Доказать что число простое
Как найти простые числа?
Красивые аномалии встречаются в каждом предмете, но если есть одна область красоты, с которой согласится большинство математиков, то это простое число.
Эти числа занимают уникальный пьедестал в математике, особенно в области теории чисел. Великие умы потратили бесчисленные часы для расследования этой проблемы, в том числе такие великие умы, как Пол Эрдос, Г.Х. Харди и Сриниваса Рамануджан, и это лишь некоторые из них. Теперь, прежде чем мы углубимся в различные алгоритмы, чтобы найти простые числа, давайте сначала установим предварительное понимание простых чисел.
Что такое простые числа?
Самое техническое определение простых чисел состоит в том, что это натуральное число больше 1 и может быть получено только путем умножения 1 и самого себя. Если бы понимание натуральных чисел было более интуитивным, то можно было бы сказать, что это числа, которые мы используем для подсчета.
Метод Марена Мерсенна
Марен Мерсенн Французский математик
Однако, с появлением компьютеров, они теперь могли выполнять эти вычислительные вычисления, которые раньше делались людьми самым кропотливым и трудоемким образом. Мы определенно достигли более высоких простых чисел Мерсенна и простых чисел на общем уровне. Поиск простых чисел так же активен, как и другие численные поиски, выполняемые компьютерами. Другой числовой поиск, аналогичный движению простых чисел, заключается в добавлении десятичных разрядов к некоторым иррациональным числам, таким как пи (отношение длины окружности к диаметру). Однако непрерывный поиск следующего по величине простого числа существенно сложнее, чем поиск следующей цифры числа Пи.
Даже самые большие компьютеры (суперкомпьютеры) тратят значительное количество времени, чтобы проверить, является ли новое число (которое обычно ошеломляюще огромным) само по себе простым числом, и требуется еще больше времени, чтобы проверить, является ли число основным числом Мерсенна. По этой причине числа Мерсенна представляют большой интерес в области кибербезопасности и криптографии, особенно в отношении шифрования.
В августе 2008 года системный администратор UCLA Эдсон Смит нашел наиболее значимое простое число, известное на тот момент. Смит установил программное обеспечение для Great Internet Mersenne Prime Search (Gimps), проекта распределенных вычислений на добровольной основе. Это число было простым числом Мерсенна длиной 12 978 189 цифр. Чтобы дать представление о том, насколько он велик, на его написание уйдет почти два с половиной месяца, а в случае печати он растянется на 50 км!
Метод простых чисел Ферма
Пьер де Ферма (фр. Pierre de Fermat, 17 августа 1601 — 12 января 1665) — французский математик-самоучка, один из создателей аналитической геометрии, математического анализа, теории вероятностей и теории чисел.
Когда n = 0, m = 2 0 = 1; поэтому F0 = 2 1 + 1 = 2 + 1 = 3, что является простым. Когда n = 1, m = 2 1 = 2; поэтому F1 = 2 2 + 1 = 4 + 1 = 5, что является простым. Когда n = 2, m = 2 2 = 4; следовательно, F2 = 2 4 + 1 = 16 + 1 = 17, что является простым. Когда n = 3, m = 2 3 = 8; следовательно, F3 = 2 8 + 1 = 256 + 1 = 257, что является простым. Когда n = 4, m = 2 4 = 16; следовательно, F4 = 2 16 + 1 = 65536 + 1 = 65537, что является простым числом. Теперь, как вы можете заметить, к тому времени, когда мы достигнем F5, значение достигает 4 294 967 297.
На сегодняшний день мы достигли только F11, даже со всеми лучшими компьютерами и параллельными вычислениями и большой точностью. В конце концов, однако, мы можем сказать, что поиск простых чисел всегда будет идти до бесконечности и дальше!
Закономерности в распределении простых чисел
Введение
Простое число — это натуральное число, имеющее ровно два различных натуральных делителя — единицу и самого себя. Такие числа представляют огромный интерес. Дело в том, что никто так и не смог полностью понять и описать закономерность по которой простые числа располагаются в ряду натуральных чисел.
Ещё до нашей эры Евклид сформулировал и доказал первые теоремы о простых числах. С тех пор математики, среди них Гаусс, Ферма, Риман, Эйлер, продолжали исследования и надо отдать им должное заметно продвинулись. Было обнаружено много интересных свойств простых чисел, выдвинуто много предположений, некоторые из которых были доказаны. Однако много гипотез связанных с простыми числами до сих пор остаются необоснованными.
Распределение простых чисел
Первостепенная задача, решение которой автоматически привело бы к решению большинства вопросов связанных с простыми числами заключается в следующем:
Получить рекуррентную формулу для очередного простого числа
Существует родственная ей задача о количестве простых чисел, не превосходящих заданной величины:
Найти функцию p(x), значение которой в точке x равно числу простых чисел на отрезке [1, x]. Где x – любое действительное число не меньшее единицы.
Функция называется функцией распределения простых чисел.
К решению вышеуказанных задач существует множество подходов. Рассмотрим некоторые из них.
Основная теорема арифметики гласит, что любое натуральное число большее единицы может быть представлено в виде произведения простых множителей (причём единственным образом, с точностью до порядка множителей).
Отсюда и из определения простого числа следует, что натуральное число, большее двух, является простым тогда и только тогда, когда оно не делится ни на одно из простых чисел меньших самого себя.
Первое простое число p1 =2. Значит все последующие простые числа должны не делится на 2, то есть иметь вид 2k+1, где k – натуральное. То есть все простые числа начиная со второго — нечётные.
Второе простое число p2 = 3. Значит все последующие простые числа должны иметь вид 3m+1, либо 3m+2, где m – целое. Это равносильно утверждению о том, что все простые числа начиная с третьего не делятся на три. Однако при этом числа ещё должны не делится на два, то есть иметь вид 2k+1.
Решая диофантовы уравнения
найдём k и m и получим, что все простые числа начиная с p3 обязательно представимы в виде , либо в виде
, где t – целое.
И правда, какое бы простое число мы ни взяли оно представимо таким образом:
Однако обратное неверно, то есть любое натуральное число вида 6t+1 или 6t+5 не обязательно простое. Например, .
Третье простое число p3 = 5. И если по аналогии учесть, что любое простое число, начиная с четвёртого не делится на 5, также не делится на p1 = 2 и на p2 = 3, то получим, что все простые числа начиная с p4 обязательно имеют одно из представлений
Затем учтём p4, p5 и т.д. Проблема в том, что на каждом шаге нам придётся решать всё большую систему диофантовых уравнений, поэтому такой прямолинейный подход оказывается весьма сложным.
На самом деле, при различных попытках решения поставленной нами задачи в большом количестве случаев появляются одни и те же конструкции. Например, произведение Эйлера. Рассмотрим, как это происходит, на следующем примере.
Итак, как же найти функцию F(x)? Сначала рассмотрим множество всех натуральных чисел. Какова доля чисел, которые не делятся ни на одно из простых p1, p2, …, pn?
Каждое второе число делится на p1 = 2. Значит, часть всех чисел делится на p1.
Каждое третье число делится на 3. Значит, всех чисел делится на p2. При этом надо учесть, что каждое шестое число делится и на 2 и на 3 одновременно.
Значит, доля чисел не делящихся ни на 2, ни на 3 равна
Если преобразовать выражение, то оно примет вид:
Опять же можно представить выражение в виде
Будем обозначать такое произведение P(n). Кстати, если учесть все простые числа (n→∞), то мы получим обратную величину от так называемого произведения Эйлера.
Почему так происходит? Когда мы получали формулу (1), мы пользовались рассуждениями, что среди всех натуральных чисел доля, делящихся на pn, равна . Но нельзя сделать такое утверждение о конечном наборе последовательных натуральных чисел. Например, возьмём набор 1,2, 3,4,5,6,7,8,9. Здесь 4 числа из 9 делятся на два. И несложно заметить, что
отличается от
. То есть, при применении к конечному набору чисел, данный метод даёт результат с некоторой погрешностью.
Это будет мешать далее получать точные формулы. Но если оценить эту погрешность, то можно (например, приняв и используя приведённые выше рассуждения) получить оценку для pn+1-го простого числа. Однако, получение таких оценок — это тема отдельной работы. И поэтому здесь я не буду на этом останавливаться, а приведу лишь некоторые результаты, полученные математиками.
Одна из оценок для простого числа с номером n:
оценка верна для всех n, начиная с 6.
А вот формула для функции распределения простых чисел:
Для функции Риман получил приближение, используя интегральный логарифм и нетривиальные нули дзета-функции Римана. Однако, это приближение верно, только если верна гипотеза Римана. Причём если гипотеза Римана верна, то оно является наилучшим.
Гипотеза Римана до сих пор не доказана и не опровергнута. Она, как мы могли видеть, тесно связана с простыми числами и, вообще, имеет огромное значение для теории чисел. Из-за своей важной роли в математике, гипотеза Римана была объявлена одной из семи задач тысячелетия.
Проблемы Ландау
Насчёт простых чисел выдвинуто очень много интересных гипотез. Среди них видное место занимают гипотезы Ландау (проблемы Ландау). Формулируются они так:
1. Гипотеза Гольдбаха
Можно ли любое целое чётное число, большее 2, записать в виде суммы двух простых?
2. Гипотеза о числах-близнецах
Бесконечно ли число простых p таких, что p + 2 тоже простое?
3. Гипотеза Лежандра
Всегда ли существует по меньшей мере одно простое число, лежащее между двумя последовательными полными квадратами?
4. Гипотеза о почти квадратных простых числах
Существует ли бесконечно много простых чисел p вида .
Проблемы Ландау ни доказаны, ни опровергнуты по состоянию на 2020 год. Далее кратко расскажу про каждую из них.
1. Гипотеза Гольдбаха
Существуют две гипотезы Гольдбаха: слабая (тернарная) и сильная (бинарная).
Слабая гипотеза Гольдбаха: Каждое нечётное число, большее 5, можно представить в виде суммы трёх простых чисел.
Эту гипотезу доказал Харольд Гельфготт в 2013 году используя так называемые большие дуги. Финальная часть доказательства заняла 133 страницы.
Сильная гипотеза Гольдбаха: Каждое чётное число, большее двух, можно представить в виде суммы двух простых чисел.
Надо заметить, что в обоих случаях гипотезы Гольдбаха простые числа не обязательно должны быть различными.
Заметьте, что в сильной гипотезе речь идёт только о чётных числах. Давайте покажем, что нечётное число не обязано быть представимо в виде суммы двух простых чисел. Просто приведём пример. Число 11 не представимо в виде суммы двух простых. Вроде бы несложно.
Но переформулируем проблему так: существует ли такое число, что любое нечётное, большее этого числа, представимо в виде суммы двух простых чисел? Давайте проверим. Пусть существует некоторое нечётное натуральное число N, такое, что любое нечётное число представимо в виде суммы двух простых чисел.
Возьмём произвольное нечётное . По предположению существуют такие простые p1 и p2, что
. Если сумма двух натуральных чисел нечётна, то это значит, что одно из слагаемых чётно, а другое нет. Пусть для определённости p1 – чётное. Единственное чётное простое число — это 2. Значит,
. То есть, K-2 (предыдущее перед K нечётное число) является простым. Поскольку всё вышесказанное верно для любого нечётного большего N, то получается, что все нечётные числа, начиная с N-2, являются простыми. Это неверно. Если бы это было так, то
при n→ ∞. Однако, как говорилось выше
при n→ ∞.
Итак, не существует такого числа, начиная с которого все нечётные числа могут быть представлены в виде суммы двух простых.
А что же насчёт чётных? Гипотеза не была опровергнута, не было найдено ни одного контрпримера. Но это не значит, что их не существует. Доказать же гипотезу полностью пока никому не удалось.
2. Гипотеза о числах-близнецах
Бесконечно ли число простых чисел близнецов?
Для начала сформулируем определение. Два простых числа называются близнецами если отличаются друг от друга на 2.
Так же доказано, что существует бесконечно много простых чисел, разница между которыми составляет 246. Это наилучшая из обоснованных на данный момент оценок. Если же использовать некоторые недоказанные гипотезы о простых числах, то оценку можно улучшить.
3. Гипотеза Лежандра
Всегда ли существует, по меньшей мере, одно простое число, лежащее между двумя последовательными полными квадратами?
Аналогичная гипотеза доказана для кубов, начиная с некоторого n. То есть, существует, по меньшей мере, одно простое число, лежащее между и
для достаточно большого n. Для квадратов же, гипотеза Лежандра пока не доказана.
4. Почти квадратные простые числа
Заключение
Как мы видим, в этой области теории чисел существует очень много пробелов, а также недоказанных гипотез. Отдельно хочется сказать про численную проверку утверждений. Например, ни для одной из гипотез Ландау не был найден контрпример, даже с использованием значительных вычислительных мощностей в течение большого времени. Однако, в истории математики 20-го и 21-го века были случаи, когда контрпример, опровергающий гипотезу, был настолько огромным числом, что его не удавалось найти с помощью вычислительных машин.
Также, постоянный интерес к простым числам обусловлен их обширным применением в криптографии. Итак, как мы убедились, исследование простых чисел — это, действительно, важная и очень интересная задача.
Доступное объяснение гипотезы Римана
Посвящается памяти Джона Форбса Нэша-младшего
Вы ведь помните, что такое «простые числа»? Эти числа не делятся ни на какие другие, кроме самих себя и 1. А теперь я задам вопрос, которому уже 3000 лет:
Введение
Свойства простых чисел изучались многими великими людьми в истории математики. С первого доказательства бесконечности простых чисел Евклида до формулы произведения Эйлера, связавшей простые числа с дзета-функцией. От формулировки теоремы о простых числах Гаусса и Лежандра до её доказательства, придуманного Адамаром и Валле-Пуссеном. Тем не менее, Бернхард Риман до сих пор считается математиком, сделавшим единственное крупнейшее открытие в теории простых чисел. В его опубликованной в 1859 году статье, состоявшей всего из восьми страниц, были сделаны новые, ранее неизвестные открытия о распределении простых чисел. Эта статья по сей день считается одной из самых важных в теории чисел.
После публикации статья Римана оставалась главным трудом в теории простых чисел и на самом деле стала основной причиной доказательства в 1896 году теоремы о распределении простых чисел. С тех пор было найдено несколько новых доказательств, в том числе элементарные доказательства Сельберга и Эрдёша. Однако до сих пор остаётся загадкой гипотеза Римана о корнях дзета-функции.
Сколько всего простых чисел?
Давайте начнём с простого. Все мы знаем, что число является или простым, или составным. Все составные числа состоят из простых и могут быть разложены на их произведения (a x b). В этом смысле простые числа являются «строительными блоками» или «фундаментальными элементами» чисел. В 300 году до нашей эры Евклид доказал, что их количество бесконечно. Его изящное доказательство имеет следующий вид:
Предположим, что множество простых чисел не бесконечно. Создадим список всех простых чисел. Тогда P пусть будет произведением всех простых чисел списка (перемножим все простые числа из списка). Прибавим к результату 1: Q = P +1. Как и все числа, это натуральное число Q должно быть или простым, или составным:
Почему простые числа так сложно понять?
Сам факт того, что любой новичок понимает изложенную выше задачу, красноречиво говорит о её сложности. Даже арифметические свойства простых чисел, несмотря на активное изучение, плохо нами понимаются. Научное сообщество настолько уверено в нашей неспособности понимать поведение простых чисел, что разложение на множители больших чисел (определение двух простых чисел, произведением которых является число) остаётся одной из фундаментальных основ теории шифрования. На это можно смотреть следующим образом:
Мы хорошо понимаем составные числа. Это все числа, не являющиеся простыми. Они состоят из простых чисел, но мы можем с лёгкостью написать формулу, прогнозирующую и/или генерирующую составные числа. Такой «фильтр составных чисел» называется решетом. Самым знаменитым примером является так называемое «решето Эратосфена», придуманное примерно в 200 году до нашей эры. Его работа заключается в том, что оно просто помечает значения, кратные каждому простому числу вплоть до заданной границы. Допустим, возьмём простое число 2, и пометим 4,6,8,10, и так далее. Затем возьмём 3, и пометим 6,9,12,15, и так далее. В результате у нас останутся только простые числа. Хоть его очень легко понять, решето Эратосфена, как вы можете представить, не особо эффективно.
Одной из функций, серьёзно упрощающих нашу работу, будет 6n ± 1. Эта простая функция выдаёт все простые числа, за исключением 2 и 3, и удаляет все числа, кратные 3, а также все чётные числа. Подставим n = 1,2,3,4,5,6,7 и получим следующие результаты: 5,7,11,13,17,19,23,25,29,31,35,37,41,43. Единственными не простыми числами, сгенерированными функцией, являются 25 и 35, которые можно разложить на множители 5 x 5 и 5 x 7. Следующими не простыми числами, как вы могли догадаться, будут, 49 = 7 x 7, 55 = 5 x 11, и так далее. Всё легко, правда?
Для визуального отображения этого я использовал то, что называю «лестницей составных чисел» — удобный способ показать, как расположены и сочетаются сгенерированные функцией составные числа. В первых трёх столбцах показанного ниже изображения мы видим, как красиво поднимаются по каждой лестнице составных чисел простые числа 5, 7 и 11, вплоть до значения 91. Хаос, возникающий в четвёртом столбце, показывающем, как решето убрало всё, кроме простых чисел — отличная иллюстрация того, почему простые числа так сложно понять.
Фундаментальные ресурсы
Как же это всё связано с понятием, о котором вы могли слышать — с «гипотезой Римана»? Ну если говорить просто, то чтобы больше понять о простых числах, математики в 19-м веке перестали пытаться спрогнозировать местонахождение простых чисел с абсолютной точностью, и вместо этого начали рассматривать феномен простых чисел в целом. Мастером этого аналитического подхода стал Риман, и в рамках такого подхода была создана его знаменитая гипотеза. Однако прежде чем я начну её объяснять, необходимо познакомиться с некоторыми фундаментальными ресурсами.
Гармонические ряды
Гармонические ряды — это бесконечные ряды чисел, которые впервые исследовал в 14-м веке Николай Орем. Его имя связано с концепцией музыкальных гармоник — обертонов, которые выше частоты основного тона. Ряды имеют следующий вид:
Первые члены бесконечного гармонического ряда
Орем доказал, что эта сумма является несходящейся (то есть не имеющей конечного предела; она не приближается и не стремится к какому-то определённому числу, а устремлена в бесконечность).
Дзета-функции
Гармонические ряды являются особым случаем более общего типа функций под названием дзета-функция ζ(s). Вещественная дзета-функция задаётся для двух вещественных чисел r и n:
Если подставить n = 1, то мы получим гармонический ряд, который расходится. Однако при всех значениях n > 1 ряд сходится, то есть сумма при увеличении r стремится к некому числу, а не уходит в бесконечность.
Формула произведения Эйлера
Первая связь между дзета-функциями и простыми числами была установлена Эйлером, когда он показал, что для двух натуральных (целочисленных и больше нуля) чисел n и p, где p является простым, справедливо следующее:
Произведение Эйлера для двух чисел n и p, где оба больше нуля, а p является простым.
Это выражение впервые появилось в статье 1737 года под названием Variae observationes circa series infinitas. Из выражения следует, что сумма дзета-функции равна произведению величин, обратной единице, минус величина, обратная простым числам в степени s. Эта потрясающая связь заложила фундамент современной теории простых чисел, в которой с тех пор дзета-функция ζ(s) начала использоваться как способ изучения простых чисел.
Доказательство формулы — это одно из самых любимых моих доказательств, поэтому я изложу его, хоть для наших целей это и не обязательно (но настолько же оно прекрасно!):
Доказательство формулы произведения Эйлера
Эйлер начинает с общей дзета-функции
Сначала он умножает обе части на второй член:
Дзета-функция, умноженная на 1/2 s
Затем он вычитает получившееся выражение из дзета-функции:
Он повторяет этот процесс, далее умножая обе стороны на третий член
А затем вычитает получившееся выражение из дзета-функции
Если повторять этот процесс до бесконечности, в конце концов у нас останется выражение:
1 минус все величины, обратные простым числам, умноженное на дзета-функцию
Если этот процесс вам знаком, то это потому, что Эйлер по сути создал решето, очень похожее на решето Эратосфена. Он отфильтровывает из дзета-функции числа, не являющиеся простыми.
Затем разделим выражение на все его члены, являющимися обратными простым числам величинами, и получим:
Функциональная связь дзета-функции с простыми числами для первых простых чисел 2,3,5,7 и 11
Упростив выражение, мы показали следующее:
Формула произведения Эйлера — равенство, показывающее связь между простыми числами и дзета-функцией
Разве это было не красиво? Подставим s = 1, и найдём бесконечный гармонический ряд, повторно доказав бесконечность простых чисел.
Функция Мёбиуса
Август Фердинанд Мёбиус переписал произведение Эйлера, создав новую сумму. Кроме величин, обратных простым числам, функция Мёбиуса также содержит каждое натуральное число, являющееся произведением чётного и нечётного количества простых множителей. Числа, исключённые из его ряда — это такие числа, которые делятся на какое-то простое число в квадрате. Его сумма, обозначаемая как μ(n), имеет следующий вид:
Функция Мёбиуса — изменённая версия произведения Эйлера, заданная для всех натуральных чисел
Сумма содержит величины, обратные:
Ряд/сумма единиц, разделённых на дзета-функцию ζ(s)
Сумма не содержит те обратные величины, которые делятся на квадрат одного из простых чисел, например, 4,8,9, и так далее.
Три возможных значения функции Мёбиуса μ(n)
Хотя впервые эта хитрая сумма была формально определена Мёбиусом, примечательно, что за 30 лет до него об этой сумме писал в заметках на полях Гаусс:
«Сумма всех первообразных корней (простого числа p) или ≡ 0 (когда p-1 делится на квадрат), или ≡ ±1 (mod p) (когда p-1 является произведением неравных простых чисел); если их количество чётно, то знак положителен, но если количество нечётно, то знак отрицателен».
Функция распределения простых чисел
Вернёмся к простым числам. Чтобы понять, как распределяются простые числа при движении вверх по числовой прямой, не зная точно, где они находятся, полезно будет подсчитать, сколько их встречается до определённого числа.
Именно эту задачу выполняет предложенная Гауссом функция распределения простых чисел π(x): она даёт нам количество простых чисел, меньших или равных заданному вещественному числу. Поскольку мы не знаем формул для нахождения простых чисел, формула распределения простых чисел известна нам только как график, или ступенчатая функция, увеличивающаяся на 1, когда x является простым числом. На графике ниже показана функция до x = 200.
Функция распределения простых чисел π(x) до значения x = 200.
Теорема о распределении простых чисел
Теорема о распределении простых чисел, сформулированная Гауссом (и независимо от него Лежандром), гласит:
Теорема о распределении простых чисел
Обычным языком это можно изложить так: «При движении x к бесконечности функция распределения простых чисел π(x) будет приближаться к функции x/ln(x)». Другими словами, если забраться достаточно далеко, и график распределения простых чисел поднимется до очень высокого числа x, то при делении x на натуральный логарифм x соотношение этих двух функций будет стремиться к 1. Ниже на графике показаны две функции для x = 1000:
Функция распределения простых чисел π(x) и приблизительная оценка по теореме распределения простых чисел до x = 1000
С точки зрения вероятностей, теорема о распределении простых чисел гласит, что если случайным образом выбрать натуральное число x, то вероятность P(x) того, что это число будет простым, примерно равно 1 / ln(x). Это означает, что средний разрыв между последовательными простыми числами среди первых x целочисленных значений приблизительно равен ln(x).
Интегральный логарифм
Функция Li(x) определена для всех положительных вещественных чисел, за исключением x = 1. Она задаётся интегралом от 2 до x:
Интегральное представление функции интегрального логарифма
Построив график этой функции рядом с функцией распределения простых чисел и формулой из теоремы о распределении простых чисел, мы видим, что Li(x) на самом деле является лучшим приближением, чем x/ln(x):
Интегральный логарифм Li(x), функция рапределения простых чисел π(x) и x/ln(x) на одном графике
Чтобы узнать, насколько лучше это приближение, мы можем построить таблицу с большими значениями x, количеством простых чисел до x и величиной погрешности между старой (теорема о распределении простых чисел) и новой (интегральный логарифм) функциями:
Количество простых чисел до заданной степени десятки и соответствующие погрешности для двух приближений
Как легко можно заметить, интегральный логарифм намного лучше в приближении, чем функция из теоремы о распределении простых чисел, он «ошибся» в большую сторону всего на 314 890 простых чисел для x = 10 в степени 14. Тем не менее, обе функции сходятся к функции распределения простых чисел π(x). Li(x) сходится гораздо быстрее, но при стремлении x к бесконечности соотношение между функцией распределения простых чисел и функциями Li(x) и x/ln(x) приближается к 1. Покажем это наглядно:
Схождение соотношений двух приближенных значений и функции распределения простых чисел к 1 при x = 10 000
Гамма-функция
Гамма-функция Γ(z) стала важным объектом для изучения с тех пор, когда в 1720-х годах Даниил Бернулли и Христиан Гольдбах исследовали задачу обобщения функции факториала на нецелые аргументы. Это обобщение функции факториала n! (1 x 2 x 3 x 4 x 5 x …. n), сдвинутое вниз на 1:
Гамма-функция, определённая для z
Её график очень любопытен:
Гамма-функция Γ(z) определена для всех комплексных значений z больше нуля. Как вы наверно знаете, комплексные числа — это класс чисел с мнимой частью, записываемых как Re(z) + Im(z), где Re(z) — это вещественная часть (обычное вещественное число), а Im(z) — мнимая часть, обозначаемая буквой i. Комплексное число обычно записывается в виде z = σ + it, где сигма σ — вещественная часть, а it — мнимая. Комплексные числа полезны тем, что они позволяют математикам и инженерам работать с задачами, недоступными обычным вещественным числам. В графическом виде комплексные числа расширяют традиционную одномерную числовую прямую в двухмерную числовую плоскость, называемую комплексной плоскостью, в которой вещественная часть комплексного числа откладывается по оси x, а мнимая — по оси y.
Чтобы гамма-функцию Γ(z) можно было использовать, её обычно переписывают в виде
Функциональная связь гамма-функции Γ(z)
С помощью этого равенства мы можем получить значения для z ниже нуля. Однако оно не даёт значений для отрицательных целых чисел, потому что они не определены (формально они являются вырожденностями или простыми полюсами).
Дзета и гамма
Связь между дзета-функцией и гамма-функцией задаётся следующим интегралом:
Дзета-функция Римана
Ознакомившись со всеми необходимыми фундаментальными ресурсами, мы можем наконец приступать к установлению связи между простыми числами и гипотезой Римана.
Немецкий математик Бернхард Риман родился в 1826 году в Брезеленце. Будучи студентом Гаусса, Риман опубликовал работу в области математического анализа и геометрии. Считается, что наибольший вклад он внёс в области дифференциальной геометрии, где заложил фундамент языка геометрии, позже использованного Эйнштейном в общей теории относительности.
Его единственный труд в теории чисел, статья 1859 года Ueber die Anzahl der Primzahlen unter einer gegebenen Grösse («О простых числах меньше заданной величины») считается самой важной статьёй в этой области математики. Всего на четырёх страницах он изложил:
Дзета-функция Римана
Мы видели тесную связь между простыми числами и дзета-функцией, показанную Эйлером в его произведении. Однако за исключением этой связи об их взаимоотношениях было мало что известно, и чтобы показать их, потребовалось изобретение комплексных чисел.
Риман первым рассмотрел дзета-функцию ζ(s) для комплексной переменной s, где s = σ + it.
Дзета-функция Римана для n, где s = σ + it — это комплексное число, в котором σ и t являются вещественными числами.
Этот бесконечный ряд, названный дзетой-функцией Римана ζ(s), является аналитическим (то есть имеет определяемые значения) для всех комплексных чисел с вещественной частью больше 1 (Re(s) > 1). В этой области определения он сходится абсолютно.
Чтобы проанализировать функцию в областях за пределами обычной области сходимости (когда вещественная часть комплексной переменной s больше 1), функцию нужно переопределить. Риман успешно с этим справился, выполнив аналитическое продолжение до абсолютно сходящейся функции на полуплоскости Re(s) > 0.
Переписанный вид дзета-функции Римана, где
Это новое определение дзета-функции аналитично в любой части полуплоскости Re(s) > 0, за исключением s = 1, где она является вырожденностью/простым полюсом. В этой области определения она называется мероморфной функцией, потому что она голоморфна (комплексно дифференцируема в окрестности каждой точки в области её определения), за исключением простого полюса s = 1. Кроме того, она является превосходным примером L-функции Дирихле.
В своей статье Риман на этом не остановился. Он перешёл к аналитическому продолжению своей дзета-функции ζ(s) на всю комплексную плоскость, воспользовавшись гамма-функцией Γ(z). Чтобы не усложнять пост, я не буду приводить эти вычисления, но крайне рекомендую вам посмотреть их самостоятельно, чтобы убедиться в удивительной интуиции и мастерстве Римана.
В его методе используется интегральное представление гаммы Γ(z) для комплексных переменных и тета-функции Якоби ϑ(x), которые можно переписать таким образом, чтобы появилась дзета-функция. Решая относительно дзета, получаем:
Функциональное уравнение дзеты для всей комплексной плоскости за исключением двух вырожденностей при s = 0 и s = 1
В таком виде мы замечаем, что член ψ(s) уменьшается быстрее чем любая степень x, а значит, интеграл сходится ко всем значениям s.
Зайдя ещё дальше, Риман заметил, что первый член в скобках (-1 / s(1 — s) ) является инвариантом (не меняется), если заменить s на 1 — s. Благодаря этому Риман ещё больше расширил полезность уравнения, устранив два полюса в s=0 и s=1, и задав кси-функцию Римана ξ(s) без вырожденностей:
Кси-функция Римана ξ(s)
Нули дзета-функции Римана
Корни/нули дзета-функции, когда ζ(s)=0, можно разделить на два вида, которые называются «тривиальными» и «нетривиальными» нулями дзета-функции Римана.
Существование нулей с вещественной частью Re(s) 1
Из формулировки дзеты Эйлера мы можем мгновенно увидеть что дзета ζ(s) не может быть нулём в области с вещественной частью s больше 1, потому что сходящееся бесконечное произведение может быть нулём только если равен нулю один из его множителей. Доказательство бесконечности простых чисел отрицает это.
Формула произведения Эйлера
Существование нулей с вещественной частью 0 ≤ Re(s) ≤ 1
Мы нашли тривиальные нули дзеты в отрицательной полуплоскости, когда Re(s) 1 не может быть нулей.
Однако область между этими двумя областями, называемая критической полосой, была основным центром внимания аналитической теории чисел в течение последних сотен лет.