Доказать что если векторы компланарны то векторы компланарны
Компланарность векторов. Условия компланарности векторов.
![]() |
| рис. 1 |
Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.
Условия компланарности векторов
Примеры задач на компланарность векторов
Решение: найдем смешанное произведение векторов
Ответ: вектора не компланарны так, как их смешанное произведение не равно нулю.
Решение: найдем смешанное произведение векторов
Ответ: вектора компланарны так, как их смешанное произведение равно нулю.
Решение: найдем количество линейно независимых векторов, для этого запишем значения векторов в матрицу, и выполним над ней элементарные преобразования
| 1 | 1 | 1 | ||
| 1 | 2 | 0 | ||
| 0 | -1 | 1 | ||
| 3 | 3 | 3 |
из 2-рой строки вычтем 1-вую; из 4-той строки вычтем 1-вую умноженную на 3
к 3-тей строке добавим 2-рую
Так как осталось две ненулевые строки, то среди приведенных векторов лишь два линейно независимых вектора.
Ответ: вектора компланарны так, как среди приведенных векторов лишь два линейно независимых вектора.
Геометрия. 10 класс
Конспект урока
Геометрия, 10 класс
Урок №18. Компланарные векторы. Векторный метод решения задач
Перечень вопросов, рассматриваемых в теме:
— какие векторы называются компланарными и их изображение на чертежах
-определение компланарных векторов.
— признак компланарности трех векторов и правило параллелепипеда, сложение трех некомпланарных векторов.
— основы векторного метода решения задач.
Ершова А.П., Голобородько В.В., Крижановский А.Ф. Тетрадь-конспект по геометрии для 10 класса. 2016. С.88-93.
Теоретический материал для самостоятельного изучения:
Давайте вспомним основные определения по теме «Векторы». В этом поможет следующее задание: установите соответствие между понятием и его определением.
Противоположно направлены и их длины равны.
Сонаправлены и их длины равны.
Лежат на одной или параллельных прямых
Определение2.Векторы называются компланарными, если имеются равные им векторы, лежащие в одной плоскости.
Рассмотрим некоторые случаи:
1 случай. Любые два вектора всегда будут компланарными, ведь через них
можно провести прямые, а через две прямые всегда можно провести
единственную плоскость.
2 случай. Три вектора будут компланарными если среди них есть пара коллинеарных
векторов. Тогда через один из коллинеарных векторов и вектор не коллинеарный ему
можно провести плоскость. А для второго из коллинеарных векторов легко
изобразить равный в этой плоскости.
3 случай. Если хотя бы один из трёх векторов является нулевым, то эти три вектора компланарны
Из планиметрии: Любой вектор можно разложить по двум данным неколлинеарным векторам, причем коэффициенты разложения определяются единственным образом.
Теорема. Любой вектор можно разложить по трём данным некомпланарным векторам, причём коэффициенты разложения определяются единственным образом.
Часть 2. Векторный метод решения задач
Векторный метод решения задач – один из наиболее общих методов решения геометрических задач. Векторное решение стереометрических задач значительно проще их решения средствами элементарной геометрии.
Рассмотрим следующую задачу: Доказать, что прямая, проведенная через середины оснований трапеции, проходит через точку пересечения продолжений боковых сторон.
Докажем, что точка О лежит на прямой МN.
Условие задачи переводится на «векторный» язык. После такого перевода осуществляются алгебраические вычисления с векторами, а затем полученное снова «переводится» на «геометрический» язык.
Решением задач векторным методом занимались ученые: Уильман Гамильтон Иога́нн Берну́лли, Пьер Ферма, Рене Декарт, Леонард Эйлер.
Примеры и разбор решения заданий тренировочного модуля:
Задача. В параллелепипеде АВСDА1В1С1D1 М —точка пересечения диагоналей грани A1B1C1D1, точка K — середина ребра ВВ1. Докажите, что прямые А1В1, KМ и ВС1 параллельны некоторой плоскости.
Решение. Введем векторы: 



Разложим векторы 





Тогда векторы 


Компланарные векторы и условие компланарности
В данной статье мы рассмотрим такие темы, как:
Определение компланарных векторов
Компланарные векторы — это векторы, которые параллельны одной плоскости или лежат на одной плоскости.
Два любых вектора всегда компланарны, поскольку всегда можно найти плоскости параллельные 2-м произвольным векторам.
Условия компланарности векторов
Примеры решения задач на компланарность векторов
Исследуем на компланарность векторы
Как решить?
Векторы будут являться компланарными, если их смешанное произведение равно нулю, поэтому вычисляем смешанное произведение заданных векторов. Для этого составляем определитель, по строкам которого записываются координаты векторов-сомножителей:
Отсюда следует, что смешанное произведение не равняется нулю, поэтому векторы не являются компланарными.
Ответ: векторы не являются компланарными.
Докажем, что три вектора
Как решить?
Находим смешанное произведение данных векторов:
Из данного примера видно, что смешанное произведение равняется нулю.
Ответ: векторы являются компланарными.
Проверим, компланарны ли векторы
Как решить?
Необходимо найти количество линейно независимых векторов: записываем значения векторов в матрицу и выполняем элементарные преобразования:
Из 2-ой строки вычитаем 1-ю, из 4-ой вычитаем 1-ю, умноженную на 3:
К 3-ей строке прибавляем 2-ю:
Поскольку в матрице только две ненулевые строки, делаем вывод, что среди них всего два линейно независимых вектора.
Ответ: векторы являются компланарными, поскольку среди них всего два линейно независимых вектора.
Компланарные векторы
Вы будете перенаправлены на Автор24
Понятие компланарности векторов
Для начала рассмотрим, какие вектора называются компланарными.
Два вектора, которые параллельны одной плоскости называются компланарными.
Для дальнейшего рассмотрения напомним следующую теорему.
Теоремы, связанные с условием компланарности трех векторов
Если один из трех данных векторов можно разложить по двум другим векторам, то есть
Доказательство.
Здесь возможны два случая.
Теорема доказана.
Готовые работы на аналогичную тему
Доказательство.
\[\overrightarrow
Причем это разложение единственно.
Которое также единственно.
Теорема доказана.
Признак и критерий компланарности векторов
Рисунок 1. Условие компланарности векторов. Автор24 — интернет-биржа студенческих работ
Пример задачи
Рисунок 2. Разложение по векторам. Автор24 — интернет-биржа студенческих работ
Решение.
Используя свойства сложения двух векторов, получим
Пусть нам дан параллелепипед. Найти тройки компланарных векторов, изображенных в параллелепипеде на рисунке ниже.
Рисунок 3. Параллелепипед. Автор24 — интернет-биржа студенческих работ
Решение.
Решение.
Применим признак компланарности трех векторов.
Рисунок 4. Нахождение определителя. Автор24 — интернет-биржа студенческих работ
Следовательно, это векторы компланарны, ч. т. д.
Получи деньги за свои студенческие работы
Курсовые, рефераты или другие работы
Автор этой статьи Дата последнего обновления статьи: 27 04 2021
Компланарные векторы
Что такое компланарные векторы
Векторы называются компланарными, если лежат в одной или параллельных плоскостях.
Это определение справедливо только для трех и более векторов, так как для двух направленных отрезков всегда можно найти плоскость, параллельную им.
Условия компланарности и линейная зависимость векторов
Среди условий компланарности векторов встречается понятие линейной зависимости, которое следует разобрать перед тем, как перейти непосредственно к условиям.
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Линейная зависимость
Линейная комбинация — вектор, составленный из суммы векторов \(\overline
Существует пять критериев и свойств линейной зависимости векторов:
Условия компланарности
Для неограниченного числа векторов справедливо следующее: если среди них есть не более двух линейно независимых векторов, то они компланарны.
На практике чаще всего встречаются задачи с тройками векторов. Для них существуют и другие условия компланарности:
Теоремы, связанные с условием компланарности трех векторов
Правило, согласно которому три вектора компланарны, если их смешанное произведение равно нулю, проистекает из теоремы. Его также называют признаком и критерием компланарности векторов. Доказать данное утверждение можно следующим образом:
В то же время, результатом векторного произведения является вектор, перпендикулярный перемножаемым. Таким образом, векторы \overline a,\overline b,\overline c перпендикулярны одному и тому же вектору (\overline a\times\overline b), то есть лежат в параллельных плоскостях. Значит, векторы компланарны.
Для проверки, к доказательству данной теоремы можно подойти с другой стороны:
Пусть векторы \overline a,\overline b,\overline c компланарны.
Необходимо доказать, что их смешанное произведение \((\overline a\times\overline b)\cdot\overline c\) равняется нулю. Так как данные вектора компланарны, то \((\overline a\times\overline b)\) перпендикулярен каждому из них.
Отсюда следует, что его скалярное произведение с вектором \overline c будет равняться нулю. Это, в свою очередь, означает, что смешанное произведение \((\overline a\times\overline b)\cdot\overline c=0.\)
Пример задачи на компланарность векторов
Задача
Решение
Сперва необходимо построить на основе имеющихся точек векторы \(\overline
Чтобы проверить, принадлежать ли точки одной плоскости, необходимо найти смешанное произведение полученных векторов. Если оно равняется нулю, то векторы компланарны, следовательно, точки лежат в одной плоскости. В противном случае ответ на поставленный в условии вопрос будет отрицательным.
Смешанное произведение рассчитывается по формуле нахождения определителя матрицы:
Полученное число не равно нулю, следовательно, векторы некомпланарны. Это значит, что точки не лежат в одной плоскости.








