непосредственного восприятия наблюдателем. Измерительные преобразователи получили очень широкое распространение. К ним относятся термопары, измерительные усилители, преобразователи давления и многие другие виды измерительных устройств. По месту, занимаемому в измерительной цепи, они делятся на первичные и промежуточные.

Конструктивно преобразователи являются либо отдельными блоками, либо составными частями средств измерений. Если преобразователи не входят в измерительную цепь, то они не относятся к измерительным. Таковы, например, операционный усилитель, делитель напряжения в цепи электропитания, силовой трансформатор и т. п.

Измерительный прибор представляет собой совокупность измерительных преобразователей, образующих измерительную цепь, и отсчетного устройства. В отличие от вещественной меры, прибор не воспроизводит известное значение физической величины. Измеряемая величина должна подводиться к нему и воздействовать на его первичный измерительный преобразователь.

Измерительные установки состоят из функционально объединенных средств измерений и вспомогательных устройств, собранных в одном месте. В измерительных системах эти средства и устройства территориально разобщены и соединены каналами связи. Область науки и техники, включающая вопросы получения измерительной информации и передачи ее по каналам связи, называется телеметрией. И в установках, и в системах измерительная информация может быть представлена в форме, удобной как для непосредственного восприятия, так и для автоматической обработки, передачи и использования в автоматизированных системах управления. Технические системы и устройства с измерительными функциями наряду с их основными функциями, не имеющими отношения к измерениям, выполняют еще и измерительные функции.

Стандартные образцы — образцы веществ (материалов) с установленными по результатам испытаний значениями одной и более величин, характеризующих состав или свойство этого вещества (материала).

Человек не является техническим средством, но его тоже можно отнести к средствам измерений. Первичными измерительными преобразователями у него служат органы чувств зрения, слуха, обоняния, осязания и вкуса. Измерения, выполняемые с помощью органов чувств человека, называются органолептическими измерениями. Они относятся к обширному классу экспертных измерений, или измерений экспертными методами.

Источник

Средства измерений

Средство измерений – это техническое средство, используемое при измерениях и имеющие нормированные метрологические свойства. К средствам измерений относят меры и измерительные приборы, преобразователи, установки и системы. От средств измерений зависит правильное определение значения измеряемой величины в процессе измерения.

Мера – это средство измерений, предназначенное для воспроизведения физической величины заданного размера. Например, гиря – мера массы, измерительный резистор – мера электрического сопротивления и т.п. К мерам относятся так же стандартные образцы и эталонные вещества.

Стандартный образец – это мера для воспроизведения единиц величин, характеризующих свойства или состав веществ и материалов или среднелегированной стали с аттестованным содержанием химических элементов, образцы шероховатости поверхности.

Эталонное вещество – это вещество с известными свойствами, воспроизводимыми при соблюдении условий приготовления, указанных в утвержденной спецификации, например «чистая» вода, «чистые» газы, «чистые» металлы.

Эталонные вещества воспроизводят строго регламентированный состав веществ и широко используется при производстве количественных химических анализов и в создании реперных точек шкал. Например, «чистый» цинк служит для воспроизведения температуры ≈420 °С.

В случае если мера должна использоваться исключительно со значениями, вычисляемыми согласно инструкции по эксплуатации с учетом поправок, приведенных в сопроводительной документации, то применяют меру не с номинальным, а с действительным значением.

Меры подразделяют на однозначные и многозначные.

Однозначная мера воспроизводит физическую величину одного размера. По сути, она воспроизводит либо единицу измерения, либо некоторое определенное числовое значение данной физической величины. Например, измерительная катушка сопротивления, гиря, плоскопараллельная концевая мера длины, измерительная колба, измерительный резистор, нормальный элемент, конденсатор постоянной емкости.

Из однозначных мер собирают наборы мер. Набор мер – это специально подобранный комплект мер, применяемых не только по отдельности, но и в различных сочетаниях с целью воспроизведения ряда одноименных величин различного размера, например набор измерительных конденсаторов, набор плоскопараллельных концевых мер длины, набор гирь.

Многозначная мера воспроизводит ряд одноименных величин различного размера, например конденсатор переменной емкости, вариометр индуктивности, линейки с миллиметровыми делениями.

