Для чего нужны связи в металлоконструкциях
Строительные конструкции
Чичерин Василий. Блог инженера
Связи стального каркаса. Обзорные сведения
Металлические связи колонн
Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальнымиметаллоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков – крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.
Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.
Схема вертикальных связей между колоннами
Металлические связи ферм
Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.
Горизонтальные связи ферм по нижним и верхним поясам
Горизонтальные связи ферм бывают также продольными и поперечными.
Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.
Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.
Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.
Вертикальные связи колонн и ферм
Конструкции металлических связей стального каркаса
По конструкции металлические связи также бывают:
· перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине
· угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов
· портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности
Основным типом соединения металлических связей – это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.
Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.
Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.
Вертикальные и горизонтальные связи в металлокаркасе.
Ниже прилагается схема навеса.
Ниже прилагается схема навеса.
Ясн. Вот возникли дополнительные вопросы:
1) Сами связи (насколько я знаю ) считаются как растянутые элементы с гибкостью 400. Я много раз видел что у буржуев их роль могут играть гладкие арматурные стержни. Но ведь они не пройдут по гибкости, или эта гибкость растянутых элементов играет роль только для стандартных профилей сортамента (уголок, труба и т.д.).
2) Вот в приложенном файле имеются варианты расположения связей. Интересен вопрос обязательно ли их доводить до низа колонны, либо их можно крепить повыше?
Заранее большое спасибо.
Вложения
DWG 2007 | Варианты связей..dwg (312.8 Кб, 7712 просмотров) |
Ясн. Вот возникли дополнительные вопросы:
1) Сами связи (насколько я знаю ) считаются как растянутые элементы с гибкостью 400. Я много раз видел что у буржуев их роль могут играть гладкие арматурные стержни. Но ведь они не пройдут по гибкости, или эта гибкость растянутых элементов играет роль только для стандартных профилей сортамента (уголок, труба и т.д.).
2) Вот в приложенном файле имеются варианты расположения связей. Интересен вопрос обязательно ли их доводить до низа колонны, либо их можно крепить повыше?
Заранее большое спасибо.
Вложения
DWG 2007 | Варианты связей.dwg (337.3 Кб, 7739 просмотров) |
Вложения
DWG 2007 | Варианты связей- новое.dwg (465.1 Кб, 7483 просмотров) |
Да и наш стальной снип это не запрещает. В СП16.13330 открываем табл. 33 и в примечаниях читаем: «3. Гибкость растянутых элементов, подвергнутых предварительному напряжению, не ограничивается.» Кругляк или трос в крестовой связи будет преднапряженным, иначе провисать будет.
Прикрепите балки к сущ зданию и уберите верт связи. В том виде, в каком вы их пытаетесь запроектировать слишком много нюансов требующих расчета. Если сделать как я предложил, то устойчивость навеса будет обеспечивать сущ здание и система гор связей. Гор связи должны надежно соединять все оголовки колонн. Мю для колонн в обоих направлениях будет 1.
Если связи убрать не готовы, то нужен расчет колонны на изгибающее усилие от связи, мю вы определяете не правильно.
А по хорошему, постарайтесь связи опустить ниже, в идеале до стыка фунд.-колонна.
Конструкции, активные по вектору. Связи
Металлоконструкции в архитектуре » Конструкции, активные по вектору. Связи
Применение вертикальных диафрагм и монолитных ядер жесткости позволяет в целом повысить жесткость каркаса и уменьшить количество необходимых связей, надежно закрепляя здание от перекоса. Такое решение особенно выгодно в многоэтажных зданиях, где отсутствие связей увеличивает функциональность внутреннего пространства и архитектурную привлекательность в целом.
Кроме основной конструкции, несущие системы требуют элементов, которые обеспечивают ее функционирование согласно задуманной концепции.
Классификация связей
Стержневые каркасы с точки зрения расчетной схемы должны обладать геометрической неизменяемостью и работать совместно как единая система на всех этапах жизненного цикла. В регулярных системах этого можно достичь в основном двумя способами – созданием жестких узлов или постановкой связей. Соответственно, в зависимости от применяемого способа обеспечения неизменяемости, каркасы разделяют на закрепленные и не закрепленные от перекоса.
По конструктивной схеме выделяют жесткие и гибкие связи. Не закрепленный от горизонтального смещения каркас является геометрически изменяемой, нестабильной системой. Жесткие связи способны воспринимать сжимающие усилия, транслируя нежелательное силовое воздействие в опору, а гибкие – работают только на растяжение.
Жесткие связи формируют из прокатных элементов: труб, квадратных замкнутых профилей, спаренных уголков или швеллеров. Гибкие связи выполняют из круглой стали или канатов с обязательным предварительным натяжением. Относительно направления восприятия и распределения нагрузок, в каркасах быстровозводимых зданий, организующих ортогональные функциональные объемы, выделяют горизонтальные и вертикальные связи. Они, в свою очередь, могут иметь различную геометрию, сечения элементов и принципы работы.
Основы проектирования связей
В каркасах, закрепленных от перекоса, связи являются второстепенными элементами, и их сечения, как правило, принимают исходя из соображений предельной гибкости элементов. В то же время, в зависимости от принятой конструктивной схемы, в связях могут возникать значительные продольные усилия, выявляемые при пространственном расчете быстровозводимых зданий. Тогда сечения связей подбирают исходя из условий прочности или устойчивости.
Вертикальные связи придают жесткость при действии горизонтальных усилий вертикальным элементам здания, которые соединяют перекрытия или заземляют основной силовой поток. Для сохранения функциональности внутреннего объема вертикальные связи стремятся располагать в плоскости фасадов или в глухих внутренних стенах.
Оси связей должны проходить через центральные оси основных вертикальных элементов – стоек и колонн, однако этому может помешать расположение ограждающих конструкций наружных стен. В таких случаях ограждение смещают вовнутрь или наружу от оси колонн, либо увязывают со связевой системой. В основном связи крепятся шарнирно на обычных болтах и центрируются в узлах элементов основного несущего каркаса. По типу геометрии различают диагональные, треугольные, крестовые, портальные и ромбические связи.
Диагональные связи являются наиболее простыми и недорогими по обустройству, однако дают несимметричное закрепление и должны быть обязательно жесткими. С архитектурной точки зрения диагональные связи нивелируют возможность обустройства просветов, но дают наименьшую визуальную затеняемость в оконных проемах.
Треугольные связи имеют те же характеристики, но дают немного большую связность элементов и более лояльны к обустройству просветов.
Крестовые связи являются наиболее распространенным типом, так как дают максимальную жесткость и достаточно просты в обустройстве, однако стены с крестовыми связями обычно являются глухими.
Портальные и ромбические связи дают максимальную возможность для организации проходов, однако обеспечить с помощью них каркасу такую жесткость, как придают крестовые связи, крайне сложно.
Размещение связей в здании при проектировании зависит от его размеров, конфигурации несущей системы, архитектурных возможностей и направления действия горизонтальных нагрузок, которые должны быть восприняты. Прежде всего, связи всегда ставят в торцевых блоках здания, так как они непосредственно взаимодействуют с горизонтальным силовым потоком от ветра.
Шаг связей между торцами принимают не более 50 м. В каждом температурном и деформационным блоке предусматривается своя отдельная система связей.
Горизонтальные связи обеспечивают образование в зданиях жестких дисков, которые распределяют внешние силовые воздействия между элементами, препятствуют скручиванию каркаса, выходу из плоскости элементов и уменьшают моментные усилия.
Применение железобетонных плит настилов в перекрытиях из стальных элементов позволяет создавать жесткие диски и минимизировать потребность в горизонтальных связях. Следует учитывать, что железобетонные плиты с толщиной менее 200 мм, равно как металлические профилированные настилы и ограждающие панели, не создают достаточной жесткости и не могут полностью заменить горизонтальные связи. Прогоны кровли и второстепенные балки перекрытий могут считаться связями только при соединении в одном уровне с основными несущими конструкциями и при соосности с потоком передаваемых горизонтальных усилий, на которые должны быть рассчитаны.
Связи как конструктивный инструмент архитектурной формы
Наиболее выраженное визуальное представление работы связей возможно в отношении диагональных связей. Помимо конструкционной функции, наружные связи зачастую используют для придания быстровозводимому зданию экспрессивного вида. Связи, предусмотренные для достижения комплексного эффекта, могут представлять собой более чем необходимый минимум для конструкционных целей. Пример применения наружных крестовых связей для обеспечения жесткости внешних несущих конструкций фасада показан на рис.
В данном случае были использованы гибкие предварительно напрягаемые канаты, а размещение в каждом отсеке связано с формой фасада и противодействием ветровым пульсациям.
В офисном центре «Леонардо » связи несущих элементов фасадной системы специально выполнены открытыми, притягивая взор и акцентируя современный вид здания.
Восьмиэтажное здание исследовательского центра Arcelor Mittal в Люксембурге для увеличения жесткости каркаса имеет вертикальную связевую ферму, выполненную из двутавровых профилей. Конструкция визуально открыта во внутреннем пространстве атриума и вместе с несущими конструкциями наружных панорамных лифтов создает особую внутреннюю среду, подчеркивающую предназначение и функцию здания. Массивный размер профилей также был принят во внимание при пожарно-техническом анализе данного здания.
Связи
В связи с изменениями производственной программы Саратовского резервуарного завода выпуск данного оборудования завершен.
Актуальный список товаров доступен в разделе «Продукция».
Металлический каркас состоит из многих несущих элементов (ферма, рама, колонны, балки, ригели), которые необходимо «связывать» друг с другом для сохранения устойчивости сжатых элементов, жесткости и геометрической неизменяемости конструкции всего здания. Для соединения конструктивных элементов каркаса служат металлические связи. Они воспринимают основные продольные и поперечные нагрузки и передают их на фундамент. Металлические связи также равномерно распределяют нагрузки между фермами и рамами каркаса для сохранения общей устойчивости. Важным их назначением является противодействие горизонтальным нагрузкам, т.е. ветровым нагрузкам.
Саратовский резервуарный завод производит связи из горячекатаных сортовых уголков, гнутых уголков, гнутых профильных труб, горячекатаных профильных труб, круглых труб, горячекатаные и гнутых швеллеров и двутавр. Общая масса используемого металла должна составлять приблизительно 10% от общей массы металлоконструкции здания.
Основными элементами, которые соединяют связи, являются фермы и колонны.
Металлические связи колонн
Связи колонн обеспечивают поперечную устойчивость металлической конструкции здания и его пространственную неизменяемость. Связи колонн и стоек являются вертикальными металлоконструкциями и конструктивно представляют собой распорки или диски, которые формируют систему продольных рам. Назначение жестких дисков – крепление колонн к фундаменту здания. Распорки соединяют колонны в горизонтальной плоскости. Распорки представляют собой продольные балочные элементы, например, межэтажные перекрытия, подкрановые балки.
Внутри связей колонн различают связи верхнего яруса и связи нижнего яруса колонн. Связи верхнего яруса располагают выше подкрановых балок, связи нижнего яруса, соответственно, ниже балок. Основными функциональными назначениями нагрузок двух ярусов являются способность передачи ветровой нагрузка на торец здания с верхнего яруса через поперечные связи нижнего яруса на подкрановые балки. Верхние и нижние связи также способствуют удерживанию конструкции от опрокидывания в процессе монтажа. Связи нижнего яруса к тому же передают нагрузки от продольного торможения кранов на подкрановые балки, что обеспечивает устойчивость подкрановой части колонн. В основном в процессе возведения металлоконструкций здания используются связи нижних ярусов.
Схема вертикальных связей между колоннами
Металлические связи ферм
Для придания пространственной жесткости конструкции здания или сооружения металлические фермы также соединяются связями. Связь ферм представляет собой пространственный блок с прикрепленными к нему смежными стропильными фермами. Смежные фермы по верхним и нижним поясам соединены горизонтальными связями ферм, а по стойкам решетки – вертикальными связями ферм.
Горизонтальные связи ферм по нижним и верхним поясам
Горизонтальные связи ферм бывают также продольными и поперечными.
Нижние пояса ферм соединяются поперечными и продольными горизонтальными связями: первые фиксируют вертикальные связи и растяжки, за счет чего уменьшается уровень вибрации поясов ферм; вторые служат опорами верхних концов стоек продольного фахверка и равномерно распределяют нагрузки на соседние рамы.
Верхние пояса ферм соединяются горизонтальными поперечными связями в виде распорок или прогонов для сохранения запроектированного положения ферм. Поперечные связи объединяют верхние пояса фермы в единую систему и становятся «замыкающей гранью». Распорки как раз предотвращают смещение ферм, а поперечные горизонтальные фермы/связи предотвращают от смещения распорки.
Вертикальные связи ферм необходимы в процессе возведения здания или сооружения. Их как раз и называют зачастую монтажными связями. Вертикальные связи способствуют сохранению устойчивости ферм из-за смещения их центра тяжести выше опор. Вместе с промежуточными фермами они образуют пространственно-жесткий блок с торцов здания. Конструктивно вертикальные связи ферм представляют собой диски, состоящие из распорок и ферм, которые располагаются между стойками стропильных ферм по всей длине здания.
Вертикальные связи колонн и ферм
Конструкции металлических связей стального каркаса
По конструкции металлические связи также бывают:
перекрестные связи, когда элементы связей пересекаются и соединяются между собой посередине
угловые связи, которые располагаются несколькими частями в ряд; применяются в основном для строительства малопролетных каркасов
портальные связи для каркасов П-образного вида (с проемами) имеют большую площадь поверхности
Основным типом соединения металлических связей – это болтовое, так как такой вид крепления максимально эффективен, надежен и удобен в процессе монтажа.
Специалисты Саратовского резервуарного завода спроектируют и изготовят металлические связи из любого профиля в соответствии с механическими требованиями к физико-химическим свойствам материала в зависимости от технико-эксплуатационных условий.
Надежность, устойчивость и жесткость металлического каркаса Вашего здания или сооружения во много зависит от качественного изготовления металлических связей.
Как заказать изготовление металлических связей на Саратовском резервуарном заводе?
Для расчета стоимости металлоконструкций нашего производства, Вы можете:
Специалисты Завода предлагают комплексные услуги:
Для чего нужны связи в металлоконструкциях
д.т.н., профессор Кирсанов Н.М.
ВВЕДЕНИЕ
Во-вторых, связи служат, чтобы обеспечивать устойчивость сжатых и сжато-изогнутых стержней верхних поясов ферм, колонн и др. Опасность потери устойчивости таких элементов объясняется тем, что стержни металлического каркаса имеют большие длины и относительно небольшие компактные поперечные размеры. Связи раскрепляют сжатые элементы в промежуточных точках, уменьшая расчетные длины элементов в направлении этих раскреплений.
Различают следующие основные виды связей, применяемых в металлическом каркасе промышленного здания
I. ПОПЕРЕЧНЫЕ СВЯЗИ МЕЖДУ ВЕРХНИМИ ПОЯСАМИ ФЕРМ
1.1. Верхний пояс фермы, как любой сжатый стержень, может потерять устойчивость, если усилие в нем достигнет критического значения. Потеря устойчивости в таком случае произойдет в одной из двух плоскостей:
Рис.2. Расчетная длина верхнего пояса в плоскости фермы, (пунктир)
Обратим внимание на ошибку, которая может быть допущена при определении расчетной длины верхнего пояса из плоскости фермы. На рис.3в прогон пересекает диагональ связей в точке «f». Создается впечатление, что прогон прикреплен к диагонали связей, и расчетную длину верхнего пояса из плоскости фермы казалось бы, можно брать равной панели. Однако это неверно: прогоны и связи расположены в разных уровнях, между ними «f» имеется зазор (рис. 7)
1.2. В зданиях с фонарем (рис.4) верхний пояс не раскреплен из плоскости ферма на большом участке, т.к. под фонарем нет прогонов. Если считать, что конструкций стенового ограждения фонаря вместе с прогоном фиксируют точку «Б», то расчётная длина верхнего пояса из плоскости «Б
В качестве распорки используется верхний пояс вертикальных связей (раздел 2), но могут быть применены специально предназначенные для этой,цели парные уголки или другие профили,
1.3. В последнее время с целью экономии металла принято функции связей по верхним поясам возлагать на кровельный настил, который при его надежном прикреплении к фермам может обеспечивать устойчивость верхних поясов из плоскости ферм.
Так в беспрогонных покрытиях с железобетонным настилом устойчивость верхних поясов из плоскости ферм обеспечивается приваркой закладных частей настила к верхним поясам. В таком случае расчетная длина верхнего пояса из. плоскости фермы может быть принята равной длине одной панели фермы. 0 приварке настила к поясам ферм должна быть сделаны указания, в примечании на чертеже.
Во время возведения здания эти прикрепления плит к поясам должны контролироваться. При этом требуется составлять акт на скрытые работы. Профилированный настил также может выполнять роль связей по верхним поясам, если его прикрепить е помощью дюбелей к прогонам.
При экономических преимуществах замены связей настилом, прикрепленным к поясам, покрытия оказываются лишенными одной немаловажной функции, выполняемой связями. Связи по верхним поясам кроме того, что обеспечивают устойчивость ферм, являются также фиксаторами правильного взаимного положения ферм во время монтажа. Поэтому при монтаже покрытия без связей рекомендуется предусматривать использование временных (съемных) инвентарных связей, т.е. монтажных кондукторов.
При наличии фонарей в покрытиях, где настил служит в качества связей по верхнему поясу, под фонарем для обеспечения устойчивости пояса устраиваются связи в виде диагоналей при шаге ферм 6 м или в виде неполных диагоналей при шаге ферм 12 м (рис.6). При этом расчетная длина верхнего пояса ферм при проверке устойчивости из плоскости принимается равной двум панелям.
Рис.6. Обеспечение устойчивости верхних поясов ферм под фонарями в покрытиях, где функции связей выполняет ; настил t а) шаг ферм б м, б) шаг ферм 12 м
1.4. В покрытиях с шагом ферм 12 м и с прогонами пролетом 12 м связевая ферма принимается шириной 6 м. В этом случае вводится дополнительный промежуточный пояс из соответствующих профилей (рис.4, в) и конструируются связи так же, как, если бы шаг ферм был 6 м.
1.5. Расстояние по длина здания между стержневыми связями по верхнему поясу ферм не должно превышать 144 м. Поэтому в длинных зданиях связи ставятся не только в крайних панелях блока каркаса но и в середине или третях длины блока (рис. I).
Эти требования объясняются тем, что устойчивость ферм, рай-положенных далеко о,т связей, не всегда может быть надежно обеспечена, т.к, прогоны или распорки, прикрепляющие фермы к связевым блокам, допускают в узлах известную смещаемость вследствие разности диаметров болтов и отверстий. С увеличением числа узлов, т.е. с удаленнем связей, эта смешаемость суммируется и увеличивается, что уменьшает надежность обеспечения устойчивости ферм, расположенных далеко от связей.
Конструкции некоторых узлов связей, выполненных из уголковых и гнутосварных профилей, и их прикрепление к фермам показано на рис, 7, 8.
Итак, связи, расположенные в плоскости верхних поясов ферм, имеют следующее основное назначение: при загружении покрытия предотвращают потерю устойчивости этих поясов из плоскости ферм, то есть уменьшают расчетную длину верхних поясов при проверке устойчивости их из плоскости ферм.
2. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ ФЕРМАМИ
Вертикальные связи в виде цепочки распорок и ферм ставят по длине здания между стойками стропильных ферм. Связевые фермы для экономии металла соединяют между собой верхними и нижними распорками (рис.10). Таким образом, фермы вертикальных связей являются дисками, а прикрепленные к ним стержни-распорки обеспечивают промежуточные стропильные фермы или ригели рам от опрокидывания (рис.9б). Решетка связевых ферм, как правило, может быть произвольной (рис.9в) и выполняется из одиночных уголков или из прямоугольных гнуто-сварных труб. В покрытиях с шагом ферм 12 м, со шпренгельными прогонами или с настилом, усиленным шпренгелями, верхний пояс фермы вертикальных связей может иметь вид, показанный на рис.9г.
Вертикальные связи по ширине пролета располагаются на опорах (между колоннами) и в пролете между стойками.ферм не реже, чем через 15 м, т.е. при пролете здания 36 м они будут расположены в плоскостях двух стоек.
Рис.7. Прикрепление связей к верхним поясам ферм
Рис.8. Узлы покрытия и связей при шаге ферм 12 м (см. рис. 6);
а) Прикрепление связей, выполненных из замкнутых профилей к фермам с поясами из широкополочных двутавров
б) Узел Б
Рис.9. Вертикальные связи между фермами:
а) положение центра тяжести,
б) фермы-диски и распорки,
в) схемы решеток ферм,
г) связи в покрытиях с шагом ферм 12 м и со шпренгельыми прогонами
Связи могут прикрепляться также к специальныо предусмотренным для этогй цели вертикальным фасонкам [2, с.234]. В составе блока при крупноблочном монтаже вертикальные связи являются необходимыми элементами, обеспечивающими неизменяемость блока.
Рис.10. Узел прикрепления верхнего пояса фермы вертикальных связей к стойке стропильной фермы. Аналогично выполняется нижний узел
ПРОДОЛЬНЫЕ ГОРИЗОНТАЛЬНЫЕ СВЯЗИ ПО НИЖНИМ ПОЯСАМ РИГЕЛЕЙ
Контур связей, расположенных в плоскости нижних сквозных ригелей, можно расчленить на продольные и поперечные связи (рис.11). Назначение продольных связей сводится к следующему:
3.1. Продольные связи воспринимают поперечные горизонтальные крановые воздействия, т.е воспринимают внецентренное приложение вертикального давления крана на колонну, вызывающее горизонтальное смещение рамы, а также поперечное торможение крана, приложенное к одной раме (рис.12а) и передает эти воздействия на соседние рамы, менее нагруженные (рис.12б). Таким образом обеспечивается пространственность каркаса при работе его на местные нагрузки, вызывающие горизонтальные смещения ригеля рамы.
Рис.11. Связи по нижним поясам ригелей рам
Рис.12. Схема воспринятая поперечных горизонтальных нагрузок продольными связями по нижним поясам :
а) смешение рам от вертикального внецентренного приложения крановой нагрузки и от торможения;
б) передача поперечных нагрузок на связи
3.2. Отметим, что боковая нагрузка от ветра передается одинаково на все рамы, вызывая одинаковое смешение их. Поперечных сил между рамами в этом случае не возникает и поэтому в каркасах с шагом рам 6 м продольные связи не воспринимают ветровой нагрузки,
При шаге колонн 12 м и более в каркасах, имеющих стойки фахверка (стенового каркаса), продольные связи работают на эту нагрузи; Они являются верхними горизонтальными опорами стоек фахверка. Таким образом, в этом случае продольные связи передают усилия от ветровых нагрузок со стоек фахверка на соседние рамы (рис.13) и связи нагружены усилиями от ветровой нагрузки по длине шага рам.
Рис.13. Передача ветровой нагрузки со стоек фахверка на продольные связи
3.3. В крайних, панелях ригеля вследствие того, что жестко защемленный ригель на опоре испытывает изгибающие моменты противоположного знака по отношению к знаку момента в пролете, дается сжатие нижнего пояса (рис.14).
Рис.14. Сжатие в нижнем поясе ригеля вблизи опор
Закрепить нижний пояс от потери устойчивости из плоскости ригеля здесь можно лишь с помощью продольных связей (точка «f» рис.14). Устойчивость нижнего пояса в плоскости ригеля обеспечивается либо развитием момента инерции сечения пояса (в этой панели он может быть принят из двух неравнобоких уголков, составленных большими полками), либо введением дополнительной подвески.
3.4. В многопролетных зданиях с кранами тяжелого режима работы (7К, 8К) продольные связи в виде горизонтальных ферм ставятся друг от друга на расстояние не более двух пролетов (рис.15)
Рис.15. Связи по нижним поясам ригелей в многопролетном каркасе с кранами тяжелого режима работы (7К, 8К)
4. ПОПЕРЕЧНЫЕ СВЯЗИ В ПЛОСКОСТИ НИЖНИХ ПОЯСОВ РИГЕЛЕЙ
4.1. Эти связи служат для передачи усилий от ветровых нагрузок, направленных в торец здания, со стоек торцевого фахверка на вертикальные связи между колоннами (рис.17) (передача давления показана стрелками).
Рис.17. Схема передачи ветровых нагрузок с торца здания на связи
4.2. Вместе с продольными связями они образуют замкнутый контур, увеличивающий общую жесткость каркаса здания.
Поперечные связи, как правило, ставятся под связями по верхним поясам, создавая с ними пространственные поперечные блоки, к которым с помощью прогонов, распорок вертикальных связей и продольных связей крепятся промежуточные фермы (ригели).
На рис.18, 19 показаны узлы крепления горизонтальных связей, выполненных из уголков и прямоугольных гнуто-сварных труб к поясам ферм. Следует отметить, что в каркасах с тяжелым режимом работы кранов 7К, 8К и при больших крановых нагрузках связи прикрепляются к фермам с помощью сварки (т.е. болтовые узлы должны быть обварены) либо с помощью высокопрочных болтов.
Рис.18. Конструкции уголковых связей по нижним пояс
5. ВЕРТИКАЛЬНЫЕ СВЯЗИ МЕЖДУ КОЛОННАМИ
Различают верхний ярус вертикальных связей между колоннами (связи, расположенные выше подкрановых балок) и нижний я ниже балок (рис.20).
Рис.19. Узел связей по нижнему поясу из прямоугольных гнуто-сварных профилей
Рис.20. Схема вертикальных связей между колоннами
5.2. Вертикальные связи нижнего яруса
На связи нижнего яруса возлагается функции:
а) передавать ветровые усилия от связей верхнего яруса и от продольного торможения кранов (рис.20);
б) обеспечивать устойчивость подкрановой части колонии из плоскости рамы;
Схемы вертикальных связей могут быть различными в зависимости от шага колонн, от необходимости использования проема между колоннами и т.п. (рис.21б).
Рис.21. Схемы вертикальных связей нижнего яруса:
а) дополнительная распорка для уменьшения расчетной длины колонны из плоскости рамы;
б) варианты связей между колоннами
6. РАСЧЕТ СВЯЗЕЙ
В большинстве видов связей затруднительно точно определить величины усилий, которые будут ими восприниматься. Поэтому сечения элементов связей, как правило, подбираются по предельной гибкости [1]. Для элементов, о которых заранее известно, что они будут испытывать сжатие, рекомендуется принимать предельную гибкость 200.
По известным усилиям рассчитывается вертикальные, связи между колоннами, а также поперечные связи по нижнему поясу ригеля и продольные горизонтальные связи (в случае учета пространственной работы каркаса).