Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅

ВСория Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ³ΠΎ ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½ΠΎΠ³ΠΎ/ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡŽΡ‰ΠΈΡ…ΡΡ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ

> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅β€” мСтричСскоС пространство.

ВсякоС ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ являСтся Π½Π΅ΠΏΡ€Π΅Ρ€Ρ‹Π²Π½Ρ‹ΠΌ. Π”Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ, условиС

\rho (x,y) Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

Π’ΠΎΡ‡ΠΊΠ° x называСтся Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ отобраТСния A, Ссли ΠΈΠΌΠ΅Π΅Ρ‚ мСсто равСнство

Ax=x> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

Π”Ρ€ΡƒΠ³ΠΈΠΌΠΈ словами, нСподвиТная Ρ‚ΠΎΡ‡ΠΊΠ° β€” это Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния

Ax=x> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

x_<2>=Ax_<1>=A^<2>x_<0>> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅

x n = A x n βˆ’ 1 = A n x 0 <\displaystyle

x_=Ax_=A^x_<0>> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

x m = A m x 0 = A n ( A m βˆ’ n x ) = A n x m βˆ’ n <\displaystyle x_=A^x_<0>=A^\left(A^x\right)=A^x_> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π³ΠΎ отобраТСния:

βˆ‘ k = 1 n βˆ’ m Ξ± k βˆ’ 1 = 1 βˆ’ Ξ± n βˆ’ m βˆ’ 1 1 βˆ’ Ξ± ≀ 1 1 βˆ’ Ξ± <\displaystyle \sum _^\alpha ^=<<1-\alpha ^> \over <1-\alpha >>\leq <1 \over <1-\alpha>>> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡ:

A x = A ( lim n β†’ ∞ x n ) = lim n β†’ ∞ ( A x n ) = lim n β†’ ∞ x n + 1 = x <\displaystyle Ax=A\left(\lim _x_\right)=\lim _\left(Ax_\right)=\lim _x_=x> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

БущСствованиС Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½ΠΎ.

Ax=x> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅, A y = y <\displaystyle

Ay=y> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

По ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π³ΠΎ отобраТСния:

с Π΄Ρ€ΡƒΠ³ΠΎΠΉ стороны, ΠΏΠΎ ΠΎΠΏΡ€Π΅Π΄Π΅Π»Π΅Π½ΠΈΡŽ Π½Π΅ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠΈ:

\rho (Ax,Ay)=\rho (x,y)> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

Из этих Π΄Π²ΡƒΡ… ΡΠΎΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ½ΠΎ вывСсти, Ρ‡Ρ‚ΠΎ

x=y> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π’Π΅ΠΎΡ€Π΅ΠΌΠ° Π΄ΠΎΠΊΠ°Π·Π°Π½Π°.

Π‘Π»Π΅Π΄ΡƒΠ΅Ρ‚ ΠΎΡ‚ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ конструктивно: данная Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π΄ΠΎΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ сущСствованиС СдинствСнного Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π½ΠΎ ΠΈ ΡƒΠΊΠ°Π·Ρ‹Π²Π°Π΅Ρ‚ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΡ‘Π½Π½ΠΎΠ³ΠΎ нахоТдСния этого Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ (Π½Π°Π·Ρ‹Π²Π°Π΅ΠΌΡ‹ΠΉ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Ρ… ΠΏΡ€ΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠΉ ΠΈΠ»ΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠΌ простой ΠΈΡ‚Π΅Ρ€Π°Ρ†ΠΈΠΈ).

ΠŸΡ€ΠΈΠ½Ρ†ΠΈΠΏ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Ρ‘Π½ для Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π° сущСствования ΠΈ СдинствСнности Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Ρ… Π²ΠΈΠ΄ΠΎΠ² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ. НиТС Π΄Π°Π½ ΠΏΡ€ΠΎΡΡ‚Π΅ΠΉΡˆΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ примСнСния ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ, Π΅Ρ‰Ρ‘ нСсколько ΠΏΡ€ΠΈΠΌΠ΅Ρ€ΠΎΠ² ΠΏΡ€ΠΈΠ²Π΅Π΄Π΅Π½Ρ‹ Π² ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅ΠΌ Ρ€Π°Π·Π΄Π΅Π»Π΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ [ ΠΏΡ€Π°Π²ΠΈΡ‚ΡŒ ]

ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π² этом случаС f <\displaystyle

f> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅β€” ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅, поэтому Π² силу ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ° ΡΠΆΠΈΠΌΠ°ΡŽΡ‰ΠΈΡ… ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠΉ ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ

x_=f(x_)> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅

сходится ΠΊ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡŽ уравнСния

Рассмотрим Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π²ΠΈΠ΄Π°

F(x)=0> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅,

f(x)=x-\lambda F(x)> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅

ΠΈ Π±ΡƒΠ΄Π΅ΠΌ ΠΈΡΠΊΠ°Ρ‚ΡŒ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ уравнСния

x=f(x)> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅,

f β€² ( x ) = 1 βˆ’ Ξ» F β€² ( x ) <\displaystyle

f'(x)=1-\lambda F'(x)> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅,

Ρ‚ΠΎ ΠΈΠΌΠ΅ΡŽΡ‚ мСсто ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅ нСравСнства

1 βˆ’ Ξ» K 2 ≀ f β€² ( x ) ≀ 1 βˆ’ Ξ» K 1 <\displaystyle 1-\lambda K_<2>\leq f'(x)\leq 1-\lambda K_<1>> Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ Ρ‡Ρ‚ΠΎ ΠΎΡ‚ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ ΡΠΆΠΈΠΌΠ°ΡŽΡ‰Π΅Π΅.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *