Для чего нужны транцевые плиты

Транцевые плиты — излишество или необходимость?

Все более привычными в отечественном водно-моторном «быту» становятся те или иные сложные технические приспособления, призванные обеспечить еще больший комфорт и безопасность на воде. К ним можно отнести и управляемые транцевые плиты, которые практически являются уже почти обязательным элементом комплектации глиссирующих катеров, выпускаемых за рубежом.

В наибольшей степени они популярны на североамериканском водно-моторном рынке, который, к слову сказать, составляет около 80% рынка мирового. Попробуем разобраться в вопросе, выведенном в заголовок этой публикации.

Транцевые плиты предназначены прежде всего для облегчения выхода катера на режим глиссирования. Особенно это актуально в тех нередких ситуациях, когда судно бывает перегружено. Знакомая картина: волею капитана пассажиры перемещаются в носовую часть, и только после этого катер лениво, с длинным разбегом, но все-таки ко всеобщему ликованию преодолевает сопротивление воды. А бывает, что и не преодолевает.

Управляемые транцевые плиты служат в подобных случаях удобным подспорьем. Судоводитель изменяет угол атаки плиты к набегающему потоку, получая при этом дополнительную подъемную силу, приложенную в кормовой части судна. Точно так же, выбрав оптимальное положение плиты, можно сохранить режим глиссирования при оборотах двигателя, меньших, чем в стандартных условиях, или устранить крен, возникающий из-за неравномерного распределения весовой нагрузки либо действия бокового ветра. Кроме несомненного упрощения работы судоводителя, все эти варианты использования плит обеспечивают экономию топлива и позволяют эксплуатировать двигатель в щадящих режимах, избегая перегрузки. (Физическая картина действия транцевых плит подробно представлена в статье «Глиссирование под контролем», «КиЯ» №196.)

По типу привода современное управляемые транцевые плиты можно разделить на две категории — электромеханические и электрогидравлические.

В первом случае приводом является электродвигатель (рис. 1). Он размещается непосредственно в цилиндре исполнительного механизма, обеспечивающего перемещение плиты. Преимущество электромеханических транцевых плит заключается в быстроте монтажа, который сводится к установке плит на транце и прокладке электрических кабелей. Недостаток — низкая стойкость к механическому воздействию. Удары, приходящиеся на плиту, жестко передаются на исполнительный механизм, ломая шестеренчатый редуктор.

Работу транцевых плит с электрогидравлическим приводом обеспечивает электрический гидронасос (рис. 2), который размещается в наиболее удобном месте трюмного пространства. Исполнительным механизмом здесь является гидроцилиндр, в полости которого по шлангам подается гидравлическая жидкость. Гидроцилиндр достаточно устойчив к механическим повреждениям, а при необходимости замены его цена оказывается значительно ниже, чем электрического аналога.

Крупнейшим производителем управляемых транцевых плит с электрогидравлическим приводом (рис. 3) является компания «Bennett Marine». Выпускаемые ею плиты входят в стандартную комплектацию глиссирующих катеров многих известных брендов. Вот лишь некоторые из них: в США — «Bayliner», «Sea Ray», «Regal», «Four Winns», «Chaparral», «Monterey»; в Великобритании — «Sunseeker», «Princess», «Fairline»; в Финляндии — «Bella», «Flipper», «Aquador»; в Италии — «Azimut», «Ferretti» и др.

Модельный ряд компании «Bennett» разнообразен по ассортименту. Можно подобрать транцевые плиты для судов до 25 м длиной, рассчитанных на скорость до 60 уз и с любым типом энергетической установки.

Предусмотрены варианты комплектования транцевых плит различными видами управляющих контроллеров — кнопочными или джой-стиковыми. Можно установить контроллер с индикаторами положения плит (рис. 4).

Существует электронный блок, который обеспечивает автоматическое управление плитами на всех режимах движения судна, а его работа — не только динамичный выход судна на глиссирование, но и эффективную работу плит в режиме «успокоителей» качки, особенно на длинной волне (рис. 5).

Большую популярность приобрела модификация «Sport» с оригинальным профилем плиты.

Так нужны ли транцевые плиты или можно без них обойтись? Наверное, каждый судоводитель должен сам ответить на этот вопрос. Судовые транцевые плиты лежат в той же «плоскости» потребительских интересов, что и многие автомобильные системы. Кому-то из нас стали привычными и необходимыми гидроусилитель руля или ABS, а кто-то легко обходится и без них.

Примерная стоимость комплекта плит составляет 800 долл., а электронного блока автоматического управления — около 450 долл. Это много, по сравнению с ценой «Вихря» и «Казанки», но несущественно при масштабах стоимости современного 7-метрового судна.

В комплект транцевых плит «Bennett» входит CD-диск, где на видеоролике наглядно представлена последовательность их установки. Таким образом, монтаж плит, как правило, трудностей не вызывает, но все же установочные работы лучше доверить специалисту сервисного центра (или судостроителю при заказе нового катера).

Источник

Транцевые плиты и гидрокрылья. Улучшаем ход судна…

Глубоко заблуждаются те, кто полагает, что транцевые плиты и гидрокрылья нужны катерам только в том случае, если судно не правильно настроено. Такое возможно и было верным лет двадцать тому назад, когда еще на сцене не появились легкие и прочные килеватые корпуса, однако и в наши дни транцевые плиты своим присутствием на борту способны принести пользу.

Хотя разнообразие конструкций транцевых плит и моделей гидрокрыльев весьма велико, принцип их действия практически одинаков…

Чем больше надстройки или, точнее, площадь надстроек у судна с глиссирующим корпусом, тем больше влияние ветра, сносящего корпус с выбранного курса, и для удержания которого потребуется вести судно под углом к ветру, а не по курсу…

Для этого штурвал следует повернуть так, чтобы судно оставалось на курсе, но для судов с глиссирующим корпусом, которых обычно уводит внутрь поворота (как и все прочие монокорпусные суда), в повороте нужно будет штурвалом не только компенсировать естественный завал корпуса, но и снос по ветру.

Мы все с этим сталкивались, когда пытались пересечь узкий залив в хорошую волну, направляя лодку на 15 градусов к ветру. Во время движения лодка начинает хлопать бортами по волнам, что не только повышает крен и лишает плавание на ней даже следов комфорта, но и существенно затрудняет управление лодкой. В результате Вам постоянно придется бороться с волнами, чтобы задать правильное положение корпусу лодки, меняя наклонение мотора и работая регулятором газа.

Выравнивание лодки подвесным мотором или кормовым приводом не устранит крена корпуса, но с помощью транцевых плит дела пойдут совсем иначе и результат будет достигнут проще и быстрее, поскольку все характеристики судна и его управляемость улучшатся.

Хотя разнообразие конструкций транцевых плит весьма велико, принцип их действия практически одинаков. Подвижные пластины, устанавливаемые поперек транца, принудительно отклоняются, направляя вниз поток воды, сообщая корпусу тем самым подъемную силу. В итоге корма поднимается, а нос лодки опускается. Подобным же образом можно регулируемые пластины наклонять независимо, и, опуская одну пластину, компенсировать крен корпуса лодки.

Если транцевую плиту по правому борту опустить, то правый борт лодки начнет подниматься, а левый борт опускаться, ну и наоборот. Однако положение носа и кормы не изменится, если двигаться будет одна только плита, и корпус судна начнет уходить одним бортом, одновременно опуская нос. Используя различные комбинации углов наклона транцевых плит, положение корпуса лодки можно выровнять для компенсации негативного влияния состояния воды, ветра или неравномерности распределения груза на борту.

Каждый корпус потребует различной степени отклонения каждой транцевой плиты для достижения требуемого результата, но всегда изменять положение плит следует постепенно, избегая резких движений. Если плита будет слишком наклонена, явно будет ощутимо ее тормозящее влияние, упадет скорость и тяга, судно начнет раскачиваться. В общем, чем меньше наклонены плиты, тем лучше.

Особенно эффективны плиты на небольших судах, прежде всего при изменении состояния воды или размещения пассажиров на борту, а также при значительной выработке запаса топлива. Кроме того, на малых судах различными системами транцевых плит легче будет добиться влияния на ходовые характеристики.

Для быстроходных сильно килеватых катеров со стационарными двигателями типа водометов, а также для большинства поверхностных (болотных и мелководных) двигателей транцевые плиты окажут немедленное кренящее или выравнивающее действие, или увеличат угол атаки корпуса, что облегчит выход на глиссирование и движение судна сделают более ровным.

Конструкции транцевых плит

Сегодня для изменения положения плит используются два основных типа толкателей – электрогидравлические и электромеханические. Существующие электрогидравлические системы состоят из гидравлического привода, в основном использующего 12-вольтовый реверсивный мотор для приведения в действие небольшого насоса высокого давления, и из масляного резервуара в замкнутом корпусе, который крепится изнутри к транцу поближе к плитам.

Короткие шланги от насоса проходят к подвижной раме, часто через отверстия в опорной раме и через непременно высверливаемые в транце отверстия. Это означает, что у системы отсутствуют длинные внешние шланги, которые могут цепляться и собирать грязь. Направление вращения электромотора управляется переключателем с приборной панели судоводителя. Соленоиды на моторе управляют включением цепей высокого напряжения, поэтому к переключателю на приборной доске подведены сравнительно тонкие быстросъемные провода.

Для чего нужны транцевые плиты. Смотреть фото Для чего нужны транцевые плиты. Смотреть картинку Для чего нужны транцевые плиты. Картинка про Для чего нужны транцевые плиты. Фото Для чего нужны транцевые плитыЭлектромеханические системы управления транцевыми плитами состоят из электромотора, работающего на червячную передачу. В качестве примеров можно назвать изделия «Lectro Tab» и «Lenco». Эти системы быстро срабатывают, весьма надежны и не имеют люфта.

Размер транцевых плит должен соответствовать параметрам судна, характеристикам двигателя и целям, которых вы стремитесь достигнуть с плитами. Практика же говорит, что для среднего случая и для плиты длиной 230 мм (9 дюймов) от стенки транца до обреза плиты, ширина этой плиты должна составлять примерно 1/12 длины лодки.

Основным различием гидравлических и электрических систем является их прочность. Электрические транцевые плиты установить проще, хотя бы потому, что электромотор находится внутри толкателя. Если же уплотнения не справятся, то вода зальет толкатель. В гидравлических же системах приводной мотор располагается внутри лодки, что обеспечивает их сравнительно большую долговечность, благодаря чему они служат не менее 15 лет.

Вразрез с распространенным убеждением, нейтральное положение установленных на транце выравнивающих плит находится не в одной плоскости с поверхностью глиссирования, а является слегка приподнятым, когда плиты не препятствуют свободному выходу из-под кормы лодки потока воды. Являясь продолжением днища лодки, опущенные транцевые плиты неизбежно будут создавать подъемный эффект. Под полностью поднятыми плитами должен свободно проходить воздух, и только в таком случае плиты не будут действовать, и корпус лодки перестанет испытывать их влияние.

Кроме выше упомянутых и наиболее распространенных электрогидравлических и электромеханических систем управления положением транцевых плит, существуют и другие конструктивные решения. Одно из новейших – система «QL Boat Trim System». Оригинальное конструктивное решение для управления плитами из композитного материала предлагает не гидравлические толкатели, а чисто электрические. Это упрощает установку, устраняет опасность коррозии и делает практически излишним обслуживание. Принцип действия системы «QL Boat Trim System» очень прост. Давление воды на небольшую пластину создаёт подъемную силу, действующую на днище корпуса лодки, поднимая тем самым корму и опуская нос лодки. Традиционные транцевые плиты большой площади «собирают» опорное усилие воды для формирования подобной подъемной силы.

Система управляемых транцевых плит «Smart Tabs» предназначена для установки на моторные лодки длиной от 3 до 6 метров, и полностью автономна в работе, поскольку не имеет никаких обременительных гидравлических или электрических приводов. Один лишь автономный блок, который крепят к транцу лодки, для управления положением корпуса лодки контролирует давление потока воды. В этой системе отсутствуют шланги для жидкостей или переключатели на панели управления, а после установки она решительно всю работу делает сама, не требуя присмотра.

Когда лодка уменьшит скорость, толкатель снова выдвинется, опуская плиты. Как просто!

Можно сказать, что саморегулирующаяся система «Smart Tabs» непрерывно реагирует на величину давления воды, тогда как управляемая компьютером система ATC учитывает крен корпуса лодки и его баланс.

Хотя обе системы созданы для самостоятельного принятия решений, они весьма существенно отличаются по принципу действия и несопоставимы по цене.

Гидрокрылья
Если Вы не считаете, что транцевые плиты нужны вашей лодке, тогда возможно Вашему приводу на корме или подвесному мотору пригодится гидрокрыло.

При меньших затратах гидрокрыло помогает судоводителю удерживать лодку в режиме глиссирования на меньших скоростях движения. Если же вдруг обнаружится, что лодка склонна подпрыгивать на волнах, то гидрокрыло стабилизирует положение подвесного мотора и, позволит удержать нос лодки опущенным.

Кроме того, гидрокрыло снижает кавитацию винта. В то же время, поскольку в большинстве случаев гидрокрыло полностью находится в воде, оно добавляет трения о воду, слегка уменьшая максимальную скорость, с которой может двигаться лодка.

По материалам сайта Propeller Magazine.
Перевод Павла Дмитриева

Источник

Транцевые плиты: установка, возможности, способы установки

Положительные аспекты от установки транцевых плит:

Принцип работы и эффективность

Транцевые плиты обычно состоят из двух регулируемых стальных пластин, устанавливаемых на транце судна. Положение пластин изменяется с помощью гидравлических патронов, которые могут поднимать и опускать пластины по команде судоводителя.

Представьте себе элероны и закрылки у самолета. Транцевые плиты обеспечивают такой же эффект для катера. Они увеличивают подъемную силу, что помогает компенсировать потерю скорости, неправильное распределение груза и состояние поверхности водоема. Когда плиты опущены, набегающий поток воды создает подъемную силу, поднимающую корму и тем самым уменьшающую трение движения корпуса катера в воде. Подъемная сила возрастает с увеличением площади пластины, угла ее наклона и скорости движения судна.

Для чего нужны транцевые плиты. Смотреть фото Для чего нужны транцевые плиты. Смотреть картинку Для чего нужны транцевые плиты. Картинка про Для чего нужны транцевые плиты. Фото Для чего нужны транцевые плиты

Выход на глиссирование

Для того чтобы выйти на глиссирование быстрее, водители катеров часто просят пассажиров перейти в переднюю часть судна. Получая дополнительную подъемную силу от транцевых плит, катер потратит меньше времени для выхода на глиссирование. При этом двигатель будет меньше загружен, меньше будет расходоваться топлива, а пассажиры смогут сидеть там, где им больше нравится.

Для чего нужны транцевые плиты. Смотреть фото Для чего нужны транцевые плиты. Смотреть картинку Для чего нужны транцевые плиты. Картинка про Для чего нужны транцевые плиты. Фото Для чего нужны транцевые плиты

Средство управления

Поскольку транцевые плиты устанавливаются по обе стороны кормы судна и могут отклоняться независимо, поперечным выравниванием катера можно управлять наклонением пластин на разный угол. Такое независимое управление пластинами позволяет исключительно эффективно выравнивать движение неравномерно загруженного небольшого катера.

Перевозка катера с транцевыми плитами

Эффект от работы транцевых плит небольшие катера ощущают значительно сильнее, чем крупные суда. Быстроходные катера с большим шагом винта могут использовать выравнивающие плиты для повышения скорости и устойчивости движения.

При буксировке одного или нескольких воднолыжников, выравнивающие пластины обеспечат более быстрый ход катеру без необходимости повышения мощности мотора.

На что нужно обращать внимание при покупке?

Так что в рамочку можно обвести следующее правило: Чем больше площадь пластин, тем она эффективнее.

Расчет примерно такой: 2,5 см длины плиты на каждые 30 см длины катера. К примеру, если длина вашего судна 5,8-7,3 м, следует устанавливать плиты длиной 45-60 см.

Установка транцевых плит

Для эффективной работы транцевых плит исключительно важна их правильная установка. В месте установки на транце пластина должна образовывать между транцевой доской и днищем судна букву «V». Для наилучшей поперечной управляемости, выравнивающие пластины следует устанавливать не ближе 10 см от кромки соединения днища и борта по направлению к килю.

При наличии встроенного двигателя, для размещения транцевых плит может быть использовано все пространство от борта до киля, если можно будет проложить ровную поверхность и, установке плит не будут препятствовать направляющие на днище.

На небольшие клепки и ребра пластина может налегать сверху. На катерах, приводимых в движение подвесными или встроенными моторами, необходимо обеспечить не менее 20 см зазора между плитами и дейдвудом двигателя, чтобы струи воды, созданные пластинами, не ухудшили работу винта.

Для чего нужны транцевые плиты. Смотреть фото Для чего нужны транцевые плиты. Смотреть картинку Для чего нужны транцевые плиты. Картинка про Для чего нужны транцевые плиты. Фото Для чего нужны транцевые плиты


Используйте возможностей транцевых плит полностью

К выравнивающим плитам на рынке имеется множество приспособлений, служащих повышению эффективности их работы. Хотя они и могут быть недешевы, некоторые их этих устройств не только упрощают управление транцевыми плитами, но и способны экономить Ваши деньги.

Источник

Триммер и транцевые плиты — практическое использование

В предыдущем номере мы рассмотрели ряд теоретических моментов, касающихся принципа действия различных систем управления ходовым креном и дифферентом. Сегодня же попробуем дать несколько советов по их практическому использованию — здесь, как и вообще при управлении лодкой, тоже есть свои тонкости.

Для начала освежим в памяти, зачем вообще необходима регулировка ходового дифферента и что она дает. Напомним, что речь идет прежде всего о глиссирующих судах, на которых эффект от применения подобных систем наиболее ощутим и где без них порой просто не обойтись.

Начнем с такого важного показателя, как максимальная скорость. Создаваемое корпусом сопротивление, от которого она во многом зависит, определяется в том числе и площадью соприкосновения глиссирующих участков днища с водой (специалисты именуют ее «смоченной поверхностью») — чем она меньше, тем меньшая доля мощности мотора тратится на преодоление сил трения и, соответственно, тем выше скорость. Регулируя ходовой дифферент за счет триммирования — изменения угла наклона подвесного мотора или колонки — этот показатель можно варьировать в довольно широких пределах (рис. 1). Ясно, что для достижения наибольшей скорости на полном ходу понадобится максимально возможный кормовой дифферент, при котором лодка, как говорится, идет «на пятке», создавая наименьшее сопротивление. Однако на деле все далеко не так просто.

Так, например, исключение могут представлять собой крупные и тяжелые лодки класса моторных яхт, особенно не очень быстроходные — с максимальной скоростью порядка 20-25 уз. Даже в чистом режиме глиссирования такие суда имеют значительную ходовую осадку, и при движении с кормовым дифферентом скорость, как правило, оказывается на 2-3 уз меньше по сравнению с настройкой, при которой линия киля более-менее параллельна воде. Очевидно, связано это с тем, что когда корма глубоко просажена в воду, площадь проекции смоченной поверхности корпуса на вертикальную плоскость (грубо говоря, площадь лобового сопротивления) оказывается при этом заметно больше (рис. 2).

После выхода на режим глиссирования короткими последовательными нажатиями на кнопку «Up» («Вверх») откидывайте мотор или колонку и приподнимайте нос лодки над водой, внимательно следя за ее поведением, прислушиваясь к звуку мотора и наблюдая за стрелкой тахометра. Как правило, границу, переступать за которую уже не следует, легко определить по резкому росту оборотов двигателя, свидетельствующему о том, что колонка откинута излишне и что винт подхватил воздух. Определив этот предел, пару раз коротко нажмите на кнопку «Down» («Вниз»), восстанавливая упор — максимальная скорость достигнута.

Однако далеко не на всех лодках все проходит столь гладко и четко — влияние на процесс оказывает целый ряд немаловажных факторов, среди которых и особенности обводов корпуса, и нагрузка, тем или иным образом в нем распределенная, и высота установки мотора, и его мощность вкупе с весом.

Так, например, резкого срыва винта в кавитацию может и не быть — обороты при нажатиях на кнопку триммера продолжат расти более-менее плавно, но после какого-то предела скорость увеличиваться перестанет. Определить это можно только при помощи прибора — например, навигатора GPS. Сгодится и тот же встроенный спидометр (он же манометр, измеряющий давление встречного потока воды) — пусть он обычно и врет, безбожно завышая абсолютные значения, засечь изменения скорости с его помощью все-таки можно. Уменьшая угол откидки, при том же скоростном показателе приведите обороты в норму— «перекрут» не идет мотору на пользу, да и расход топлива при этом неоправданно высок.

Сигналом излишней откидки на ряде корпусов может быть не кавитация гребного винта, а дельфинирование — лодка начинает циклически «кивать носом» даже на тихой воде. Как правило, дальнейшего роста скорости в таком режиме не наблюдается, но если вам и удалось за счет этого прибавить 2-3 км/ч, лучше все же немного «поджать» мотор или колонку обратно и тем самым стабилизировать ход — хотя бы для того, чтобы не укачало пассажиров (да и со стороны такой способ передвижения выглядит отнюдь не профессионально!).

