Для чего нужны указатели
Для чего нужен указатель в Си?
Jan 27 · 3 min read
Указатель в Си — это переменная, содержащая адрес другой переменной. Сложность указателей заключается в понимании где и для чего они могут пригодиться.
Перед тем, как я начну рассказывать об указателях и зачем они программистам, быстренько вспомним основы:
Указатель
В Си указателем называется переменная, содержащая адрес другой переменной. Его можно использовать с любым типом данных, написав:
Для чего нужен указатель в Си
Функции в Си п ринимают аргументы, передавая или копируя значения в стек функции. Такой метод иногда называется передачей по значению. Поскольку функции в Си и переменные, переданные им, в действительности не связываются, любые внесённые изменения в эти переменные не будут сохраняться за пределами действия функции. Это может вызвать сложности, потому что в некоторых функциях необходимо изменять текущие переменные. Здесь-то нам и пригодится указатель. С его помощью можно получить доступ к памяти, находящейся за пределами стекового кадра. Однако важно отметить, что с помощью указателя можно получить доступ лишь к переменным, расположенным ниже текущего кадра.
В примере выше простая функция с задачей — увеличить на единицу число, проходящее через параметры. Функция написана следующим образом:
Указатели в C++: зачем нужны, когда использовать и чем отличаются от обращения к объекту напрямую
Даже если большинство программистов понимают, в чем разница между объектами и указателями на них, иногда бывает не совсем понятно, в пользу какого из способов обращения к объекту стоит делать выбор. Ниже мы постарались ответить на этот вопрос.
Вопрос
Я заметил, что нередко программисты, чей код я видел, используют указатели на объекты чаще, чем сами эти объекты, т.е., например, используют следующую конструкцию:
Аналогично с методами. Почему вместо этого:
мы должны писать вот это:
Я так понимаю, что это дает выигрыш в скорости, т.к. мы обращаемся напрямую к памяти. Верно? P.S. Я перешел с Java.
Ответ
Заметим, кстати, что в Java указатели не используются в явном виде, т.е. программист не может в коде обратиться к объекту через указатель на него. Однако на деле в Java все типы, кроме базовых, являются ссылочными: обращение к ним происходит по ссылке, хотя явно передать параметр по ссылке нельзя. И еще, на заметку, new в C++ и в Java или C# — абсолютно разные вещи.
Для того, чтобы дать небольшое представление, что же такое указатели в C++, приведем два аналогичных фрагмента кода:
Ближайший эквивалент на C++:
Однако вот это – совершенно другая вещь (C++):
На самом деле, совсем нет. Работа с указателями оформлена в виде кучи, в то время как работа с объектами – это стек, более простая и быстрая структура. Если вы новичок, то у нас для вас есть материал, в котором мы подробно рассказываем, что такое стек и куча.
Строго говоря, этот вопрос объединяет в себе два различных вопроса. Первый: когда стоит использовать динамическое распределение памяти? Второй: когда стоит использовать указатели? Естественно, здесь мы не обойдемся без общих слов о том, что всегда необходимо выбирать наиболее подходящий инструмент для работы. Почти всегда существует реализация лучше, чем с использованием ручного динамического распределения (dynamic allocation) и / или сырых указателей.
Динамическое распределение
Обычно принудительное установления срока жизни применяется в следующих ситуациях:
Указатели
Однако есть случаи, когда использование указателей оправдано не только с точки зрения динамического распределения памяти, но почти всегда есть альтернативный путь, без использования указателей, который вам и следует выбрать. Как и ранее, скажем: всегда делайте выбор в пользу альтернативы, если нет особенной необходимости в использовании указателей.
Случаями, когда использование указателей можно рассматривать как возможный вариант, можно назвать следующие:
Кратко об указателях в Си: присваивание, разыменование и перемещение по массивам
Приветствую вас, дорогие читатели. В данной статье кратко описаны основные сведения об указателях в языке Си. Кроме основных операций с указателями (объявление, взятие адреса, разыменование) рассмотрены вопросы безопасности типов при работе с ними. К сожалению, в данной статье вы не найдёте информацию по операциям сравнений указателей. Однако, статья будет полезна новичкам, а также тем, кто работает с массивами. Все примеры в данной статье компилировались компилятором gcc (восьмой версии).
Введение
Количество звёздочек лишь указывает на длину цепочек хранимых адресов. Поскольку указатель также является переменной и имеет адрес, то его адрес также можно хранить в другом указателе. В выше приведённом примере адрес переменной a сохраняется в переменной-указателе ptr. Адрес же самой переменной ptr сохраняется в другом указателе pptr. Чтобы получить адрес переменной, перед её именем надо поставить знак амперсанда (&). Наконец, чтобы выполнить обратную операцию, т.е. получить значение (содержимое) по адресу, хранимому в указателе, имя указателя предваряется звёздочкой, почти как при объявлении. Почти, потому что одной звёздочки достаточно чтобы «распаковать» указатель. Поскольку pptr указывает по адресу на значение, хранимое в ptr, то необходимо два раза применить операцию разыменования.
Указатели в предыдущем примере хранят адрес переменной определённого типа. В случае, когда применяются указатели типа void (любого типа), то прежде чем распаковать значение по адресу, необходимо выполнить приведение к типизированному указателю. Следующий пример является версией предыдущего, но с использованием указателя любого типа.
Изменения значения переменной через указатель.
Так как указатель хранит адрес переменной, мы можем через адрес не только получить значение самой переменной, но также его изменить. Например:
Как было сказано выше, указатели хранят адреса. Естественно, что адреса могут указывать не только на ячейки данных переменных в вашей программе, но и на другие вещи: адрес стека процедур, адрес начала сегмента кода, адрес какой-то процедуры ядра ОС, адрес в куче и т. д. Логично, что не все адреса можно использовать напрямую в программе, поскольку некоторые из них указывают на те участки памяти, которые нельзя изменять (доступ для чтения), или которые нельзя затирать. В случае, при обращении к участку, доступному только для чтения, при попытке изменить значение получим ошибку Segmentation Fault (SF).
Кроме того, в языке Си определён макрос с именем NULL, для обозначения указателя с нулевым адресом. Данный адрес обычно используется операционной системой для сигнала об ошибке при работе с памятью. При попытке что либо читать по этому адресу, программа может получить неопределённое поведение. Поэтому ни в коем случае не пытайтесь извлечь значение по пустому указателю.
И ещё, указатели могут указывать на один и тот же объект. Например:
Этот простой пример показывает, что через адреса можно менять содержимое простых переменных, а также остальных указателей, ссылающихся на тоже самое. Таким образом, указатель p2 как бы является псевдонимом (alias) для p1.
Передача параметров через указатели.
Параметры функций могут быть указателями. В случае вызова таких функций, они копируют значения аргументов в свои параметры как обычно. Единственное отличие здесь в том, что они копируют адреса, содержащиеся в указателях параметрах. И с помощью полученных адресов, можно изменять объекты, на которые указывают параметры. Ниже приведена стандартная процедура обмена значений между двумя целочисленными переменными.
Здесь переменные а и b меняются своими значениями друг с другом (при условии, что параметры содержат не нулевой адрес). Отметим ещё раз, что мы можем изменить содержимое, указываемое по параметру-указателю методов. И, конечно, мы можем стереть данный адрес, присвоив параметру новое значение.
Проверка типов и массивы
Постоянные (const) и указатели.
Напомним, чтобы сделать переменную с постоянным, фиксированным значением, надо добавить ключевое слово const перед её именем (до имени типа или после). Например:
Для объявления указателя на постоянное значение, ключевое слово const должно быть ПЕРЕД звёздочкой.
В примере выше была создана переменная-указатель, ссылающееся на постоянное значение. Слово const перед звёздочкой указывает, что нельзя менять содержимое напрямую (путём разыменования, обращения к ячейке). Но сама переменная указатель постоянной не является. А значит, ей можно присвоить новый адрес. Например, адрес следующей ячейки в массиве.
Указатели в C++: адрес и удаление
Всем привет! В этом уроке мы разберём то, что очень тесно связано с памятью в компьютере. С помощью этого можно улучшать работу своей программы. Как вы догадались с названия урока, это — указатели.
Адрес переменной в C++
Давайте приведем аналогию с круизным лайнером. В нем, как и в отеле, имеются номера. Вот, например, при покупке номера вам могут дать номер — 0x155 (да, мы понимаем, что не в одном лайнере или отеле не станут записывать номера в шестнадцатеричном виде, но давайте все таки немного отвлечемся). А друг может оказаться в номере 0x212 — так и с переменными, они могут получить разный путь. И только сам компьютер при создании переменной знает, где она находится.
Переменные, которые вы создаете в программе, по её завершению автоматически удаляются, чтобы не нагружать операционную память вашего компьютера.
Пример удаления переменных
В играх присутствует хорошая графика, различные спецэффекты. Например, тот же дым. Все это — переменная (может не одна!), которой в будущем придётся уничтожиться навсегда. А вот, если бы она не удалилась, то она бы своей фоновой работой понемножку нагружала бы наш компьютер.
Поэтому в C/C++ присутствует возможность обратиться к переменной, и, если требует ситуация, удалить и создать её вовсе в другом участке программы, когда это, конечно, нам будет нужно.
Что такое указатели в C++
Указатели — это с самого начала переменные, уже в которых хранится адрес других переменных.
Чтобы пользоваться указателями, вам нужно использовать два оператора:
Как создать указатели в C++
Давайте посмотрим, какую конструкцию нужно использовать, чтобы создать указатели:
Указатели, ссылки и массивы в C и C++: точки над i
В этом посте я постараюсь окончательно разобрать такие тонкие понятия в C и C++, как указатели, ссылки и массивы. В частности, я отвечу на вопрос, так являются массивы C указателями или нет.
Обозначения и предположения
Указатели и ссылки
Указатели. Что такое указатели, я рассказывать не буду. 🙂 Будем считать, что вы это знаете. Напомню лишь следующие вещи (все примеры кода предполагаются находящимися внутри какой-нибудь функции, например, main):
Ссылки. Теперь по поводу ссылок. Ссылки — это то же самое, что и указатели, но с другим синтаксисом и некоторыми другими важными отличиями, о которых речь пойдёт дальше. Следующий код ничем не отличается от предыдущего, за исключением того, что в нём фигурируют ссылки вместо указателей:
Если слева от знака присваивания стоит ссылка, то нет никакого способа понять, хотим мы присвоить самой ссылке или объекту, на который она ссылается. Поэтому такое присваивание всегда присваивает объекту, а не ссылке. Но это не относится к инициализации ссылки: инициализируется, разумеется, сама ссылка. Поэтому после инициализации ссылки нет никакого способа изменить её саму, т. е. ссылка всегда постоянна (но не её объект).
Удивительный факт состоит в том, что ссылки и lvalue — это в каком-то смысле одно и то же. Давайте порассуждаем. Что такое lvalue? Это нечто, чему можно присвоить. Т. е. это некое фиксированное место в памяти, куда можно что-то положить. Т. е. адрес. Т. е. указатель или ссылка (как мы уже знаем, указатели и ссылки — это два синтаксически разных способа в C++ выразить понятие адреса). Причём скорее ссылка, чем указатель, т. к. ссылку можно поместить слева от знака равенства и это будет означать присваивание объекту, на который указывает ссылка. Значит, lvalue — это ссылка.
А что такое ссылка? Это один из синтаксисов для адреса, т. е., опять-таки, чего-то, куда можно класть. И ссылку можно ставить слева от знака равенства. Значит, ссылка — это lvalue.
Окей, но ведь (почти любая) переменная тоже может быть слева от знака равенства. Значит, (такая) переменная — ссылка? Почти. Выражение, представляющее собой переменную — ссылка.
Этот принцип («выражение, являющееся переменной — ссылка») — моя выдумка. Т. е. ни в каком учебнике, стандарте и т. д. я этот принцип не видел. Тем не менее, он многое упрощает и его удобно считать верным. Если бы я реализовывал компилятор, я бы просто считал там переменные в выражениях ссылками, и, вполне возможно, именно так и предполагается в реальных компиляторах.
Более того, удобно считать, что особый тип данных для lvalue (т. е. ссылка) существует даже и в C. Именно так мы и будет дальше предполагать. Просто понятие ссылки нельзя выразить синтаксически в C, ссылку нельзя объявить.
Принцип «любое lvalue — ссылка» — тоже моя выдумка. А вот принцип «любая ссылка — lvalue» — вполне законный, общепризнанный принцип (разумеется, ссылка должна быть ссылкой на изменяемый объект, и этот объект должен допускать присваивание).
Операции * и &. Наши соглашения позволяют по-новому взглянуть на операции * и &. Теперь становится понятно следующее: операция * может применяться только к указателю (конкретно это было всегда известно) и она возвращает ссылку на тот же тип. & применяется всегда к ссылке и возвращает указатель того же типа. Таким образом, * и & превращают указатели и ссылки друг в друга. Т. е. по сути они вообще ничего не делают и лишь заменяют сущности одного синтаксиса на сущности другого! Таким образом, & вообще-то не совсем правильно называть операцией взятия адреса: она может быть применена лишь к уже существующему адресу, просто она меняет синтаксическое воплощение этого адреса.
Также замечу, что &*EXPR (здесь EXPR — это произвольное выражение, не обязательно один идентификатор) эквивалентно EXPR всегда, когда имеет смысл (т. е. всегда, когда EXPR — указатель), а *&EXPR тоже эквивалентно EXPR всегда, когда имеет смысл (т. е. когда EXPR — ссылка).
Массивы
Итак, есть такой тип данных — массив. Определяются массивы, например, так:
Выражение в квадратных скобках должно быть непременно константой времени компиляции в C89 и C++98. При этом в квадратных скобках должно стоять число, пустые квадратные скобки не допускаются.
то, опять-таки, место для массива будет целиком выделяться прямо внутри структуры, и sizeof от этой структуры будет это подтверждать.
Хорошо, будем считать, я вас убедил, что массив — это именно массив, а не что-нибудь ещё. Откуда тогда берётся вся эта путаница между указателями и массивами? Дело в том, что имя массива почти при любых операциях преобразуется в указатель на его нулевой элемент.
Конвертирование имени массива в void * или применение к нему == тоже приводит к предварительному преобразованию этого имени в указатель на первый элемент, поэтому:
Типы у участвовавших выражений следующие:
Массив нельзя передать как аргумент в функцию. Если вы напишите int x[2] или int x[] в заголовке функции, то это будет эквивалентно int *x и в функцию всегда будет передаваться указатель (sizeof от переданной переменной будет таким, как у указателя). При этом размер массива, указанный в заголовке будет игнорироваться. Вы запросто можете указать в заголовке int x[2] и передать туда массив длины 3.
Однако, в C++ существует способ передать в функцию ссылку на массив:
При такой передаче вы всё равно передаёте лишь ссылку, а не массив, т. е. массив не копируется. Но всё же вы получаете несколько отличий по сравнению с обычной передачей указателя. Передаётся ссылка на массив. Вместо неё нельзя передать указатель. Нужно передать именно массив указанного размера. Внутри функции ссылка на массив будет вести себя именно как ссылка на массив, например, у неё будет sizeof как у массива.
И что самое интересное, эту передачу можно использовать так:
Похожим образом реализована функция std::end в C++11 для массивов.
«Указатель на массив». Строго говоря, «указатель на массив» — это именно указатель на массив и ничто другое. Иными словами:
Однако, иногда под фразой «указатель на массив» неформально понимают указатель на область памяти, в которой размещён массив, даже если тип у этого указателя неподходящий. В соответствии с таким неформальным пониманием c и d (и b + 0 ) — это указатели на массивы.
А теперь посмотрим на такую ситуацию: