Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.
Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла
“Математика – это то, посредством чего люди управляют природой и собой” А.Н. Колмогоров
I. Организационный этап.
Проверка готовности учащихся к уроку. Сообщение темы и задач урока.
II. Проверка домашнего задания.
Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.
III. Обобщение и систематизация знаний.
1. Устная фронтальная работа.
1) Сформируйте определение периода функции 2) Назовите наименьший положительный период функций y=sin(x), y=cos(x) 3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x) 4) Докажите с помощью круга верность соотношений:
a) sin( 740º ) = sin(2 0º ) b) cos( 54º ) = cos(-1026º) c) sin(-1000º) = sin( 80º )
2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)
3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)
a) tg 375º b) ctg 530º c) sin 1268º d) cos (-7363º)
5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?
Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.
Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.
6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.
7. Где в жизни вы встречались с построением повторяющихся элементов?
Ответ учащихся: Элементы орнаментов, народное творчество.
IV. Коллективное решение задач.
(Решение задач на слайдах.)
Рассмотрим один из способов исследования функции на периодичность.
Задача 1. Найдите наименьший положительный период функции f(x)=1+35>
Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.
Положим x=-0,25 получим
Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1. Проверим, не будет ли оно и на самом деле периодом 1.
Так как=при любом Т, то f(x+1)=3<(x+0.25)+1>+1=3+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.
Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.
Задача 3. Найдите основной период функции
Допустим Т-период функции, тогда для любого х справедливо соотношение
sin(1,5Т)+5cos(0,75Т)=5
cos=1
=2 π n, n € Z
T=, n € Z
Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число
Задача 4. Проверим является ли периодической функция f(x)=sin(x)
Пусть Т – период функции f. Тогда для любого х
Если х=0, то sin|Т|=sin0, sin|Т|=0 Т= π n, n € Z.
Предположим. Что при некотором n число π n является периодом
рассматриваемой функции π n>0. Тогда sin| π n+x|=sin|x|
Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.
Задача 5. Проверить, является ли периодической функция
f(x)=
Пусть Т – период f, тогда
, отсюда sinT=0, Т= π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2 π n будет периодом
Так как числители равны, то равны и их знаменатели, поэтому
Значит, функция f не периодическая.
Задания для группы 1.
Проверьте является ли функция f периодической и найдите ее основной период (если существует).
Задания для группы 2.
Проверьте является ли функция f периодической и найдите ее основной период (если существует).
Задания для группы 3.
По окончании работы группы презентуют свои решения.
VI. Подведение итогов урока.
Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.
Мои умения исследовать функции на периодичность
Мой вклад в работу на уроке
VII. Домашнее задание
1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)
Уроки математики и физики для школьников и родителей
суббота, 4 сентября 2021 г.
Урок 5. Периодичность тригонометрических функций
Из этого определения сразу следует, что если Т – период функции
– также периоды функций. Значит у периодической функции бесконечно много периодов.
Чаще всего (но не всегда) среди множества положительных периодов функции можно найти наименьший. Его называют основным периодом.
График периодической функции состоит из неограниченно повторяющихся одинаковых фрагментов.
у = х – [х] , где [х] – целая часть числа. Если к произвольному значение аргумента этой функции добавить1, то значение функции от этого не изменится :
Следовательно, при любом значениих
sin (α + 360 ° ) = sin α
Таким образом, функции sin α и cos α от прибавления к аргументу α одного полного оборота ( 2π или 360 ° ) не меняют своих значений.
где k – любое целое число.
Следовательно, функции sin α и cos α – периодические.
Наименьшее положительное число, от прибавления которого к любому допустимому значению аргумента не изменяется значение функции, называется периодом функции.
В самом деле, пусть α – произвольный угол, составленный с осью Ох подвижным радиусом ОМ единичной окружности.
отсюда следует, что значения tg α и с tg α не изменяются, если к углу α прибавить любое число полуоборотов:
где k – любое целое число.
вычисляются по формуле
равен наименьшему числу, при делении которого на T 1 и T 2 получаются целые числа.
Найти период функции
не существует, так как такого числа, при делении которого на2πи на2получались бы целые числа, нет.
Периода не существует.
Доказать следующее утверждение :
Так как тангенс – периодическая функция с минимальным периодом 20 ∙ 180 ° , то получим :
Доказать следующее утверждение :
Так как косинус – чётная и периодическая функция с минимальным периодом 2π, то получим :