Если дельфинирование чревато разве что снижением комфорта на борту и язвительными насмешками сторонних наблюдателей, то появление при настройке на кормовой дифферент поперечной раскачки и зарыскиваний — куда более угрожающий симптом. В этом случае вы рискуете полностью потерять контроль над лодкой,особенно в волну. Научного термина для определения подобного поведения корпуса пока что не придумано — «шкивает», как принято выражаться на полупрофессиональном жаргоне. Сталкиваться с этим обычно приходится на легких скоростных лодках, заведомо перегруженных мощностью — смоченная поверхность при этом настолько мала, что говорить о стабильности хода по курсу и крену не приходится. Здесь лучше всего немного сбросить газ, особенно если обороты мотора на пределе — сохранив наиболее выгодный с точки зрения сопротивления дифферент, лодка просядет чуть поглубже, надежней «зацепившись» за воду, но в ряде случаев лучше всего опять использовать триммер и немного опустить нос, «поджав» мотор или колонку.

Скорость, достигаемая за счет уменьшения смоченной поверхности корпуса, конечно, важна, но в ряде случаев «искусственный» кормовой дифферент становится только помехой. Одной из главных особенностей глиссирования является то, что при выходе на режим, в момент преодоления так называемого «горба сопротивления», большинство корпусов и без того излишне задирает нос. Откинутый мотор или колонка способны только усугубить ситуацию — процесс выхода на глиссирование либо неоправданно затягивается, либо лодка не выходит на режим вообще (рис. 3, а). (Кое-кто из владельцев мощных лодок любит исполнять трюк под названием «кобра», максимально откидывая мотор на старте и выставляя лодку свечой, но с точки зрения хорошей морской практики это всего лишь небезопасная забава, чреватая переворотом через транец или завалом вбок — по крайней мере, с пассажирами на борту увлекаться «коброй» не советуем). В общем, при разгоне мотор или колонка должны быть максимально «занутрены» (рис. 3, б), а нажимать на кнопку «Up» советуем сразу после того, как нос разгоняющейся лодки начнет сам собой опускаться.

Необходимость «занутриться» может возникнуть и на ходу. Например, многие лодки, настроенные на максимальную скорость, ощутимо теряют в маневренности — значительно увеличивается радиус циркуляции (т.е. поворот происходит по более пологой траектории), а повороты штурвала сопровождаются подхватом воздуха винтом и потерей упора. Так что если в той или иной ситуации — например, в узкости, при интенсивном движении на акватории или прохождении мостовых пролетов — важнее четкое управление по курсу, лучше уменьшить кормовой дифферент, пусть и немного потеряв в скорости.

Кроме того, так стоит поступать и в свежую погоду. Дело в том, что кормовые участки днища большинства лодок имеют наименьшую килеватость, отчего движение по волнам «на пятке» сопряжено с жесткими ударами и прыжками. Опустив нос, можно значительно увеличить мягкость хода, причем чем больше килеватость днища в районе форштевня, тем лучше оно «режет» волну и тем лучших результатов можно добиться.

Главное — не кидаться в крайности и придерживаться принципа «золотой середины». Триммер — это палка о двух концах, и, решая с его помощью одну проблему, можно с равным успехом создать другую. Скажем, излишнее поджатие мотора или колонки к транцу, вызывающее носовой дифферент, способно стать причиной чрезмерной «верткости» и даже рыскливости, поскольку при этом происходит не только увеличение смоченной поверхности, но и смещение центра бокового сопротивления в нос от миделя (рис. 4). В ряде случаев избыточная поворотливость (т.е. стремление лодки поворачивать на большие углы, нежели те, что задаются штурвалом) может быть опасной, особенно на мореходных лодках с повышенной килеватостью носовой части — дело может дойти до самопроизвольного «полицейского разворота» наподобие заноса задней оси на автомобиле, что чревато опрокидыванием. Усугубить ситуацию могут сброс газа, вызывающий дополнительный «клевок» носом, а также движение по попутной волне.

Чрезмерный носовой дифферент нередко вызывает и иные побочные эффекты — в частности, многие килеватые корпуса залегают при этом на левый борт, зарываясь скулой. Крен при этом возникает во многом за счет реактивного момента гребного винта правого вращения, который создает и «паразитное» усилие на штурвале (кстати, при переходе на «скоростной» кормовой дифферент это усилие может не только пропасть, но и после дальнейших нажатий на кнопку «Up» поменяться на противоположное — в принципе, это нормально).

Кстати, при значительном обратном наклоне транца излишне «занут-ренным» оказывается и установленный на нем мотор, что еще больше усиливает упомянутые побочные эффекты. На большинстве подвесников предусмотрена возможность ограничить угол его «поджатия» и тем самым исключить диапазон, который заведомо не будет использоваться — для этого достаточно установить в отверстия подвески упорную чеку (рис. 5).

Поскольку даже «классические» обводы (например, «глубокое V» или тот же моногедрон) на той или иной лодке могут иметь свою индивидуальную специфику, оптимальный дифферент для каждого конкретного случая определяется опытным путем. На относительно компактных лодках свои коррективы вносят нагрузка и ее распределение по длине корпуса — например, при забитом до отказа носовом багажнике откинуть мотор для достижения максимальной скорости придется на более значительный угол.

Несколько особняком стоят спортивные лодки с поперечными реданами — здесь обычный метод «выставления на пятку» не всегда приемлем, поскольку рассчитаны они на движение сразу на нескольких «пятках» — двух, трех или четырех. Попытки чрезмерно задрать нос способны привести только к непредсказуемости поведения, не говоря уже о потере скорости. В идеале скоростной реданированный корпус должен идти как минимум на двух опорах — транце и ближайшем к нему редане (рис. 6). Кроме того, подобрав оптимальный дифферент на подобном корпусе, в скором времени его наверняка придется немного подкорректировать — мощные движки (500800 л.с.) глотают топливо ведрами, и опорожнение топливного бака на ходу способно заметно изменить первоначальную центровку.

Прибегая к помощи триммера, не забывайте и о чисто технической стороне процесса. Обращаемся мы в первую очередь к владельцам подвесных моторов — гидропомпу системы откидки приводит электромотор, которому на ходу приходится преодолевать не столько вес подвесника, сколько создаваемый им упор. Недаром на тех же скутерах «Формулы-1» с 12-вольтовой бортовой сетью триммер питается от отдельной 24-вольтовой цепи! В общем, трудится он далеко не в тепличных условиях, так что помните о необходимости беречь электроэнергию. Прежде всего это касается подвесных моторов относительно небольшой мощности, имеющих только один режим откидки — «быстрый» (большие подвесники имеют двухскоростную систему, и в диапазоне регулировки дифферента используется «медленный» режим, обеспечивающий не только более высокую точность, но и дающий больший выигрыш в силе).

На кнопки триммера лучше нажимать короткими последовательными «толчками», выдерживая паузы и наблюдая за происходящими изменениями. Хорошим подспорьем при подборе оптимального режима является указатель угла откидки (как он устроен и как его отрегулировать, мы рассказывали в №194), но не воспринимайте положение его стрелки или жидкокристаллического «столбика» чересчур буквально — подобранный некогда режим может оказаться неоптимальным по причине иной загрузки, погоды и т.п. И, конечно, не забывайте о том, что при помощи кнопок триммера можно не только регулировать дифферент, но и попросту приподнять мотор из воды — например, на мелководье или при подходе к незнакомому берегу.

К системам регулировки дифферента относятся и управляемые транцевые плиты. Правда, иметь с ними дело приходится, как правило, владельцам довольно крупных лодок. Главное их отличие от собственно триммера заключается в том, что с их помощью можно создать лишь носовой дифферент, приподняв корму (рис. 7). Поэтому корпуса, на которые они устанавливаются, как правило имеют изначальную кормовую центровку. Применительно к классическим силовым установкам с наклонными валами, не обеспечивающим регулировки дифферента за счет изменения угла установки гребного винта или винтов, такая схема полностью оправданна — опустив плиты, можно облегчить выход на глиссирование (или прижать нос к воде при движении в волну), а полностью подняв их, выйти на «скоростной» режим.

Оборудуют ими также лодки с угловыми колонками и даже с подвесниками, но, как показывает опыт редакционных тестов, нужны они далеко не всегда — для решения большинства задач достаточно и одного только триммера. Складывается впечатление, что транцевые плиты нередко выступают исключительно в роли элемента престижа. Однако есть у них и функция, которая бывает полезна на лодках с массивными и парусящими надстройками — с их помощью можно корректировать ходовой крен, а необходимость поставить лодку на ровный киль возникает не только при жалобах пассажиров или очередной попытке поймать слетевший со штурманского столика бинокль — крен способен превратить килеватый корпус в плоскодонку, что при движении в волну связано с жесткими ударами (рис. 8, а). (Впрочем, при использовании угловых колонок или подвесников парой, при двухмоторной установке, эта задача с равным успехом решается за счет их триммеров — при крене достаточно немного «поджать» колонку соответствующего борта).

Для компенсации, например, крена на правый борт, вызванного ветром или распределением нагрузки в лодке, нужно немного опустить правую плиту (рис. 9). Если лодка кренится влево, задействуем соответственно левую плиту. Казалось бы, все просто, как грабли, но запутаться можно запросто.

Прежде всего схемы управления транцевыми плитами на разных лодках значительно различаются между собой. Наиболее логичной, вроде бы, является самая примитивная — когда левая качающаяся вверх-вниз клавиша активирует левую плиту, а правая — правую. Но успешно управиться с ней выйдет только при наличии указателей положения плит (а прибор этот, надо сказать, не из дешевых). Дело в том, что при смене направления крена есть риск опускать плиты до бесконечности — например, после смены курса и, соответственно, ветрового крена можно попросту забыть про уже опущенную вниз плиту и делать попытки выровнять лодку плитой противоположного борта. Догадаетесь вы об ошибке, скорее всего, только после того, как лодка откровенно начнет рыть воду носом. Так что при использовании подобной системы обзаведитесь полезной привычкой каждый раз все «начинать с нуля» — при каких-либо сомнениях относительно положения плит перед каждой попыткой откорректировать крен поднимайте обе в крайнее верхнее положение.

Придать лодке тот или иной дифферент «поверх» уже откорректированного крена здесь несложно — просто нажимайте обе кнопки одновременно.

Имеются, правда, и «умные» системы, автоматически поднимающие опущенную плиту при попытке отдельно активировать противоположную, но если управляется она все теми же качающимися клавишами с надписями «Bow up» и «Bow down», имеющими отношение исключено к дифференту, тоже придется поломать голову. На незнакомой лодке лучше всего предварительно получить консультацию ее владельца, уже освоившего хитроумный алгоритм, либо же перед отходом от причала понажимать на кнопки и попросить помощника последить за поведением плит. Наиболее же логичной и «дружественной» нам представляется система с автоматической работой плит в противофазе и четырехкнопочным пультом, на котором корректировка крена и настройка дифферента более четко отделены друг от друга (рис. 10).

Общий же принцип для всех систем один — никогда не активируйте плиты длительными нажатиями на кнопки, это не дверной звонок! Разок на нашей памяти подобная попытка чуть не закончилась весьма печально — за штурвалом 10-метрового катера оказался совершеннейший новичок, который на полном ходу уверенно «втопил» в панель одну из клавиш. В результате мы каким-то чудом избежали столкновения с гранитной набережной (в последнюю секунду удалось дотянуться до ключа и вырубить зажигание) — опущенная до упора левая плита не только завалила лодку на правый борт, но и заставила ее заложить резкий вираж в ту же сторону. В общем, действовать надо короткими нажатиями, позволяющими отследить реакцию лодки, а также помнить, что плиты оказывают заметное влияние и на управление по курсу.

Стоит, наверное, упомянуть и о полностью автоматических системах, корректирующих крен без вмешательства водителя — на основе показаний гироскопических датчиков горизонта. Вещь, безусловно, хорошая, но это тоже не панацея. Задействовать «автомат» есть смысл только при более-менее длительном движении одним и тем же курсом. Дело в том, что плиты реагируют на изменение крена не мгновенно, скорость их спуска-подъема ограничена производительностью гидронасоса, и на извилистом фарватере, где в поворотах вас регулярно кладет то вправо, то влево, «задумчивость» системы способна только навредить.

И, напоследок, еще один практический совет: на стоянке всегда поднимайте плиты в крайнее верхнее положение, чтобы рабочие поверхности штоков были надежно упрятаны внутрь гидроцилиндров — обрастание, особенно в морской воде, способно быстро вывести их из строя. Впрочем, многие системы делают это автоматически — сразу после остановки двигателя.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *