Доказать что окружности касаются

Касание двух окружностей

Две окружности, имеющие общую точку, касаются в этой точке, если они имеют в ней общую касательную.

Общая точка двух окружностей называется точкой касания окружностей.

Касание окружностей может быть внешним и внутренним.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Внешнее касание окружностей — это касание, при котором центры окружностей лежат по разные стороны от общей касательной.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Внутреннее касание окружностей — касание, при котором центры окружностей лежат по одну сторону от общей касательной.

Касающиеся окружности имеют только одну общую точку — точку касания.

Центры касающихся окружностей и их общая точка касания лежат на одной прямой.

При любом виде касания по свойству касательной касательная перпендикулярна радиусам, проведённым в точку касания:

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

По теореме о существовании и единственности прямой, перпендикулярной данной,через точку A можно провести только одну прямую, перпендикулярную данной прямой k.

Следовательно, все три точки: центры окружностей O1, O2 и A лежат на одной прямой.

При внешнем касании расстояние между центрами окружностей равно сумме их радиусов:

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

При внутреннем касании расстояние между центрами окружностей равно разности радиусов:

Источник

Окружность. Касательная к окружности.

Прямая (MN), имеющая с окружностью только одну общую точку (A), называется касательной к окружности.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Общая точка называется в этом случае точкой касания.

Возможность существования касательной, и притом проведенной через любую точку окружности, как точку касания, доказывается следующей теоремой.

Теорема.

Если прямая перпендикулярна к радиусу в его конце, лежащем на окружности, то эта прямая — касательная.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Допустим противное: пусть MN имеет с окружностью еще другую общую точку, например B. Тогда прямая OB была бы радиусом и, следовательно, равнялась бы OA.

Обратная теорема.

Если прямая касательная к окружности, то радиус, проведенный в точку касания, перпендикулярен к ней.

Следствие.

Через всякую данную на окружности точку можно провести касательную к этой окружности и притом только одну, так как через эту точку можно провести перпендикуляр, и притом только один, к радиусу, проведенному в нее.

Теорема.

Касательная параллельная хорде, делит в точке касания дугу, стягиваемую хордой, пополам.

Пусть прямая AB касается окружности в точке M и параллельна хорде СD. Требуется доказать, что ∪CM= ∪MD.

Проведя через точку касания диаметр ME, получаем: EMAB и следовательно, EMСD. Поэтому СM=MD.

Через данную точку провести касательную к данной окружности.

Если данная точка находится на окружности, то проводят через нее радиус и через конец радиуса перпендикулярную прямую. Эта прямая будет искомой касательной.

Рассмотрим тот случай, когда точка дана вне круга.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Пусть требуется провести к окружности с центром O касательную через точку A. Для этого из точки A, как из центра, описываем дугу радиусом AO, а из точки O, как центра, пересекаем эту дугу в точках B и С раствором циркуля, равным диаметру данного круга.

Следствие.

Две касательные, проведенные из одной точки к окружности, равны и образуют равные углы с прямой, соединяющей эту точку с центром.

Так AD=AE и ∠OAD = ∠OAE потому, что прямоугольные треугольники AOD и AOE, имеющие общую гипотенузу AO и равные катеты OD и OE (как радиусы), равны. Заметим, что здесь под словом “касательная” подразумевается собственно “отрезок касательной” от данной точки до точки касания.

Источник

Окружность. Относительное взаимоположение окружностей.

Если две окружности имеют только одну общую точку, то говорят, что они касаются.

Если же две окружности имеют две общие точки, то говорят, что они пересекаются.

Трех общих точек две не сливающиеся окружности иметь не могут, потому, что в противном случае через три точки можно было бы провести две различные окружности, что невозможно.

Будем называть линией центров прямую, проходящую через центры двух окружностей (например, прямую OO1).

Теорема.

Если две окружности имеют общую точку по одну сторону от линии центров, то они имеют общую точку и по другую сторону от этой линии, т.е. такие окружности пересекаются.

Пусть окружности O и O1 имеют общую точку A, лежащую вне линии центров OO1. Требуется доказать, что эти окружности имеют еще общую точку по другую сторону от прямой OO1.

Опустим из A на прямую OO1 перпендикуляр AB и продолжим его на расстояние BA1, равное AB. Докажем теперь, что точка A1 принадлежит обеим окружностям. Из построения видно, что точки O и O1 лежат на перпендикуляре, проведенном к отрезку AA1 через его середину. Из этого следует, что точка O одинаково удалена от A и A1. То же можно сказать и о точке O1. Значит обе окружности, при продолжении их, пройдут через A1.Таким образом, окружности имеют две общие точки : A (по условию) и A1 (по доказанному). Следовательно, они пересекаются.

Следствие.

Общая хорда (AA1) двух пересекающихся окружностей перпендикулярна к линии центров и делится ею пополам.

Теоремы.

1. Если две окружности имеют общую точку на линии их центров или на ее продолжении, то они касаются.

2. Обратно: если две окружности касаются, то общая их точка лежит на линии центров или на ее продолжении.

Признаки различных случаев относительного положения окружностей.

Пусть имеем две окружности с центрами O и O1, радиусами R и R1 и расстоянием между центрами d.

Эти окружности могут находиться в следующих 5-ти относительных положениях:

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

2. Окружности имеют внешнее касание. Тогда d = R + R1, так как точка касания лежит на линии центров O O1.

3. Окружности пересекаются. Тогда d R + R1, потому что в треугольнике OAO1 сторона OO1 меньше суммы, но больше разности двух других сторон.

5. Одна окружность лежит внутри другой, не касаясь. Тогда, очевидно,

d R + R1, то окружности расположены одна вне другой, не касаясь.

2. Если d = R + R1, то окружности касаются извне.

5. Если d R Е R1. Значит, все эти случаи исключаются. Остается один возможный, именно тот, который требовалось доказать. Таким образом, перечисленные признаки различных случаев относительно положения двух окружностей не только необходимы, но и достаточны.

Источник

Окружность. Основные теоремы

Определения

Центральный угол – это угол, вершина которого лежит в центре окружности.

Вписанный угол – это угол, вершина которого лежит на окружности.

Градусная мера дуги окружности – это градусная мера центрального угла, который на неё опирается.

Теорема

Градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Доказательство

Доказательство проведём в два этапа: сначала докажем справедливость утверждения для случая, когда одна из сторон вписанного угла содержит диаметр. Пусть точка \(B\) – вершина вписанного угла \(ABC\) и \(BC\) – диаметр окружности:

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

1) диаметр разрезал угол на два угла \(\angle ABD, \angle CBD\) (для каждого из которых теорема верна по доказанному выше, следовательно верна и для исходного угла, который является суммой этих двух и значит равен полусумме дуг, на которые они опираются, то есть равен половине дуги, на которую он опирается). Рис. 1.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Следствия

1. Вписанные углы, опирающиеся на одну и ту же дугу, равны.

2. Вписанный угол, опирающийся на полуокружность, прямой.

3. Вписанный угол равен половине центрального угла, опирающегося на ту же дугу.

Определения

Существует три типа взаимного расположения прямой и окружности:

1) прямая \(a\) пересекает окружность в двух точках. Такая прямая называется секущей. В этом случае расстояние \(d\) от центра окружности до прямой меньше радиуса \(R\) окружности (рис. 3).

2) прямая \(b\) пересекает окружность в одной точке. Такая прямая называется касательной, а их общая точка \(B\) – точкой касания. В этом случае \(d=R\) (рис. 4).

3) прямая \(c\) не имеет общих точек с окружностью (рис. 5).

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Теорема

1. Касательная к окружности перпендикулярна радиусу, проведенному в точку касания.

2. Если прямая проходит через конец радиуса окружности и перпендикулярна этому радиусу, то она является касательной к окружности.

Следствие

Отрезки касательных, проведенных из одной точки к окружности, равны.

Доказательство

Проведем к окружности из точки \(K\) две касательные \(KA\) и \(KB\) :

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Следствие

Теорема об угле между секущими

Угол между двумя секущими, проведенными из одной точки, равен полуразности градусных мер большей и меньшей высекаемых ими дуг.

Доказательство

Пусть \(M\) – точка, из которой проведены две секущие как показано на рисунке:

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Теорема об угле между пересекающимися хордами

Угол между двумя пересекающимися хордами равен полусумме градусных мер высекаемых ими дуг: \[\angle CMD=\dfrac12\left(\buildrel\smile\over+\buildrel\smile\over\right)\]

Доказательство

\(\angle BMA = \angle CMD\) как вертикальные.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Теорема об угле между хордой и касательной

Угол между касательной и хордой, проходящей через точку касания, равен половине градусной меры дуги, стягиваемой хордой.

Доказательство

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Теорема о дугах, стягиваемых равными хордами

Равные хорды стягивают равные дуги, меньшие полуокружности.

И наоборот: равные дуги стягиваются равными хордами.

Доказательство

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Теорема

Если радиус делит хорду пополам, то он ей перпендикулярен.

Верно и обратное: если радиус перпендикулярен хорде, то точкой пересечения он делит ее пополам.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Доказательство

Теорема о произведении отрезков хорд

Если две хорды окружности пересекаются, то произведение отрезков одной хорды равно произведению отрезков другой хорды.

Доказательство

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Теорема о касательной и секущей

Квадрат отрезка касательной равен произведению секущей на ее внешнюю часть.

Доказательство

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Следствие

Источник

Касательная к окружности

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Статья находится на проверке у методистов Skysmart.
Если вы заметили ошибку, сообщите об этом в онлайн-чат
(в правом нижнем углу экрана).

Касательная к окружности, секущая и хорда — в чем разница

В самом названии касательной отражается суть понятия — это прямая, которая не пересекает окружность, а лишь касается ее в одной точке. Взглянув на рисунок окружности ниже, несложно догадаться, что точку касания от центра отделяет расстояние, в точности равное радиусу.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Касательная к окружности — это прямая, имеющая с ней всего одну общую точку.

Если мы проведем прямую поближе к центру окружности — так, чтобы расстояние до него было меньше радиуса — неизбежно получится две точки пересечения. Такая прямая называется секущей, а отрезок, расположенный между точками пересечения, будет хордой (на рисунке ниже это ВС ).

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Секущая к окружности — это прямая, которая пересекает ее в двух местах, т. е. имеет с ней две общие точки. Часть секущей, расположенная внутри окружности, будет называться хордой.

Свойства касательной к окружности

Выделяют четыре свойства касательной, которые необходимо знать для решения задач. Два из них достаточно просты и легко доказуемы, а вот еще над двумя придется немного подумать. Рассмотрим все по порядку.

Касательная к окружности и радиус, проведенный в точку касания, перпендикулярны.

Не будем принимать это на веру, попробуем доказать. Итак, у нас даны:

Докажем, что касательная и радиус АВ перпендикулярны, т.е. аАВ.

Пойдем от противного — предположим, что между прямой а и радиусом АВ нет прямого угла и проведем настоящий перпендикуляр к касательной, назвав его АС.

В таком случае наш радиус АВ будет считаться наклонной, а наклонная, как известно, всегда длиннее перпендикуляра. Получается, что АВ > АС. Но если бы это было на самом деле так, наша прямая а пересекалась бы с окружностью два раза, ведь расстояние от центра А до нее — меньше радиуса. Но по условию задачи а — это касательная, а значит, она может иметь лишь одну точку касания.

Итак, мы получили противоречие. Делаем вывод, что настоящим перпендикуляром к прямой а будет вовсе не АС, а АВ.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Задача

У нас есть окружность, центр которой обозначен О. Из точки С проведена прямая, и она касается этой окружности в точке А. Известно, что ∠АСО = 28°. Найдите величину дуги АВ.

Мы знаем, что касательная АС ⟂ АО, следовательно ∠САО = 90°.

Поскольку нам известны величины двух углов треугольника ОАС, не составит труда найти величину и третьего угла.

Поскольку ∠АОС лежит в центре окружности, можно вспомнить свойство центрального угла — как известно, он равен дуге, на которую опирается. Следовательно, ⌒АВ = 62°.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Если провести две касательных к окружности из одной точки, то их отрезки от этой начальной точки до точки касания будут равны.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Итак, у нас есть два прямоугольных треугольника с общей гипотенузой AD. Учитывая, что радиусы окружности всегда равны, мы понимаем, что катеты AB и AC у этих треугольников тоже одинаковой длины. Следовательно, ΔABD = ΔACD. Значит, оставшиеся катеты, а это как раз наши BD и CD (отрезки касательных к окружности), аналогично должны быть равны.

Важно: прямая, проложенная из стартовой точки до центра окружности (в нашем примере это AD), делит угол между касательными пополам.

Задача 1

У нас есть окружность с радиусом 4,5 см. К ней из точки D, удаленной от центра на 9 см, провели две прямые, которые касаются окружности в точках B и C. Определите градусную меру угла, под которым пересекаются касательные.

Решение

sin BDA = AB : AD = 4,5 : 9 = 0,5

Мы знаем, что прямая, проложенная из точки до центра окружности, делит угол между касательными, проложенными из этой же точки, пополам. Другими словами:

∠BDC = ∠BDA × 2 = 30° × 2 = 60°

Итак, угол между касательными составляет 60°.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Задача 2

К окружности с центром О провели две касательные КМ и КN. Известно, что ∠МКN между ними равен 50°. Требуется определить величину угла ∠NМК.

Решение

Согласно вышеуказанному свойству мы знаем, что КМ = КN. Следовательно, треугольник МNК является равнобедренным.

Углы при его основании будут равны, т.е. ∠МNК = ∠NМК.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Соотношение между касательной и секущей: если они проведены к окружности из одной точки, то квадрат расстояния до точки касания равен произведению длины всей секущей на ее внешнюю часть.

Данное свойство намного сложнее предыдущих, и его лучше записать в виде уравнения.

Начертим окружность и проведем из точки А за ее пределами касательную и секущую. Точку касания обозначим В, а точки пересечения — С и D. Тогда CD будет хордой, а отрезок AC — внешней частью секущей.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Задача 1

Из точки М к окружности опускаются две прямые, пусть одна из них будет касательной МA, а вторая — секущей МB. Известно, что хорда ВС = 12 см, а длина всей секущей МB составляет 16 см. Найдите длину касательной к окружности МA.

Решение

Исходя из соотношения касательной и секущей МА 2 = МВ × МС.

Найдем длину внешней части секущей:

МА 2 = МВ × МС = 16 х 4 = 64

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Задача 2

Решение

Допустим, что МО = у, а радиус окружности обозначим как R.

В таком случае МВ = у + R, а МС = у – R.

Поскольку МВ = 2 МА, значит:

МА = МВ : 2 = (у + R) : 2

Согласно теореме о касательной и секущей, МА 2 = МВ × МС.

Сократим уравнение на (у + R) и получим:

Поскольку R = 6, у = 5R : 3 = 30 : 3 = 10 (см).

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Угол между хордой и касательной, проходящей через конец хорды, равен половине дуги, расположенной между ними.

Это свойство тоже стоит проиллюстрировать на примере: допустим, у нас есть касательная к окружности, точка касания В и проведенная из нее хорда . Отметим на касательной прямой точку C, чтобы получился угол AВC.

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Задача 1

Угол АВС между хордой АВ и касательной ВС составляет 32°. Найдите градусную величину дуги между касательной и хордой.

Решение

Согласно свойствам угла между касательной и хордой, ∠АВС = ½ ⌒АВ.

⌒АВ = ∠АВС × 2 = 32° × 2 = 64°

Доказать что окружности касаются. Смотреть фото Доказать что окружности касаются. Смотреть картинку Доказать что окружности касаются. Картинка про Доказать что окружности касаются. Фото Доказать что окружности касаются

Задача 2

У нас есть окружность с центром О, к которой идет прямая, касаясь окружности в точке K. Из этой точки проводим хорду KM, и она образует с касательной угол MKB, равный 84°. Давайте найдем величину угла ОMK.

Решение

Поскольку ∠МКВ равен половине дуги между KM и КВ, следовательно:

⌒КМ = 2 ∠МКВ = 2 х 84° = 168°

Обратите внимание, что ОМ и ОK по сути являются радиусами, а значит, ОМ = ОК. Из этого следует, что треугольник ОMK равнобедренный.

Так как центральный угол окружности равен угловой величине дуги, на которую он опирается, то:

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *