Для чего организму нужен азот
Для чего организму нужен азот
Азот – один из элементов-органогенов (т.е. из которых в основном состоят все органы и ткани), массовая доля которого в организме человека составляет до 2,5%. Азот является составной частью таких веществ, как аминокислоты (а, следовательно, пептидов и белков), нуклеотиды, гемоглобин, некоторых гормонов и медиаторов.
Биологическая роль азота
Чистый (элементарный) азот сам по себе не обладает какой-либо биологической ролью. Биологическая роль азота обусловлена его соединениями. Так в составе аминокислот он образует пептиды и белки (наиболее важный компонент всех живых организмов); в составе нуклеотидов образует ДНК и РНК (посредством которых передается вся информация внутри клетки и по наследству); в составе гемоглобина участвует в транспорте кислорода от легких по органам и тканей.
Некоторые гормоны также представляют собой производные аминокислот, а, следовательно, также содержат азот (инсулин, глюкагон, тироксин, адреналин и пр.). Некоторые медиаторы, при помощи которых «общаются» нервные клетки также имеют в своем составе атом азота (ацетилхолин).
Такое соединения как оксид азота (II) и его источники (например, нитроглицерин – лекарственное средство для снижения давления) воздействуют на гладкую мускулатуру кровеносных сосудов, обеспечивая ее расслабление и расширение сосудов в целом (приводит к снижению давления).
Пищевые источники азота
Не смотря на доступность азота для живых организмов (составляет почти 80% атмосферы нашей планеты), человеческий организм не способен усваивать азот в такой (элементарной) форме. В организм человека азот в основном поступает в составе белков, пептидов и аминокислот (растительных и животных), а также в составе таких азотсодержащих соединений, как: нуклеотиды, пурины, и др.
Дефицит азота
Как явление никогда не наблюдают дефицит азота. Поскольку организму в элементарной форме он не нужен, дефицита, соответственно, никогда и не возникает. В отличие от самого азота, дефицит веществ его содержащих (прежде всего белков) явление достаточно частое.
Причины дефицита азота
Последствия дефицита азота
Избыток азота
Как и дефицит, избыток азота как явление не наблюдается никогда – можно говорить только об избытке веществ, его содержащих. Наиболее опасно, когда азот поступает в значительных количествах в организм человека в составе токсичных веществ, например, нитратов и нитритов.
Причины избытка азота
Последствия избытка азота
Суточная потребность в азоте:
10-20 г (соответствует 60-100 г белка в сутки)
Исследование уровня оксида азота
О чем расскажет оксид азота?
Простое и информативное исследование, которое помогает врачам-пульмонологам.
Оксид азота (химическая формула – NO) давно известен как загрязнитель воздуха, который содержится в сигаретном дыме и выхлопных газах. И лишь относительно недавно ученые обнаружили, что это вещество присутствует в организме человека и животных. Оксид азота выполняет важные биологические функции: помогает передавать нервные сигналы, участвует в подавлении воспаления, расширяет просвет сосудов, бронхов, а является свободным радикалом и может повреждать клетки.
NO – неотъемлемый участник большинства процессов, происходящих в легких. Он присутствует в выдыхаемом воздухе, и по его концентрации можно судить о состоянии дыхательной системы. Например, определение оксида азота в выдыхаемом воздухе очень помогает в диагностике бронхиальной астмы.
В каких случаях проводят это исследование?
Основные показания для измерения уровня оксида азота в выдыхаемом воздухе:
Тест на уровень NO в выдыхаемом воздухе зачастую помогает разобраться в причинах хронического кашля, если исследования показывают, что функция внешнего дыхания в норме. Вы можете пройти такую процедуру в клинике «Сова». У нас ее выполняют опытные врачи-пульмонологи.
Как подготовиться к процедуре?
Итак, врач сказал, что вам нужно провести исследование содержания оксида азота в выдыхаемом воздухе и назначил дату визита в клинику. Для того чтобы тест показал точные результаты, к нему нужно немного подготовиться и соблюдать некоторые рекомендации:
Как происходит измерение уровня оксида азота в выдыхаемом воздухе?
Ничего страшного в процедуре нет, это совсем не больно и не причинит вам никаких неприятных ощущений. Исследование продолжается около пяти минут.
Измерение уровня оксида азота проводят с помощью специального небольшого прибора – портативного газоанализатора. К нему подсоединяют трубку, а на нее надевают одноразовый чистый мундштук, который пациент должен взять в рот. Нужно сделать вдох и выдохнуть воздух в мундштук. При этом нос должен быть зажат (врач даст вам специальный зажим). Через несколько секунд газоанализатор покажет результат. Всё, исследование закончено. Но, возможно, его придется повторить, чтобы врач мог убедиться в достоверности результата.
Преимущества этого метода диагностики налицо:
Как врач интерпретирует результаты, и что они означают?
Концентрация оксида азота в выдыхаемом воздухе измеряется в миллиардных долях, что обозначается сокращенно как ppb:
В дыхательных путях с высокой степенью вероятности нет воспалительного процесса.
Научная электронная библиотека
Колосов А. Е., Жданова О. Б., Мартусевич А. К., Ашихмин С. П.,
Глава IV. ОКСИД АЗОТА КАК МЕССЕНДЖЕР ЭФФЕКТА НЕКОТОРЫХ ТЕРАПЕВТИЧЕСКИХ ФИЗИКО-ХИМИЧЕСКИХ ВОЗДЕЙСТВИЙ
В настоящее время в лечебных целях все более активно применяются физико-химические факторы. Являясь прерогативой физиотерапии, сейчас они успешно демонстрируют свои возможности как полноценного дополнительного [1], а, в некоторых случаях – самостоятельного (фотодинамическая терапия, лазерная медицина, озоно-оксигенотерапия и др.), метода коррекции различных заболеваний и патологических состояний 4. Несмотря на имеющую место в литературе дискуссию относительно эффективности применения данных технологий, последняя подтверждена, в частности, тридцатилетней историей экспериментально-клинического обоснования целесообразности применения озонотерапии при широком спектре патологии человека и животных [4, 7], и более чем десятилетней – для синглетно-кислородной терапии [6]. Исследования в области лазерных технологий уже прочно заняли свои позиции в медицине и биологии, результатом чего явились организация и успешное функционирование профильного научного центра, а также издание специализированного научного журнала.
Даже с учетом кажущегося полиморфизма молекулярных и клеточных эффектов, вызываемых действием данных факторов, четко установлено, что все они оказывают существенное корректирующее влияние на интенсивность процессов липопероксидации [2, 3, 5-9]. В свою очередь, окислительный стресс сейчас принято рассматривать как значимое патогенетическое звено различных патологических состояний 11. Это дает основание предположить возможность стереотипности молекулярного ответа клеток и тканей н изучаемые физико-химические воздействия.
Ситуация с раскрытием молекулярных механизмов действия различных физико-химических агентов становится еще более затруднительной в свете революционного открытия роли оксида азота (II) [NO] как одного из наиболее важных меж- и внутриклеточных молекулярных мессенджеров [13, 14]. Следствием этого стало признание журналом «Science» NO «молекулой года» в 1992 г. и получение Р. Фурчготом, Л. Игнарро и Ф. Мурадом Нобелевской премии в области физиологии и медицины за выяснение роли оксида азота в функционировании живого организма. Следует отметить, что в последнее десятилетие число работ в данной отрасли науки растет лавинообразно 12. Этими исследованиями было, в частности, показано, что NO определяет текущий тонус сосудов, ингибирует агрегацию тромбоцитов и их адгезию на стенках кровеносных сосудов, функционирует в центральной и вегетативной нервной системы, регулируя деятельность органов дыхания, желудочно-кишечного тракта и мочеполовой системы. Кроме того, данное соединение является нейротрансмиттером, а также принимает участие в регуляции системы иммунитета. В целом, NO – токсичный газ, способный выступать в биосистемах как свободный радикал, имеющий короткий период полужизни (4 с.) и легко подвергающийся различным химическим трансформациям, который непрерывно продуцируется в организме человека и животных ферментным и неферментным путями, оказывая ключевое воздействие на целый ряд принципиально различных физиологических и патологических процессов.
С этих позиций можно предположить, что результативное изменение продукции и биологической активности NO имеет место и при применении физико-химических воздействий. Поэтому целью данной работы является анализ потенциального участия оксида азота (II) как единого мессенджера эффекта терапевтических физико-химических факторов (озона, синглетного кислорода, лазерного и ультрафиолетового излучения и др.).
Прежде всего, логично привести краткую физико-химическую характеристику NO с акцентом на свойства, необходимые для понимания его физиологических и биохимических эффектов. Оксид азота (II) [NO] – бесцветный газ, умеренно растворимый в воде (1,9 мкМ при 25 °С), в водной среде легко окисляемый кислородом воздуха [13]. В связи с этим, сохранность растворов оксида азота некоторые авторы предлагают обеспечивать предварительной аэрацией из ультразвуком с последующим пропусканием через раствор, содержащий пирогаллол. В водных растворах в присутствии кислорода NO почти полностью превращается в нитрит-анион в процессе протекания следующих реакций [13]:
(1)
(2)
(3)
(4)
(5)
Показано, что в реальных жидкостях преобладают реакции 3 и 4 в сравнении с реакцией 5, вследствие этого образующиеся концентрации нитрат-иона невелики относительно концентрации нитрит-иона.
Свободнорадикальные свойства оксида азота проявляются в биологических и модельных системах в форме генерации пероксинитрита и гидроксил-анион радикала по следующей схеме:
Относительно метаболизма NO сравнительно недавно В.П. Реутовым с соавт. (1998) и Е.Б. Меньшиковой с соавт. (2000) сформулирована оригинальная концепция, характеризующая синтез, деградацию и рециркуляцию соединения в организме млекопитающих в форме нового метаболического цикла – «цикла оксида азота» (рис. 4.1) [12, 18]. Следует отметить, что данный цикл является закономерным дополнением к уже хорошо изученным биохимическим циклам (Кребса, Кальвина, орнитиновому, люцифериновому и др.) и взаимосвязан с ними.
Рис. 4.1. Цикл оксида азота (по В.П. Реутову, 1998 [18])
По мнению указанных авторов, цикл оксида азота включает 2 компонента [18]:
а) NO-синтазные реакции, заключающиеся в трансформации L-аргинина в L-цитруллин и оксид азота, который далее окисляется до нитритов и нитратов.
б) Нитритредуктазная реакция, катализируемая электронодонорными системами с участием НАДН, НАДФН, флавопротеинов, дезоксигемоглобина и цитохрома Р450.
Одним из центральных компонентов данного цикла является фермент, обеспечивающий продукцию оксида азота – синтаза оксида азота (NO-синтаза, NOS) [19]. В настоящее время обнаружены 3 основных изоформы рассматриваемого энзима, 2 из которых – конститутивные, кальций/кальмодулин-зависимые, од-
на – индуцибельная. Краткая характеристика изоформ NO-синтазы представлена в табл. 4.1.
Изоформы синтаз оксида азота (NOS) (по В.Г. Гранику, Н.Б. Григорьеву, 2004 [13])
Тип NOS (молекулярная масса
мономера)
Распределение
по тканям
и клеткам
Нейрональная NOS (nNOS),
мозговая NOS
Нейроны центральной и периферической нервной системы, матка, скелетная мускулатура
Конститутивная форма,
кальций/кальмодулин-зависимая
Индуцибельная NOS (iNOS)
Макрофаги, печень, гладкая мускулатура, эндотелий, сердце
Индуцируется липополисахаридами, цитокинами и глюкокортикоидами, кальций/кальмодулин-независимая
Эндотелиальная NOS (eNOS)
Эндотелий, сердце, мозг
Конститутивная форма,
кальций/кальмодулин-зависимая
Несмотря на то, что сейчас обнаружены многочисленные эффекты оксида азота в отношении регуляции состояния биологических систем, наибольшее клинико-патофизиологическое значение имеет вазодилататорное действие NO [20, 21]. Механизм данного эффекта изучен достаточно подробно, и в общем виде может быть представлен в виде схемы (рис. 4.2). Соединение, синтезируемое конститутивными изоформами NO-синтазы в эндотелии и нервной системе, взаимодействуя с гуанилатциклазой и трансформируя ее пространственное строение, запускает синтез цГТФ, а через него – каскад других ферментных систем, результатом чего и является вазодилатация [17, 22].
Рис. 4.2. Схема генерации и вазодилаторного действия оксида азота (по В.Г. Гранику, Н.Б. Григорьеву, 2004 [13], с изменениями)
Открытие данного механизма способствовало стимуляции исследований в области обнаружения способов увеличения продукции оксида азота соответствующей синтазой, что обусловлено многочисленностью патологии, сопровождающейся нарушением тонуса сосудов по спазматическому типу. В частности, заманчивой целью подобной коррекции являются артериальная гипертензия различного генеза, ишемическая болезнь сердца, инсульт и др. Наиболее простым и логичным подходом к решению данной проблемы с позиций патофизиологии и биохимии служит экзогенное введение субстрата для NO-синтазы – L-аргинина [12, 13, 23]. Однако последующими работами было показано, что, во-первых, период полужизни оксида азота крайне мал [8, 23], а увеличение темпов депонирования соединения (как в форме S-нитротиолов, так и комплексов железа) затруднительно; во-вторых, избыток NO может по принципу обратной связи ингибировать собственную синтазу [13] и, в-третьих, высокая концентрация L-аргинина способствует изменению превалирующего продукта реакции на супероксид-анион радикал, обладающий, в частности, мембраноповреждающим действием [16, 24, 25]. Именно последнее обстоятельство реализуется в случае цитотоксического эффекта NO, когда в результате уже описанной реакции при взаимодействии продуктов функционирования NO-синтазы образуется пероксинитрит, в отсутствии или недостаточной концентрации/активности молекул-гасителей (супероксиддисмутаза, восстановленный глутатион и др.) вызывающий повреждение соприкасающихся с ним клеточных элементов, прежде всего, биомембран [13, 23]. В целом, наряду с позитивными эффектами у NO как свободного радикала присутствует и токсическое действие, проявляющееся только в определенных условиях (рис. 4.3). В связи с этим, следует подчеркнуть, что для адекватного функционирования организма имеет место оптимальный уровень синтеза оксида азота, а его отклонения (в любую сторону), ведут к негативным последствиям [25].
Рис. 4.3. Комплекс позитивных и негативных молекулярно-клеточных эффектов NO [13]
Другие интересные варианты сочетанных эффектов лекарственных средств включают комбинацию NO-донорных свойств и характеристик нестероидного противовоспалительного препарата [13, 31]. К ряду таких лекарств, в частности, относится мелоксикам [32, 33]. Эти «гибридные» молекулы способны предотвратить гастропатию, обусловленную длительным приемом неселективных блокаторов циклооксигеназы. Таким образом, различные экзогенные соединения при введении в организм обладают модулирующим действием в отношении оксида азота.
В то же время эти исследования практически исключительно касаются фармакологических препаратов, тогда как физико-химические факторы, существенно изменяющие многие параметры клеточного гомеостаза, характеристики биологических жидкостей и функциональное состояние органов и тканей, как модуляторы генерации оксида азота практически не рассматривались. Упоминание о подобном эффекторном каскаде приводится лишь в единичных работах по применению генераторов синглетного кислорода [8, 34]. Кроме того, предполагается, что применение экзогенного NO также стимулирует и эндогенный синтез данного соединения [13].
Принцип молекулярных мишеней в отношении действия физических факторов наиболее полно изучен и представлен для фотодинамической терапии, однако синглетный кислород является не единственной мишенью, т.к. в процессе фотохимических реакций образуется не только он, но и другие активные биорадикалы [5, 23]. Сходные внутриклеточные процессы наблюдаются при действии ультрафиолетового и лазерного излучения на биологические объекты, хотя каждое из данных воздействий имеет особенности реализации эффекта [3, 9].
С другой стороны, многие методы лечения, основанные на действии физико-химических факторов, традиционно рассматриваются с позиций самостоятельного эффекта их действующего начала 38. Так, биологическая активность озона достаточно подробно изучена и положена в основу тактики применения озонотерапии при различных патологических состояниях [4, 39, 40], тогда как в этом случае результирующее действие связано с совокупностью образующихся активных форм кислорода и озона. Одним из косвенных доказательств связи озона и метаболизма оксида азота является то, что только в присутствии окислителей (перекись водорода, кислород, озон и др. [24]) реакция NO с тиолами приводит к образованию S-нитрозотиолов – известных молекулярных депо оксида азота [20, 41].
Учитывая вышеперечисленные факты, можно предположить, что оксид азота способен выступать в качестве единого молекулярного интермедиата, реализующего на клеточном уровне эффекты действия различных физико-химических факторов (рис. 4.4). Есть основания причислять к спектру данных воздействий озонотерапию, синглетно-кислородную терапию, фотодинамическую терапию, применение ультрафиолетового и лазерного излучения, местную дарсонвализацию, а также непосредственно NO-терапию. Важно подчеркнуть, что большинство из перечисленных воздействий опосредует эффект через дополнительные промежуточные звенья, среди которых особое место занимает эндогенный синглетный кислород [8, 34, 42]. Кроме того, принимая в расчет нестабильность оксида азота, в рамках предлагаемой концепции предполагается, что рассматриваемые факторы влияют и на процессы депонирования и высвобождения NO, на что, в частности, указывает роль окислителей в формировании S-нитротиолов [13, 20, 41, 43].
Рис. 4.4. Гипотетическая схема реализации молекулярной стереотипии в действии физико-химических факторов на биосистемы
В целом, имеющиеся данные позволяют сформулировать гипотезу о молекулярной стереотипии в реализации эффекта физико-химических факторов в отношении биологических систем, базирующуюся на универсальной мессенджерской функции оксида азота. Следует подчеркнуть, что для верификации приведенной гипотезы требуется проведение целенаправленных изысканий, ориентированных на уточнение компонентов данного молекулярного каскада и характера их взаимодействий.
Таблица Менделеева в живых организмах
Азот – биоэлемент, структурная единица органических соединений, участвует в построении организмов и обеспечении их жизнедеятельности. Входит в состав важнейших биополимеров: белков, нуклеиновых кислот (ДНК, РНК); некоторых витаминов и гормонов. В воздухе азота содержится 78% по объему и 75,5% по массе.
Роль в жизни бактерий, грибов и растений
Некоторые бактерии (родов псевдомонас, алкалигенес, бациллус и др.) восстанавливают окисленные соединения азота (нитраты, нитриты) до газообразных продуктов (обычно до N2, иногда до оксида азота (I) N2O, редко – оксида азота (II) NO). Денитрификация препятствует накоплению оксидов азота, которые в высоких концентрациях токсичны.
Растения поглощают азот из почвы в виде растворимых нитратов и солей аммония (NH4 + ). Соли транспортируются в стебли и листья, где в процессе биосинтеза очень быстро превращаются в аминокислоты и белки – неотъемлемую часть любого живого организма.
Азот составляет 0,3–4,5% от массы растения. Он усиливает рост стеблей и листьев. При недостатке азота замедляется рост растения, образование хлорофилла, листья приобретают бледно-зеленую окраску и преждевременно желтеют, стебли становятся тонкими и слабо ветвятся, вновь образующиеся листья мельчают, цветки, не раскрываясь, засыхают и опадают. При длительном азотном голодании бледно-зеленые листья приобретают желтый, оранжевый или красный оттенки.
Существуют растения-индикаторы, которые великолепно растут при повышенном содержании азота в почве. Это хорошо знакомые нам крапива, малина, чистотел, пырей ползучий.
Роль в жизни животных и человека
Животные и человек получают азот в виде белков и других азотсодержащих продуктов из растений и животных. В животном организме содержится 1–10% азота (по массе), в шерсти и рогах – около 15%.
Азот необходим для процессов обмена веществ. Все важнейшие части клеток (цитоплазма, ядро, оболочка и др.) построены из белковых молекул.
Белки – необходимая составная часть питания человека и животных. В желудочно-кишечном тракте они расщепляются и всасываются в виде аминокислот и низкомолекулярных пептидов, из которых организм строит свои собственные аминокислоты и белки. Некоторые необходимые для жизни аминокислоты (так называемые незаменимые аминокислоты: валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, лизин, аргинин, гистидин, метионин) организм человека синтезировать не способен и получает их с пищей в «готовом» виде.
Физиологическая роль азота в организме связана прежде всего с белками и аминокислотами, их метаболизмом, участием в жизненно важных процессах. Аминокислоты являются исходными соединениями при биосинтезе гормонов, витаминов, пигментов и других веществ.
Из организма азот выводится вместе с мочой, калом, выдыхаемым воздухом, а также с потом, слюной и волосами.
Отсутствие или недостаток соединений азота в пище вызывает серьезные заболевания. Избыток их токсичен для живого организма.
Основные источники поступления в организм
Наиболее распространенные соединения
Знаете ли вы, что…
Азот открыт Д.Резерфордом в 1772 г.
NaNO3 – натриевая (чилийская),
KNO3 – калиевая (индийская),
Ca(NO3)2 – кальциевая (норвежская),
NH4NO3 – аммиачная.
В организме человека массой 70 кг содержится примерно 1,8 кг азота.
Содержание азота в крови составляет 3077 мг/л, в волосах – 140 000–157 000 мг/кг, а в ногтях – 146 000–148 000 мг/кг.
Суточное потребление азота с продуктами питания составляет 13–16 г.
Нашатырный спирт – 3–10% водный раствор аммиака – используется для возбуждения сердечной деятельности и центра дыхания. NH4Сl, хлорид аммония, – отхаркивающее средство. NH2Сl, моно-хлорамин, – дезинфицирующее средство. N2О оксид азота (I) в смеси c O2 кислородом применяется для газового наркоза. NaNO2, нитрит натрия, – спазмолитическое средство.
В состав белков всех живых организмов входят только 20 аминокислот, хотя в природе их известно около 180, причем 10 из них являются незаменимыми для человека и должны обязательно поступать в организм с животной и растительной пищей.
Химическая формула аминокислоты:
–R – радикал, по которому различаются все аминокислоты,
–N2H – основная аминогруппа,
–COOH – кислотная карбоксильная группа.
Углерод
Углерод – биоэлемент, структурная единица всех органических соединений, участвующих в построении организмов и обеспечении их жизнедеятельности, – белков, углеводов, липидов, нуклеиновых кислот, витаминов, гормонов. Все живое, составляющее биосферу, построено из соединений углерода.
Роль в жизни растений
Углерод составляет в среднем 45% от массы растения: у водных растений его содержание доходит до 40%, у наземных – до 46%. В ряске, затягивающей стоячий пруд, 2,5% углерода (по массе), а в более высокоорганизованном колокольчике – 10,2% (по массе).
Углерод входит в состав углекислого газа атмосферы. В процессе фотосинтеза из углекислого газа, который растения поглощают из воздуха, и воды, под действием света образуются органические вещества – глюкоза, крахмал и др. По пищевым цепям готовые органические вещества передаются от растений животным. При окислении углеводов выделяется необходимая энергия.
Роль в жизни животных и человека
В организме животных и человека на углерод приходится около 21% по массе. В составе карбоната кальция (СаСО3) углерод образует наружный скелет многих беспозвоночных, содержится в кораллах, яичной скорлупе. Углерод составляет 2/3 массы мышц и 1/3 массы костной ткани.
Углеродсодержащие соединения – носители жизни: белки, жиры, углеводы, нуклеиновые кислоты, витамины и др. Углерод необходим для процессов обмена веществ. В процессе жизнедеятельности организмов происходит окислительный распад органических соединений с выделением во внешнюю среду углекислого газа СО2. Этот газ, растворенный в биологических жидкостях и природных водах, участвует в поддержании оптимальной для жизнедеятельности кислотности среды.
Наиболее распространенные соединения
Знаете ли вы, что…
История знакомства человечества с углеродом уходит далеко в глубь веков. Неизвестно, кто открыл углерод, неизвестно, какая из форм чистого углерода – графит или алмаз – была открыта раньше. Углерод – основная часть каменного угля (99%), бурого (72%), торфа (57%). Русское название происходит от слов – рождающий уголь, от лат. – карбонис (род. падеж карбо – древесный уголь).
В организме человека массой 70 кг содержится 15 кг углерода.
В 1 л крови человека содержится 25 000 мг углерода, а в 1 кг костной ткани – 280 000 мг.
В сутки в организм человека поступает вместе с воздухом около 3,7 г углерода, а с продуктами питания – около 300 г.
В медицине используются производные угольной кислоты H2CO3 и карбоновых кислот; карболен (активированный уголь) – для абсорбции газов и выведения из организма различных токсинов, графит (в виде мазей) – для лечения кожных заболеваний и др.
Древние деревья, папоротники, мхи превратились в топливо, содержащее углерод, – каменный уголь, торф.
Фосфор
Роль в жизни растений
Фосфор входит в состав важнейших веществ клеток: ДНК и РНК, фосфолипидов (сложных эфиров глицерина, жирных кислот и фосфорной кислоты), сахарофосфатов (фосфорных эфиров сахаров), участвующих в фотосинтезе; АТФ – универсального энергетического вещества клетки.
Фосфор составляет 0,1–0,7% от массы растения. Из почвы, где фосфора содержится 800 мг/кг, растения получают его в виде солей в процессе корневого питания. Мировой урожай ежегодно уносит с полей более 3 млн т фосфора.
Фосфор ускоряет созревание плодов и повышает хладостойкость растений. При его недостатке замедляется обмен веществ в клетках, образуются слабые корни, пурпурные листья, задерживается созревание, снижается урожайность, происходит накопление пигмента антоцианина. На фоне зеленой окраски хлорофилла красная и лиловая окраски придают листьям голубоватый оттенок, а при сильном преобладании пигмента они становятся лиловыми. Кроме того, все части растения, содержащие мало хлорофилла – стебли, черешки, жилки, нижняя поверхность листьев, – окрашиваются в красноватые и лиловые цвета.
Роль в жизни животных и человека
В организме животных фосфор составляет в среднем 0,95% по массе. В организме человека содержится около 4,5 кг фосфора, чаще всего в соединении с кальцием. Из этого количества около 4,4 кг приходится на кости, около 130 г на мышцы и 12 г – на нервы и мозг, много фосфора содержится в крови и молоке.
Фосфор входит в состав липидов, ДНК, РНК, АТФ. Почти все важнейшие физиологические процессы человека и животных связаны с превращением фосфорсодержащих веществ: построение клеточных мембран, образование костей, поглощение и перенос глюкозы, глицерола и жирных кислот, энергетический метаболизм, кислотно-щелочное равновесие.
Для организма человека фосфора необходимо почти вдвое больше, чем кальция, хотя кальций и фосфор – «неразлучные» минеральные вещества, они не могут друг без друга. Фосфор, так же как и кальций, является составной частью костной ткани. Зубная эмаль – это соединение фосфора, близкое по составу и кристаллическому строению важнейшему минералу фосфора – гидроксиапатиту Ca5ОН(PO4)3. Если нарушается баланс фосфора и кальция, организм для своего «выживания» вынужден брать кальций из «костного запаса»: зубов, ногтей, крупных суставов.
В активно работающих органах – печени, мышцах, мозге – наиболее интенсивно расходуется АТФ. Фосфорсодержащий фермент фосфорилаза катализирует реакции, связанные с использованием запасных углеводов и, следовательно, обеспечивает клетки энергией. В процессе окисления углеводов в ткани мозга важную роль играют дифосфопиридиннуклеотид и неорганический фосфат. Поэтому академик А.Е. Ферсман назвал фосфор «элементом жизни и мысли». Суточная потребность в фосфоре составляет 1,3 г. Из организма фосфор выводится с мочой и калом.
Основные источники поступления в организм
Наиболее распространенные соединения
Знаете ли вы, что…
Открыт фосфор в 1669 г. немецким алхимиком из Гамбурга Х.Брандом. При перегонке сухого остатка от выпаривания мочи Бранд заметил зеленоватое свечение, отсюда название элемента фосфорос – светящийся в темноте: от греч. фос – свет и форос – несущий.
В сутки с продуктами питания в организм человека поступает 1000–3000 мг фосфора.
Различные соединения фосфора входят в состав лекарственных препаратов для лечения заболеваний сердца, печени, желудка; фосфаты цинка используются как пломбировочный материал в стоматологии.
При изготовлении спичек массу, наносимую на спичечную головку, готовят из смеси красного фосфора Рn (состоит из полимерных молекул), горючих веществ, бертолетовой соли KClO3 и катализаторов (МnО2, Fе2О3).
Белый фосфор окисляется на воздухе, давая зеленое свечение в темноте. Он применяется в производстве фосфорной кислоты и красного фосфора, как реагент в органических синтезах, раскислитель сплавов, зажигательное средство. Белый фосфор чрезвычайно ядовит, опасная для жизни доза – более 50 мг.
Калий
Роль калия в жизни растений
Калия в растениях содержится в среднем 0,3 % по массе, причем, почти весь в ионной форме. Часть находится в клеточном соке, часть – в структурных элементах клетки (главным образом в протоплазме). В ядре ионы калия не обнаружены, значит, в процессах размножения и в передаче наследственных признаков калий не участвует. Роль калия в жизни растений велика и многообразна. Калий содержится в плодах, корнях, стеблях, листьях, причем в вегетативных органах его, как правило, больше, чем в плодах. В молодых растениях калия больше, чем в старых. Он активизирует синтез органических веществ в растительных клетках. Регулирует транспорт углерода в растении, в результате в ягодах и плодах при созревании увеличивается количество сахара. Хорошая обеспеченность растений калием усиливает рост корней, луковиц и клубней, повышает их зимостойкость. Он способствует поддержанию водного баланса растений, влияет на азотный обмен.
При недостатке калия в клетках накапливается избыток аммиака, что может привести к гибели растения, замедляется процесс фотосинтеза, дыхания и растяжения клеток, что вызывает гибель ростового кончика, нарушается окраска листьев (краевой ожог-запал) и даже их опадение. При недостатке калия плоды растений (фрукты) становятся менее сладкими, зерно у злаков – щуплое и невсхожее. Отсутствие калия приводит растение к гибели.
Роль в жизни животных и человека
натрия и закачивающего в нее ионы калия. Калий влияет на солевой и кислотный баланс крови, функционирование нервов и мышц (особенно сердечной), образование гликогена, синтез белков, способствуют выделению из организма воды.
В организме человека масой 70 кг содержится 140 г калия. Взрослый человек должен в сутки потреблять с пищей 2–3 мг на 1 кг веса, а ребенок 12–13 мг на 1 кг веса. Организм ребенка, как и молодое растение, требует больше калия, чем организм взрослого. Калий способствует выделению натрия и тем самым устраняет отеки, помогает при ревматизме, улучшает работу кишечника. Недостаток калия ведет к заболеваниям глаз, плохой памяти, пародонтозу. Выводится калий из организма с мочой, калом и потом.
Основные источники поступления в организм
Овощи: шпинат, огурцы, картофель, горох, соя, фасоль, морковь, лук, салат-латук, петрушка, спаржа, хрен, одуванчик, чеснок. Фрукты: черная смородина, чернослив, изюм и др. Мясо.
Наиболее распространенные соединения
Знаете ли вы, что…
Калий впервые получен английским химиком и физиком Г.Дэви при электролизе едкого калия КОН в 1807 г. Название получил от арабского алкали – «щелочь, зола».
Соли калия применяются в качестве мочегонных и слабительных средств.
Сердечникам, в первую очередь людям, перенесшим инфаркт миокарда, для восполнения потерь калия в организме настоятельно рекомендуют есть курагу, т.к. в 100 г кураги до 2 г калия.
Недостаток калия в почве восполняется калийными удобрениями: хлоридом калия (КСl), сульфатом калия (К2SО4) и золой растений.
Соли калия окрашивают пламя в фиолетовый цвет, и их используют в пиротехнических составах для фейерверков.