Эталонные средства измерений предназначены для передачи размеров единиц физических величин от эталонов или более точных образцовых средств рабочим средствам. Эталонными средствами измерений являются меры, измерительные приборы и устройства, прошедшие метрологическую аттестацию и утвержденные органами государственной или ведомственной метрологической службы в качестве эталонных. По назначению следует различать исходные и подчиненные эталонные средства измерений.

Исходными называют эталонные средства измерений, от которых размер единицы передается с наивысшей в данном подразделении метрологической службы точностью.

Подчиненными называют эталонные средства измерений, которым передается размер единицы от исходного эталонного средства измерений непосредственно или через другие эталонные средства измерений.

Разделение средств измерений на эталонные и рабочие определяется их метрологическим назначением. Различные экземпляры одного и того же средства измерений могут выполнять функции эталонного или рабочего средства. Однако экземпляр средства измерений, выполняющий функции эталонного средства, не используют для обычных технических измерений.

Эталонные средства измерений выполняют в системе обеспечения единства измерений в стране очень ответственную роль, так как они «распространяют» единицы, передавая их размер другим средствам измерений, поэтому они подлежат тщательному хранению и поверку их проводят настолько часто, чтобы была обеспечена требуемая точность и достоверность результатов измерений. Применять их следует только для поверки других средств измерений. Средства измерений, аттестованные в качестве эталонных, допускается применять в качестве рабочих только в особых случаях, с разрешения органа метрологической службы, производившего аттестацию этих средств измерений.

Рабочие средства применяют для измерений, не связанных с передачей размера единиц, то есть они служат для технических измерений в лабораториях или на производстве.

Для эталонного средства измерений не так важно, насколько велики поправки к его показаниям, как важны стабильность и воспроизводимость его показаний. Поэтому к эталонным средствам измерений в отличие от рабочих предъявляют более высокие требования в отношении воспроизводимости показаний. К рабочим же средствам измерений предъявляют специфические требования, связанные с условиями их применения.

Измерительный прибор представляет собой средство измерений, предназначенное для выработки сигнала измерительной информации в форме, доступной для непосредственного восприятия наблюдателем.

Результаты измерений приборами выдаются их отсчетными устройствами. Последние подразделяют на шкальные, цифровые и регистрирующие.

Шкальные отсчетные устройства состоят из шкалы, представляющей собой совокупность отметок и чисел, изображающих ряд последовательных значений измеряемой величины, и указателя (стрелки, электронного луча и др.), связанного с подвижной системой прибора.

Отметки шкалы, у которых проставлено числовое значение, называются числовыми отметками шкалы.

Основными характеристиками шкалы рассматриваемого отсчетного устройства являются: длина деления шкалы — расстояние между осями или центрами двух соседних отметок (штрихов или точек) шкалы, измеренное вдоль ее базовой линии, то есть линии, проходящей через середины ее самых коротких отметок, и цена деления шкалы — значение измеряемой величины, которое вызывает перемещение подвижного элемента отсчетного устройства на одно деление, то есть модуль разности значений измеряемой величины, соответствующих двум соседним отметкам шкалы.

Указанные на шкале наименьшее и наибольшее значения измеряемой величины называются соответственно начальным и конечными значениями шкалы.

Область значений, ограниченная начальным и конечным значениями шкалы, называется диапазоном показаний.

Диапазон измерений — это та часть диапазона показаний, для которой нормированы пределы допускаемых погрешностей средства измерений. Наименьшее и наибольшее значения диапазона измерений называются соответственно нижним и верхним пределами измерений (рис. 1.) В технических приборах диапазон измерений и диапазон показаний, как правило, совпадают.

Для чего нужны средства измерения. Смотреть фото Для чего нужны средства измерения. Смотреть картинку Для чего нужны средства измерения. Картинка про Для чего нужны средства измерения. Фото Для чего нужны средства измерения

Значение величины, определяемое по отсчетному устройству средства измерений и выраженное в принятых единицах этой величины, называют показанием средства измерений. Показание может быть выражено как:

где N — отсчет (неименованное число, отсчитанное по отсчетному устройству средства измерений либо полученное счетом последовательных отметок или сигналов); с — постоянная средства измерений (число, именованное в единицах измеряемой величины; Nдел — число делений, подсчитанных по отсчетному устройству); сдел — цена деления шкалы как разность значений величины, соответствующих двум соседним отметкам шкалы.

П р и м е р — На рис. 2 показано различие понятий постоянной прибора с и цены деления сдел, из видно, что максимальный отсчет Nmax = 50, а положению стрелки отвечает отсчет N = 24, Если наибольшее показание вольтметра Umax = 50 В, то постоянная вольтметра:

Для чего нужны средства измерения. Смотреть фото Для чего нужны средства измерения. Смотреть картинку Для чего нужны средства измерения. Картинка про Для чего нужны средства измерения. Фото Для чего нужны средства измерения

а показание, отвечающее положению стрелки,

На этой шкале максимальное число делений Nдел max = 25 дел, а положению стрелки отвечает Nдел = 12 дел. Следовательно, цена деления шкалы вольтметра

Для чего нужны средства измерения. Смотреть фото Для чего нужны средства измерения. Смотреть картинку Для чего нужны средства измерения. Картинка про Для чего нужны средства измерения. Фото Для чего нужны средства измерения

U = Nдел · сдел = 12 дел · 2 В/дел = 24 В.

Числовые значения с и сдел = сU B/дел зависят от конечного значения шкалы данного диапазона измерений.

Для чего нужны средства измерения. Смотреть фото Для чего нужны средства измерения. Смотреть картинку Для чего нужны средства измерения. Картинка про Для чего нужны средства измерения. Фото Для чего нужны средства измерения

Шкалы приборов бывают односторонними (рис. 3), двухсторонними

(рис. 4) и безнулевыми (рис. 5). В односторонних шкалах один из пределов равен нулю.

Для чего нужны средства измерения. Смотреть фото Для чего нужны средства измерения. Смотреть картинку Для чего нужны средства измерения. Картинка про Для чего нужны средства измерения. Фото Для чего нужны средства измерения

В двухсторонних шкалах нулевое значение расположено на шкале. В безнулевых — на шкале нет нулевого значения.

В соответствии с ГОСТ 8.401—80 «ГСИ. Классы точности средств измерений. Общие требования» практически равномерной шкалой называется шкала, длина делений которой отличается друг от друга не более чем на 30 % и имеет постоянную цену делений. Существенно неравномерная шкала — это шкала с сужающимися делениями, для которой значение выходного сигнала, соответствующее полусумме верхнего и нижнего пределов диапазона измерений входного (выходного) сигнала, находится в интервале между 65 и 100 % длины шкалы, соответствующей диапазону измерений входного (выходного) сигнала. Степенная шкала — это шкала с расширяющимися или сужающимися делениями, отличная от шкал, указанных выше.

Чувствительность измерительного прибора — это отношение изменения сигнала Δl на выходе измерительного прибора к вызывающему его изменению измеряемой величины ΔА, то есть,

Для чего нужны средства измерения. Смотреть фото Для чего нужны средства измерения. Смотреть картинку Для чего нужны средства измерения. Картинка про Для чего нужны средства измерения. Фото Для чего нужны средства измерения

Из формулы следует, что чем меньше изменение измеряемой величины, отмечаемое прибором, тем выше его чувствительность, то есть она обратно пропорциональна цене деления шкалы.

Цифровые отсчетные устройства бывают либо механические, либо световые. Механические отсчетные устройства используют в тех цифровых приборах, у которых измеряемая величина преобразуется в соответствующие углы поворота валов. Световые табло, состоящие, как правило, из системы индикаторных газоразрядных ламп, подсвечивающих те или иные цифры, используются в электронных цифровых приборах, у которых измеряемые величины преобразуются в определенную последовательность импульсных сигналов.

Регистрирующие отсчетные устройства состоят из пишущего или печатного механизма и ленты. Простейшее пишущее устройство представляет собой перо, заполненное чернилами, фиксирующее результат измерения на бумажной ленте. В более сложных устройствах запись результатов измерений может производиться световым или электронным лучом, перемещение которого зависит от значений измеряемых величин.

Измерительные приборы классифицируются по весьма разнообразным признакам, к числу которых относят и рассматриваемые ниже способы определения значений измеряемой величины и образования показаний.

По способу определения значения измеряемой величины приборы делятся на две группы: прямого действия и сравнения.

Приборы прямого действия (непосредственной оценки) позволяют получать значения измеряемой величины на отсчетном устройстве. Такие приборы состоят из нескольких элементов, осуществляющих необходимое преобразование измеряемой величины в сигнал того или иного вида или, если необходимо, усиление этого сигнала, чтобы вызвать перемещение подвижного органа отсчетного устройства. Примером может служить электронный вольтметр, предназначенный для измерения высокочастотного напряжения. Входной сигнал подается на детектор, преобразующий переменное напряжение в постоянное, которое после усиления в усилителе постоянного тока подводится к магнитоэлектрическому вольтметру постоянного тока. Здесь постоянное напряжение, в свою очередь, преобразуется в механический момент, поворачивающий подвижную рамку на угол, пропорциональный значению измеряемого напряжения.

Шкала же вольтметра постоянного тока может быть градуирована в амплитудных или средних квадратических (эффективных) значениях переменного напряжения, подводимого ко входу электронного вольтметра.

Характерной особенностью приборов непосредственной оценки является то, что результаты, полученные с их помощью, не требуют сравнения с показаниями эталонных средств измерений.

К таким приборам относится большая часть вольтметров, амперметров, манометров, термометров и др.

В приборах сравнения значение измеряемой величины определяют сравнением с известной величиной, соответствующей воспроизводящей ее мере, например при измерении массы тел на рычажных весах. Для сравнения измеряемой величины с мерой используют компенсационные или мостовые измерительные цепи. В компенсационных вольтметрах измерение напряжения основано на сравнении измеряемой величины с величиной компенсирующего напряжения, задаваемого мерой напряжения (нормальным элементом или другой эталонной мерой напряжения).

На сравнении измеряемой величины с мерой основана работа грузопоршневых и грузопружинных манометров, где сравниваются силовые эффекты, с которыми действуют на поршень измеряемое давление и мера массы. При измерении линейных размеров тел с использованием концевых мер длины часто используют дифференциальный метод сравнения, то есть для измерения разности между измеряемой величиной и мерой применяют дополнительные приборы непосредственной оценки. Если объектами измерения являются параметры элементов, которые не несут в себе энергии (параметры пассивных элементов), то для сравнения измеряемой величины с мерой чаще всего используют мостовые измерительные схемы. В этих схемах пассивные элементы предварительно активизируются путем подведения для питания моста энергии от специальных источников питания. Сравнение же измеряемой величины, включенной в измерительное плечо моста, с известным значением меры, включенной в плечо сравнения, производят, как правило, нулевым методом, то есть уравновешивая мост путем измерения значения меры. Характерной особенностью приборов, основанных на методе сравнения, является то, что погрешность измерения с их помощью определяется в основном погрешностью мер, с которыми сравнивают измеряемые величины. Следовательно, применение мер более высоких классов точности и разрядов обеспечивает повышение точности измерений.

По способу образования показаний приборы подразделяют на показывающие и регистрирующие Показывающие приборы, в свою очередь, подразделяют на аналоговые и цифровые.

Аналоговые приборы — это, как правило, стрелочные приборы с отсчетными устройствами, состоящими из двух элементов — шкалы и указателя, связанного с подвижной частью прибора. Показания таких приборов являются непрерывной функцией измерений измеряемой величины.

Цифровые измерительные приборы автоматически вырабатывают дискретные сигналы измерительной информации, которые предлагают в цифровой форме. Отсчет у них производится с помощью механических или электронных цифровых отсчетных устройств.

Цифровые измерительные приборы по сравнению со стрелочными имеют

ряд достоинств; процесс измерения автоматизирован, что исключает возникновение погрешностей, обусловленных ошибками оператора; время измерения очень мало; результат измерений, выдаваемый в цифровой форме, легко фиксируется цифропечатающим устройством и удобен для ввода в электронно-вычислительную машину.

Цифровые измерительные приборы широко применяют для измерения электрических напряжений, частоты колебаний, параметров электрических и радиотехнических цепей и многих других физических величин. В последние годы они все чаще заменяют стрелочные приборы.

Регистрирующие измерительные приборы подразделяют на самопишущие (например, барографы, термографы, шлейфовые осциллографы), выдающие показания в форме диаграммы, и печатающие, которые выдают результат измерений в цифровой форме на бумажной ленте. Регистрирующие приборы находят широкое применение при измерении физических величин — параметров процессов или свойств объектов в динамических режимах, когда непрерывно изменяются те или иные условия измерения (температура, давление и т.п.).

Измерительный преобразователь — средство измерений, служащее для выработки измерительной информации в форме, удобной для передачи, дальнейшего преобразования, обработки и хранения, но не поддающейся непосредственному восприятию наблюдателем.

Преобразуемая физическая величина называется входной, а результат преобразования — выходной величиной. Связь между выходной и входной величинами преобразователя устанавливается функцией преобразования.

Измерительные преобразователи являются составной частью измерительных приборов, различных измерительных систем, системы автоматического контроля или регулирования тех или иных процессов.

Основное требование к измерительным преобразователям — точная передача информации, то есть минимальные потери информации, иначе говоря, минимальные погрешности. Измерительное преобразование — это отражение размера одной физической величины размером другой физической величины, функционально с ней связанной. На принципе измерительного преобразования построены практически все средства измерений, так как любое средство измерений использует те или иные функциональные связи между входной и выходной величинами. Например, в приборах для электрических измерений неэлектрических величин или для измерения геометрических величин, таких как микрометр, когда измеряемая длина отсчитывается по углу поворота микрометрического барабана, или штангенциркуль, когда вместо расстояния между губками штангенциркуля отсчитывается соответствующее расстояние по его шкале. Понятие «измерительный преобразователь» более конкретно, чем «измерительное преобразование», так как одно и то же измерительное преобразование может быть выполнено рядом различных по принципу действия измерительных преобразователей. Например, измерительное преобразование температуры в механическое перемещение может быть выполнено ртутным термометром или биметаллическим элементом либо термопарой, преобразующей температуру в ЭДС, а ЭДС в перемещение указателя.

Измерительный преобразователь, к которому подведена измеряемая величина, называется первичным преобразователем, например термопара в термоэлектрическом термометре.

Измерительный преобразователь, предназначенный для изменения величины в заданное число раз, называется масштабным, например делители напряжений на входе вольтметров или электронных осциллографов, а также измерительные усилители.

Измерительный преобразователь, предназначенный для дистанционной передачи сигнала измерительной информации, называется передающим, например индуктивный и пневматические передающие преобразователи.

Вспомогательным является средство измерений величин, влияющих на метрологические свойства другого средства измерения при его применении или поверке. Например, точность измерения объемного расхода газа или линейных размеров тел зависит от температуры, измеряемой термометром, который и является вспомогательным средством измерений.

Измерительная установка — это совокупность функционально объединенных средств измерений (мер, измерительных приборов, измерительных преобразователей) и вспомогательных устройств, предназначенных для выработки сигналов измерительной информации в форме, удобной для непосредственного восприятия наблюдателем, и расположенных в одном месте.

Создание измерительных установок, называемых также измерительными стендами, позволяет наиболее рационально расположить все требуемые средства измерений и соединить их с объектами измерений для обеспечения наиболее высокой производительности труда на данном рабочем месте (например, на рабочих местах операторов в конкретных условиях производства или поверочных лаборатории). Так создаются измерительные установки (стенды), например, для контроля работоспособности тех или иных технических устройств, для поверки различных средств измерений и т. п.

Измерительные системы предназначены для выработки сигналов измерительной информации в форме, удобной для автоматической обработки, передачи и использования в автоматических системах управления. Их главная цель — автоматизация процесса измерения и использования результатов измерения для автоматического управления различными процессами производства. В состав таких систем могут входить преобразователи одних величин в другие, схемы автоматического регулирования, меры и измерительные приборы. В случае если различные элементы системы разнесены на значительные расстояния друг от друга, связь между ними осуществляется как по проводным, так и проводными каналам.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *