Доказательство что трапеция это трапеция
Трапеция
Трапеция — это четырехугольник, у которого только две стороны параллельны,
а две другие стороны нет.
Элементы трапеции
На рисунке 1 изображена трапеция MNPQ, с боковыми сторонами MN и PQ, с основаниями NP и MQ, а также со средней линией DF.
В трапеции две параллельные стороны называются основаниями. 0дна из параллельных сторон называется верхним основанием, а другая параллельная сторона называется нижним основанием. Но как определить, какая из параллельных сторон нижнее основание, а какая верхнее основание? Существует несколько способов это определить. Во-первых, как вы уже наверно догадались, нижнее основание расположено внизу трапеции, а верхнее основание расположено вверху трапеции. Во-вторых, верхнее основание меньше чем нижнее основание, и наоборот нижнее основание больше верхнего основания. C помощью этих двух способов вы можете
легко определить какое основание нижнее а какое верхнее. NP || MQ, NP — верхнее основание, MQ — нижнее основание.
Кроме оснований в трапеции, есть еще две не параллельные стороны. В трапеции эти две не параллельные стороны называются боковыми сторонами. Боковые стороны расположены сбоку от верхнего и нижнего оснований. MN и PQ — боковые стороны.
Отрезок, соединяющий середины боковых сторон называется средней линией трапеции. С средней линией трапеции связано несколько важных формул. Например, достаточно знать длину средней трапеции и одну из сторон основания, чтобы найти другое основание. Средняя линия делит две боковые стороны трапеции на две равных части. DF — средняя линия трапеции, MD = DN, QF = FP.
Центром симметрии трапеции называется середина средней линии трапеции. Центр симметрии
является центром вписанной, и центром описанной окружностей.
Виды трапеции
Также существует несколько видов трапеции. Это равнобедренная и прямоугольная трапеции.
На рисунке 2 изображена равнобедренная трапеция KLMN, с боковыми сторонами KL и MN, с основаниями LM и KN, а также со средней линией HF.
В равнобедренной трапеции боковые стороны равны, углы при основаниях равны. KL = MN, ∠LKN = ∠MNK, ∠KLM = ∠NML.
Чтобы найти среднюю линию в равнобедренной трапеции достаточно знать только одну из боковых сторон.
В прямоугольной трапеции у одной из боковых сторон есть прямой угол, или же по другом сказать — только одна боковая сторона перпендикулярна одному из оснований.
∠NMP — прямой угол.
Трапеция. Определение, виды, свойства
Определения
Определение 1. Трапецией называется четырехугольник, у которого две стороны параллельны а две другие − нет.
На Рис.1 четырехугольники ABCD и EFGH являются трапециями.
Параллельные стороны трапеции называются основаниями трапеции, а непараллельные стороны − боковыми сторонами (Рис.2).
В трапеции ABCD (Рис.1) углы A и B называют углами при основании AB, а углы C и D называют углами при основании CD.
Определение 2. Высотой трапеции называется перпендикуляр, отпущенный из любой точки прямой, проходящей через один из оснований трапеции, на прямую, проходящую через другое основание.
На Рис.3 отрезки DM, ON, QP являются вершинами трапеции ABCD. Поскольку величина каждой из этих отрезков является расстоянием между параллельными прямыми, проходящими через основания трапеции, то они равны друг другу.
Определение 3. Средней линией трапеции называется отрезок, соединяющий средние точки боковых сторон.
На рисунке Рис.4 \( \small MN \) является средней линией трапеции \( \small ABCD, \) причем \( \small AM=MD,\;\; BN=NC. \)
Виды трапеций
Если боковые стороны трапеции равны, то трапеция называется равнобокой или равнобедренной (Рис.5).
Трапеция называется прямоугольной, если одна из боковых сторон перпендикуляна основаниям трапеции (Рис.6).
Трапеция называется разносторонней, если длина всех сторон разные (т.е. если трапеция не прямоульная и не равнобедренная)(Рис.7).
Свойства трапеции
Свойство 1. Средняя линия трапеции параллельна основаниям и равна половине их суммы.
Доказательство. Пусть MN средняя линия трапеции ABCD (Рис.8). Докажем, что \( \small MN || AB, \) \( \small MN=\frac12 (AB+CD). \)
Проведем прямую DN и обозначим точку ее пересечения с прямой AB точкой P. Так как MN является средней линией трапеции ABCD, то
Углы 3 и 4 являются накрест лежащими, при рассмотрении параллельных прямых BP и CD пересеченные секущей CB, тогда (теорема 1 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей).
Исходя из равенств (1),(2) и (3) получим, что треугольники CND и NPC равны, по второму признаку равенства треугольников. Тогда BP = DC, DN = NP. Из равенств AM = MD и DN = NP следует, что MN является средней линией треугольника ADP. Тогда \( \small MN \ || \ AP \) ( или \( \small MN \ || \ AB \)) и \( \small MN =\frac 12 AP \). Но \( \small AP=AB +BP=AB+CD \). Тогда \( \small MN =\frac 12 (AB+CD).\)
Свойство 2. Сумма углов трапеции, прилежащих к одной боковой стороне равна 180°.
Доказательство. Рассмотрим трапецию ABCD (Рис.9).
Углы A и D являутся односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Тогда \( \small \angle A+ \angle D=180°.\)
Свойство 3. Отрезок, слединяющий середины диагоналей трапеции лежит на средней линии трапеции и равен половине разности оснований.
Доказательство. Рассмотрим трапецию ABCD (Рис.10).
Поскольку точки P и Q являются средними точками диагоналей AC и BD, соответственно, то:
MP − является средней линией треугольника ADC, так как ,
. Тогда
QN − является средней линией треугольника BCD, так как ,
Тогда
Из и
следует, что P находится на прямой, проходящей через среднюю линию MN, поскольку из точки M можно провести только одну прямую, параллельно CD (Аксиома 1 статьи Аксиома параллельных прямых).
Аналогично, из и
следует, что Q находится на прямой, проходящей через среднюю линию MN, поскольку из точки N можно провести только одну прямую, параллельно CD.
Далее, учитывая (4) и (5), получим:
Далее, учитывая свойство 1, получим:
Свойства равнобокой (равнобедренной) трапеции
Свойсво 1′. В равнобокой трапеции углы при каждом основании равны.
Доказательство. Рассмотрим равнобедренную (равнобокую) трапецию ABCD, где AD = BC (Рис.11).
Проведем высоты DM и CN. Поскольку DM = CN и AD = BC, то прямоугольники ADM и NCB равны гипотенузе и катету (см. статью Прямоугольный треугольник. Свойства, признаки равенства). Тогда \( \small \angle A=\angle B. \) Докажем, далее, что \( \small \angle ADC=\angle DCB. \) \( \small \angle A +\angle ADC=180° \) поскольку углы A и ADC являются односторонними углами, при рассмотрении параллельных прямых AB и CD пересеченные секущей AD (теорема 3 статьи Теоремы об углах, образованных двумя параллельными прямыми и секущей). Аналогично \( \small \angle B +\angle DCB=180°. \) Учитывая, что \( \small \angle A=\angle B \), получим \( \small \angle ADC=\angle DCB. \)
Свойсво 2′. В равнобокой трапеции диагонали равны.
Доказательство. Рассмотрим треугольники ADC и DCB (Рис.12). Имеем CD общая сторона для обеих треугольников, AD = CB, \( \small \angle ADC=\angle DCB. \) Тогда треугольники равны по двум сторонам и углу между ними. Следовательно диагонали AC и DB трапеции ABCD равны.
Свойсво 3′. В равнобокой трапеции высота, приведенная из вершины тупого угла на основание, делит основание трапеции на отрезки, больший из которых равен половине суммы оснований, а меньший равен половине разности оснований.
Доказательство. Рассмотрим четырехугольник DMNC (Рис.11). Имеем:
Тогда четырехугольник DMNC является прямоугольником. Следовательно DC = MN. Поскольку треугольники ADM и NCB равны (см. доказательство следствия 1), то AM = NB. Следовательно:
Трапеция
Определения
Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.
Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.
Теоремы: свойства трапеции
2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.
Доказательство
Определение
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Теорема
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем параллельность.
\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]
Теорема: свойство произвольной трапеции
Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
2) Докажем, что точки \(N, O, M\) лежат на одной прямой.
\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac
Определения
Трапеция называется прямоугольной, если один из ее углов – прямой.
Трапеция называется равнобедренной, если ее боковые стороны равны.
Теоремы: свойства равнобедренной трапеции
1) У равнобедренной трапеции углы при основании равны.
2) Диагонали равнобедренной трапеции равны.
3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.
Доказательство
2)
Теоремы: признаки равнобедренной трапеции
1) Если у трапеции углы при основании равны, то она равнобедренная.
2) Если у трапеции диагонали равны, то она равнобедренная.
Доказательство
Трапеция. Иллюстрированный гид
Перед тобой лучший гид по трапеции! Только то, что нужно. Без воды.
Основные определения, формулы и свойства.
Помни о своей цели!
Тебе нужно подготовиться к ЕГЭ по математике так, чтобы поступить в ВУЗ мечты!
Трапеция — коротко о главном
Что такое трапеция:
Трапеция – четырёхугольник, у которого две стороны параллельны (они называются основания), а две другие – нет (это боковые стороны).
Сумма углов при каждой боковой стороне трапеции равна 180°
\( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \)
Средняя линия трапеции:
Средняя линия трапеции (\( \displaystyle MN\)) – отрезок, соединяющий середины боковых сторон: \( \displaystyle AM=MB,\ \ CN=ND\).
Средняя линия параллельна основаниям: \( \displaystyle MN\parallel BC\parallel AD\).
Длина средней линии трапеции равна полусумме длин оснований: \( \displaystyle MN=\frac
<2>\).
Диагонали трапеции:
Диагонали любой трапеции пересекаются в точке О.
Треугольники, образованные основаниями трапеции и отрезками диагоналей
(\( \displaystyle BOC\) и \( \displaystyle AOD\)) подобны по двум углам с коэффициентом подобия равным отношению оснований: \( \displaystyle k=\frac\).
Площади треугольников, образованных боковыми сторонами и отрезками диагоналей трапеции, равны: \( \displaystyle <
_<\Delta AOB>>=<_<\Delta COD>>\).
Равнобедренная (равнобокая трапеция)
Равнобедренная (равнобокая) трапеция – это трапеция, у которой боковые стороны равны: \( \displaystyle AB=CD\).
Свойства равнобедренной трапеции:
Углы при основании равны: \( \displaystyle \angle A=\angle D,\text< >\angle B=\angle C\);
Сумма противолежащих углов равна \( \displaystyle 180<>^\circ \): \( \displaystyle \angle A+\angle C=\angle B+\angle D=180<>^\circ \).
Стороны и диагональ равнобокой трапеции связаны соотношением: \( \displaystyle A<
^<2>>=B< ^<2>>=AD\cdot BC+A<^<2>>\).
Если трапецию можно вписать в окружность…
Если трапецию можно вписать в окружность, то она – равнобокая.
Площадь трапеции
Площадь трапеции равна полусумме оснований, умноженной на высоту: \( \displaystyle <
_>=\frac <2>\cdot h\).
Для справки: В нашем учебнике для подготовки к ЕГЭ по математике есть все темы планиметрии и стереометрии (да и алгебры тоже есть).
Что такое трапеция?
Трапеция – такой четырехугольник, у которого две стороны параллельны, а две другие – нет.
Параллельные стороны называются – основания, а непараллельные стороны называются боковые стороны.
Оказывается, трапеция (как и треугольник) бывает равнобедренная.
Если боковые стороны трапеции равны, то она называется равнобедренной (или равнобокой).
И тут возникает вопрос: а могут ли у трапеции быть равными ОСНОВАНИЯ?
А вот и нет. Тогда это получится не трапеция, а параллелограмм, потому что две стороны окажутся параллельны и равны (вспоминаем признаки параллелограмма)
Свойства трапеции
Итак, что ты должен знать о свойствах трапеции…
Сумма углов при каждой боковой стороне трапеции равна 180°. (у нас на рисунке \( \displaystyle \angle 1+\angle 2=180<>^\circ \) и \( \displaystyle \angle 3+\angle 4=180<>^\circ \))
Ну, конечно, просто потому, что основания – параллельны, а боковая сторона – секущая.
Вот и получается, что \( \displaystyle \angle 1\) и \( \displaystyle \angle 2\) – внутренние односторонние углы при параллельных \( \displaystyle AD\) и \( \displaystyle BC\) и секущей \( \displaystyle AB\).
Поэтому \( \displaystyle \angle 1+\angle 2=180<>^\circ \).
И точно так же \( \displaystyle \angle 3\) и \( \displaystyle \angle 4\) – внутренние односторонние углы при тех же параллельных \( \displaystyle AD\) и \( \displaystyle BC\), но секущая теперь – \( \displaystyle CD\).
Видишь: главное, что играет роль – это параллельность оснований. Давай разберем еще некоторые свойства трапеции.
Как у всякого четырехугольника, у трапеции есть диагонали. Их две – посмотри на рисунки:
Трапеция и ее свойства с определением и примерами решения
Содержание:
Трапецией называют четырехугольник, у которого две стороны параллельны, а две другие не параллельны.
На рисунке 66 изображена трапеция
Свойства трапеции
Рассмотрим некоторые свойства трапеции.
1. Сумма углов трапеции, прилежащих к боковой стороне, равна 180°.
Так как то
(как сумма внутренних односторонних углов). Аналогично
2. Трапеция является выпуклым четырехугольником.
Высотой трапеции называют перпендикуляр, проведенный из любой точки основания трапеции к прямой, содержащей другое ее основание.
Как правило, высоту трапеции проводят из ее вершины. На рисунке 67 — высота трапеции
Свойства равнобокой трапеции
Рассмотрим некоторые важные свойства равнобокой трапеции.
1. В равнобокой трапеции углы при основании равны.
Доказательство:
1) Пусть в трапеции Проведем высоты трапеции
и
из вершин ее тупых углов
и
(рис. 70). Получили прямоугольник
Поэтому
2) (по катету и гипотенузе). Поэтому
3) Также Но
поэтому
и
Следовательно,
2. Диагонали равнобокой трапеции равны.
Доказательство:
Рассмотрим рисунок 71. (как углы при основании равнобокой трапеции),
— общая сторона треугольников
и
Поэтому
(по двум сторонам и углу между ними). Следовательно,
Пример:
— точка пересечения диагоналей равнобокой трапеции
с основаниями
и
(рис. 71). Докажите, что
Доказательство:
(доказано выше). Поэтому
По признаку равнобедренного треугольника
— равнобедренный. Поэтому
Поскольку
и
то
(так как
).
Теорема (признак равнобокой трапеции). Если в трапеции углы при основании равны, то трапеция — равнобокая.
Доказательство:
1) Пусть в углы при большем основании
равны (рис. 70), то есть
Проведем высоты
и
они равны.
2) Тогда (по катету и противолежащему углу). Следовательно,
Таким образом, трапеция равнобокая, что и требовалось доказать.
В «Началах» Евклид под термином «трапеция» подразумевал любой четырехугольник, не являющийся параллелограммом. Большинство математиков Средневековья использовали термин «трапеция» с тем же смыслом.
Свойство средней линии трапеции
Средней линией трапеции называют отрезок, соединяющий середины ее боковых сторон.
Рассмотрим свойство средней линии трапеции.
Теорема (свойство средней линии трапеции). Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство:
Пусть — данная трапеция,
— ее средняя линия (рис. 109). Докажем, что
и
1) Проведем луч до его пересечения с лучом
Пусть
— точка их пересечения. Тогда
(как внутренние накрест лежащие при параллельных прямых
и
и секущей
(как вертикальные),
(по условию). Следовательно,
(по стороне и двум прилежащим углам), откуда
(как соответственные стороны равных треугольников).
2) Поскольку то
— средняя линия треугольника
Тогда, по свойству средней линии треугольника,
а значит,
Но так как
то
3) Кроме того,
Пример:
Докажите, что отрезок средней линии трапеции, содержащийся между ее диагоналями, равен полуразности оснований.
Доказательство:
Пусть — средняя линия трапеции
— точка пересечения
и
— точка пересечения
и
(рис. 110). Пусть
Докажем, что
1) Так как и
то, по теореме Фалеса,
-середина
— середина
Поэтому
— средняя линия треугольника
— средняя линия треугольника
Тогда
2) — средняя линия трапеции, поэтому
3)
Пример:
Решение:
Пусть — данная трапеция,
— ее средняя линия,
(рис. 111).
1) Обозначим Тогда
2) (по условию).
(как внутренние накрест лежащие при параллельных прямых
и
и секущей
Поэтому
Следовательно,
— равнобедренный, у которого
(по признаку равнобедренного треугольника). Но
(по условию), значит,
3) Учитывая, что получим уравнение:
откуда
4) Тогда
То, что средняя линия трапеции равна полусумме оснований, было известно еще древним египтянам; эту информацию содержал папирус Ахмеса (примерно XVII в. до н. э.).
О свойстве средней линии трапеции знали также и вавилонские землемеры; это свойство упоминается и в трудах Герона Александрийского (первая половина I в. н. э.).
При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org
Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи
Сайт пишется, поддерживается и управляется коллективом преподавателей
Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.
Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.