Доказать по определению что последовательность расходится
Предел последовательности
п.1. Определение последовательности
С понятием «последовательность» мы уже познакомились, когда изучали прогрессии (см. §24 справочника для 9 класса). По определению:
Т.е., числовая последовательность – это некий набор чисел с присвоенными им порядковыми номерами. Это набор можно задать формулой, описанием или просто перечислением.
Например:
1) Формула \(y_n=\frac1n,\ n\in\mathbb
2) Формула \(y_n=(-1)^n,\ n\in\mathbb
3) Рекуррентная формула \(y_1=1,\ y_2=1,\ y_(n+2)=y_(n+1)+y_n\) задает бесконечную последовательность чисел Фибоначчи:
4) Описание «число π точностью до \(10^<-n>\)» задает бесконечную последовательность все более «подробных» значений числа π:
Этот ряд можно также задать формулой \(y_n=\frac<[\pi\cdot 10^n]><10^n>\), где квадратные скобки обозначают целую часть от числа.
п.2. Предел последовательности
Поведение последовательности «на длинных дистанциях» может быть неочевидным. Чтобы лучше понять, возрастает или убывает заданный ряд чисел, ограничен ли он какой-либо величиной или уходит на бесконечность, проще всего построить график.
1) \(y_n=\frac1n\) Последовательность сходится к 0 |
2) \(y_n=(-1)^n\) Последовательность ни к чему не сходится |
3) числа Фибоначчи \(y_1=1,\ y_2=1,\ y_ Последовательность уходит на бесконечность |
4) приближения числа π Последовательность сходится к π |
п.3. Как доказать сходимость последовательности к пределу?
\(\varepsilon\) | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 7 | 97 | 997 | 9997 | 99997 | 999997 |
\(\lg \varepsilon\) | -1 | -2 | -3 | -4 | -5 | -6 |
\(\lg N_<\varepsilon>\) | 0,845 | 1,987 | 2,999 | 4,000 | 5,000 | 6,000 |
И построим график (в логарифмическом масштабе):
Мы видим, что чем меньше ε, тем больше \(N_<\varepsilon>\). Но главное – мы всегда можем его указать.
Таким образом, мы доказали, что действительно \(\lim_
Ведь для любого сколь угодно малого \(\varepsilon\gt 0\) мы можем указать такой номер \(N_<\varepsilon>=\left[\frac1\varepsilon-4\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_<\varepsilon>\) разность \(\left|\frac<1>
Построенный график интересен еще и тем, что показывает одно из важных практических применений логарифмов: если разбросы по шкалам очень велики, отличаются на порядки, то графики удобней строить в десятичных логарифмах.
Такие графики часто можно увидеть у физиков-ядерщиков, копающих вглубь, от нанометров до планковских длин; или у астрономов, всматривающихся вдаль, от тысяч километров до гигапарсек.
п.4. Ограниченные и неограниченные последовательности
п.5. Как доказать неограниченность последовательности?
Таким образом, мы доказали, что действительно \(\lim_
Ведь для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=[\sqrt
п.6. Примеры
ε | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 15 | 128 | 1253 | 12503 | 125003 | 1250003 |
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac12\left(\frac<5><2\varepsilon>+3\right)\right]+1\), начиная с которого
\(\left|\frac
Что и требовалось доказать.
Показанный приём с усилением неравенства часто применяется в математическом анализе. Найденное \(N_<\varepsilon>\) немного больше «точного» значения, которое следует из исходной дроби \(\frac
Если найденный номер будет немного больше исходного – не страшно; главное, чтобы он 1) был обоснован; 2) гарантировал размещение всех последующих \(y_n,\ n\geq N_<\varepsilon>\) в ε окрестности предела b.
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\frac<1><3\sqrt<\varepsilon>>\right]\), начиная с которого \(\left|\frac
Что и требовалось доказать.
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[-\log_3\varepsilon\right]\), начиная с которого \(\left|\frac<3^n+1><3^n>-1\right|\lt\varepsilon,\ n\geq N_<\varepsilon>\).
Что и требовалось доказать.
ε | 0,1 | 0,01 | 0,001 | 0,0001 | 0,00001 | 0,000001 |
\(N_<\varepsilon>\) | 2 | 362 | 39602 | 3996002 | 4·10 8 | 4·10 10 |
Таким образом, для любого сколь угодно малого ε>0 найдется номер в последовательности \(N_<\varepsilon>=\left[\left(\frac<1><5\varepsilon>-1\right)^2\right]\), начиная с которого \(\left|\frac<\sqrt
Что и требовалось доказать.
Пример 2. Используя определения неограниченной последовательности, докажите, что:
a) \( \lim_
По условию: \(y_n=2^n\)
Записываем неравенство \(|y_n|\gt M\):
\begin
Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[\log_2M\right]+1\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=2^n\gt M\).
Что и требовалось доказать.
M | 10 | 100 | 1 000 | 10 000 | 100 000 | 1 000 000 |
NM | 100 | 10 000 | 1 000 000 | 10 8 | 10 10 | 10 12 |
Таким образом, для любого сколь угодно большого \(M\gt 0\) мы можем указать такой номер \(N_M=\left[M^2\right]\), начиная с которого, для всех членов последовательности с номерами \(n\geq N_M,\ y_n=\sqrt
Что и требовалось доказать.
Научный форум dxdy
Математика, Физика, Computer Science, Machine Learning, LaTeX, Механика и Техника, Химия,
Биология и Медицина, Экономика и Финансовая Математика, Гуманитарные науки
Правила форума
В этом разделе нельзя создавать новые темы.
Если Вы хотите задать новый вопрос, то не дописывайте его в существующую тему, а создайте новую в корневом разделе «Помогите решить/разобраться (М)».
Если Вы зададите новый вопрос в существующей теме, то в случае нарушения оформления или других правил форума Ваше сообщение и все ответы на него могут быть удалены без предупреждения.
Обязательно просмотрите тему Правила данного раздела, иначе Ваша тема может быть удалена или перемещена в Карантин, а Вы так и не узнаете, почему.
Как доказать что последовательность расходится?
Заслуженный участник |
От противного, сдвиньте номер члена последовательности на 1 и тогда последовательность cos(n) тоже сойдется к 0, что противоречит осн. триг. тождеству.
Добавлено спустя 20 минут 12 секунд:
Прошу прощения, в предыдущем своем сообщении я написал, как доказать, что эта последовательность не сходится к нулю. А для Вашего вопроса нужно использовать несоизмеримость числа пи с 1 и принцип ящиков Дирихле- тогда Вы сможете доказать, что множество частичных пределов этой последовательности состоит из более, чем одной точки, что противоречит сходимости.
Заслуженный участник |
Добавлено спустя 2 минуты 42 секунды:
Заслуженный участник |
Заслуженный участник |
Попробуйте доказать, что, к примеру, сумма
больше некоего положительного числа для всех
.
Чтобы доказать это достаточно показать что последовательность неограничена.
Добавлено спустя 2 минуты 42 секунды:
Доказательство расходимости гармонического ряда есть, например, в книге
Фихтенгольц Г.М. Курс дифференциального и интегрального исчислния, том II.
Доказательство можно найти с помощью алфавитного указателя книги.
Добавлено спустя 3 минуты 17 секунд:
Заслуженный участник |
Заслуженный участник |
Заслуженный участник |
Док-во ведется от противного(доказывается как раз отсутствие предела)
Добавлено спустя 56 секунд:
Заслуженный участник |
Заслуженный участник |
Последний раз редактировалось Brukvalub 21.11.2006, 01:04, всего редактировалось 1 раз.
Заслуженный участник |
«»»Мы с тобою гуляли по // компл е ксным полям»»»
А зачем нам выходить в комплексное поле? После того, как мы получили, что решения нет (в поле вещественных), Нам более ничего не надо — наше предположение о существовании предела уже привело к противоречию.
Этот метод не всегда работает. Более того: , корень существует, но предела нет. Мы можем сделать вывод только из противоречия, мы не можем сделать никакого вывода из его, противоречия, отсутствия.
Кто сейчас на конференции
Сейчас этот форум просматривают: нет зарегистрированных пользователей
Критерий Коши сходимости последовательности.
Фундаментальная последовательность.
Последовательность \(\
Для того чтобы последовательность имела конечный предел, необходимо и достаточно, чтобы она была фундаментальной.
Необходимость. Пусть последовательность \(\
$$
\forall\varepsilon>0 \displaystyle \exists N_<\varepsilon>:\forall p\geq N_<\varepsilon>\rightarrow|x_
-a| 0 \ \exists n_\varepsilon:\forall n\geq n_\varepsilon \ \forall m\geq n_\varepsilon\rightarrow|x_n-x_m| 0 \ \exists k_\varepsilon:\quad \forall k\geq k_\varepsilon\rightarrow Пример.
Доказать, что последовательность \(\
$$
x_
$$
расходится.
\(\triangle\) Последовательность \(\
$$
\exists \varepsilon_0>0: \ \forall k\in\mathbb
$$
Таким образом, условие \eqref
Доказать расходимость последовательности
Для просмотра формул ваш браузер должен поддерживать MathML.
Объявления | Последний пост | |
---|---|---|
Актуарий в PPF Life Insurance (Junior) | 25.03.2021 21:35 | |
Премия для молодых математиков Образовательного фонда «Талант и успех» | 21.06.2021 00:48 | |
Работа автором топиков и проектов на математическом треке Hyperskill | 24.09.2021 21:18 |
Прошу подсказать на счет пункта 4) и указать на ошибки в остальных пунктах, пожалуйста.
1. Расходимость последовательности ведь означает одновременное выполнение двух условий
$\lim _
$\lim _
поэтому я и решил указать, что первое не выполняется.
2. Аргументировать можно было как-то так
$\sin \left( <\frac<\pi > <2>+ 2\pi k> \right) > \sin \left( <\left\lceil <\frac<\pi > <2>+ 2\pi k> \right\rceil > \right) > \sin \left( <\frac<\pi > <2>+ 2\pi k + 1> \right) \approx 0,54$
Но почему неверно равенство?
Есть масса других милых способов.
2. Докажем то, что предел не может быть числом отрицательным.
Но этот факт действительно следует из предыдущего (если предыдущий доказан верно)
3. Докажем, что предел не может быть числом положительным
Это ведь. и будет
Редактировалось 1 раз(а). Последний 10.10.2013 21:32.
2. Докажем то, что предел не может быть числом отрицательным.
Но этот факт действительно следует из предыдущего (если предыдущий доказан верно)
3. Докажем, что предел не может быть числом положительным
Это ведь. и будет
Аналогично доказываем и второе утверждение.
Да, здесь весьма просто уточнить: «моя явная глупость» . Предполагался, конечно, просто пример.
Аналогично доказываем и второе утверждение.
Редактировалось 1 раз(а). Последний 17.10.2013 01:04.
Сходящиеся последовательности
Последовательность, у которой существует предел, называется сходящейся. Последовательность не являющаяся сходящейся называется расходящейся.
В соответствии с этим определением всякая бесконечно малая последовательность является сходящейся и имеет своим пределом число ноль.
Можно, также, дать еще одно определение сходящейся последовательности: Последовательность
Некоторые свойства сходящихся последовательностей:
ТЕОРЕМА: Сходящаяся последовательность имеет только один предел.
ТЕОРЕМА: Сходящаяся последовательность ограничена.
Доказательство: Пусть
ТЕОРЕМА: Сумма сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Разность сходящихся последовательностей <х n >и
Доказательство: Пусть а и b – соответственно пределы последовательностей <х n >и
ТЕОРЕМА: Произведение сходящихся последовательностей <х n >и
ЛЕММА: Если последовательность , которая является ограниченной.
ТЕОРЕМА: Частное двух сходящихся последовательностей
.
Так как последовательность ограничена, а последовательность
бесконечно мала, то последовательность
бесконечно малая. Теорема доказана.
Итак, теперь можно сказать, что арифметические операции над сходящимися последовательностями приводят к таким же арифметическим операциям над их пределами.
ТЕОРЕМА: Если элементы сходящейся последовательности
Элементы сходящейся последовательности .
.
.
Следствие 2: Если все элементы сходящейся последовательности
Это выполняется, так как а£ x n£ b, то a£ c£ b.
Итак, мы показали неравенства, которым удовлетворяют элементы сходящихся последовательностей, в пределе переходят в соответствующие неравенства для пределов этих последовательностей.
, и того, что
.
(m, n = 1, 2, 3, … ),
,…
должна либо расходиться к , причем предел этой последовательности будет равен ее нижней грани.
,
тогда существует конечный предел
,
(n = 1, 2, 3, … ).
(*)
сходится, ибо в силу неравенства (*) он мажорируется сходящимся рядом:
запишем целое число n по двоичной системе:
.
Применяя теорему (1) для данных:
s 0 =0, s 1 =, s m-1 =
, s m =
, …, p n0 =0, p n1 =
, …, p n, m-1 =
,
, p n, m+1 =0, …,
заключаем, что . Наконец, в силу (*) имеем:
.
Если общий член ряда, не являющегося ни сходящимся, ни расходящимся в собственном смысле, стремится к нулю, то частичные суммы этого ряда расположены всюду плотно между их нижним и верхним пределами lim inf и lim sup.
Разобьем числовую прямую на l интервалов точками
.
Существуют в сколь угодно большом удалении конечные последовательности , произвольно медленно нисходящие от верхнего предела последовательности к ее нижнему пределу.
, …
заполняет замкнутый интервал (длина которого равна нулю, если эта последовательность стремится к пределу).
Числовая последовательность, стремящаяся к , имеет наименьший член.
Какое бы число мы ни задали, слева от него будет находиться лишь конечное число членов последовательности, а среди конечного множества чисел существует одно или несколько наименьших.
Сходящаяся последовательность имеет либо наибольший член, либо наименьший, либо и тот и другой.
При совпадении верхней и нижней граней рассматриваемой последовательности теорема тривиальна. Пусть поэтому они различны. Тогда по крайней мере одна из них отличается от предела последовательности. Она и будет равна наибольшему, соответственно наименьшему, члену последовательности.
Пусть числовые последовательности
обладают тем свойством, что
,
.
Тогда существует бесконечно много номеров n, для которых одновременно выполняются неравенства
l n s n >l n-1 s n-1, l n s n >l n-2 s n-2, … l n s n >l 1 s 1,
Будем называть l m “выступающим” членом последовательности, если l m больше всех последующих членов. Согласно предположению в первой последовательности содержится бесконечно много выступающих членов; пусть это будут:
,…
,
(*)
отсюда заключаем, что
Если числовая последовательность ,… стремится к
и А превышает ее наименьший член, то существует такой номер n (возможно несколько таких), n³ 1, что n отношений
все не больше А, а бесконечное множество отношений
,…
Имеем . Пусть минимум последовательности
u=1, 2, …, n; v=1, 2, 3, …; n=0 исключено в силу предложений относительно А.
.
.
,
Пусть, далее, l 1 >A>0. Тогда существует такой номер n, n ³ 1, что одновременно выполняются все неравенства
.
Если А® 0, то также n® 0.
Тогда . Последовательность
все положительны: коль скоро А меньше наименьшего из них, соответствующий А номер n больше или равен s. Точки (n, L n ) должны быть обтянуты теперь бесконечным выпуклым сверху полигоном.
3-2n>