Вопрос 3. Докажите, что гомотетия есть преобразование подобия.
Ответ.Теорема 11.1. Гомотетия есть преобразование подобия.
При гомотетии точки \(X\) и \(Y\) переходят в точки \(X’\) и \(Y’\) на лучах \(OX\) и \(OY\) соответственно, причем \(OX’ = k\cdot OX\), \(OY’ = k\cdot OY\). Отсюда следуют векторные равенства
Так как \(\overline — \overline = \overline\), \(\overline — \overline = \overline\), то \(\overline = k\overline\). Значит, \(|\overline| = k|\overline|\), т.е. \(X’Y’ = kXY\). Следовательно, гомотетия есть преобразование подобия. Теорема доказана.
Вопрос 4. Какие свойства преобразования подобия вы знаете? Докажите, что преобразование подобия сохраняет углы между полупрямыми.
Ответ. Так же как и для движения, доказывается, что при преобразовании подобия три точки \(A, B, C\), лежащие на одной прямой, переходят в три точки \(A_1, B_1, C_1\), также лежащие на одной прямой. Причем если точка \(B\) лежит между точками \(A\) и \(C\), то точка \(B_1\) лежит между точками \(A_1\) и \(C_1\). Отсюда следует, что преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки.
Докажем, что преобразование подобия сохраняет углы между полупрямыми.
Действительно, пусть угол \(ABC\) преобразованием подобия с коэффициентом \(k\) переводится в угол \(A_1B_1C_1\) (рис. 237). Подвергнем угол \(ABC\) преобразованию гомотетии относительно его вершины \(B\) с коэффициентом гомотетии \(k\). При этом точки \(A\) и \(C\) перейдут в точки \(A_2\) и \(C_2\). Треугольники \(A_2BC_2\) и \(A_1B_1C_1\) равны по третьему признаку. Из равенства треугольников следует равенство углов \(A_2BC_2\) и \(A_1B_1C_1\). Значит, углы \(ABC\) и \(A_1B_1C_1\) равны, что и требовалось доказать.
Вопрос 5. Какие фигуры называются подобными?
Ответ. Две фигуры называются подобными, если они переводятся друг в друга преобразованием подобия.
Вопрос 6. Каким знаком обозначается подобие фигур? Как записывается подобие треугольников?
Ответ. Для обозначения подобия фигур используется специальный значок: \(\sim\).
Запись \(F\sim F’\) читается так: «Фигура \(F\) подобна фигуре \(F’\)».
Запись подобия треугольников \(ABC\) и \(A_1B_1C_1\): \(\triangle ABC \sim \triangle A_1B_1C_1\).
Вопрос 7. Сформулируйте и докажите признак подобия треугольников по двум углам.
Ответ.Теорема 11.2. Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны.
Доказательство. Пусть у треугольников \(ABC\) и \(A_1B_1C_1\) \(\angle A = \angle A_1\), \(\angle B = \angle B_1\). Докажем, что \(\triangle ABC \sim \triangle A_1B_1C_1\).
Пусть \(k = \frac\). Подвергнем треугольник \(A_1B_1C_1\) преобразованию подобия с коэффициентом подобия \(k\), например гомотетии (рис. 238). При этом получим некоторый треугольник \(A_2B_2C_2\), равный треугольнику \(ABC\). Действительно, так как преобразование подобия сохраняет углы, то \(\angle A_2 = \angle A_1\), \(\angle B_2 = \angle B_1\). А значит, у треугольников \(ABC\) и \(A_2B_2C_2\) \(\angle A = \angle A_2\), \(\angle B = \angle B_2\). Далее, \(A_2B_2 = kA_1B_1 = AB\). Следовательно, треугольники \(ABC\) и \(A_2B_2C_2\) равны по второму признаку (по стороне и прилежищим к ней углам).
Так как треугольники \(A_1B_1C_1\) и \(A_2B_2C_2\) гомотетичны и, значит, подобны, а треугольники \(A_2B_2C_2\) и \(ABC\) равны и поэтому тоже подобны, то треугольники \(A_1B_1C_1\) и \(ABC\) подобны.
Вопрос 8. Сформулируйте и докажите признак подобия треугольников по двум сторонам и углу между ними.
Ответ.Теорема 11.3. Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы, образованные этими сторонами, равны, то треугольники подобны.
Доказательство (аналогично доказательству теоремы 11.2). Пусть у треугольников \(ABC\) и \(A_1B_1C_1\) \(\angle C = \angle C_1\) и \(AC = kA_1C_1\), \(BC = kB_1C_1\). Докажем, что \(\triangle ABC \sim \triangle A_1B_1C_1\).
Подвергнем треугольник \(A_1B_1C_1\) преобразованию подобия с коэффициентом подобия \(k\), например гомотетии (рис. 240). При этом получим некоторый треугольник \(A_2B_2C_2\), равный треугольнику \(ABC\). Действительно, так как преобразование подобия сохраняет углы, то \(\angle C_2 = \angle C_1\). А значит, у треугольников \(ABC\) и \(A_2B_2C_2\) \(\angle C = \angle C_2\). Далее, \(A_2C_2 = kA_1C_1 = AC\), \(B_2C_2 = kB_1C_1 = BC\). Следовательно, треугольники \(ABC\) и \(A_2B_2C_2\) равны по первому признаку (по двум сторонам и углу между ними).
Так как треугольники \(A_1B_1C_1\) и \(A_2B_2C_2\) гомотетичны и, значит, подобны, а треугольники \(A_2B_2C_2\) и \(ABC\) равны и поэтому тоже подобны, то треугольники \(A_1B_1C_1\) и \(ABC\) подобны.
Вопрос 9. Сформулируйте и докажите признак подобия треугольников по трем сторонам.
Ответ.Теорема 11.4. Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Доказательство (аналогично доказательству теоремы 11.2). Пусть у треугольников \(ABC\) и \(A_1B_1C_1\) \(AB = kA_1B_1\), \(AC = kA_1C_1\), \(BC = kB_1C_1\). Докажем, что \(\triangle ABC \sim \triangle A_1B_1C_1\).
Подвергнем треугольник \(A_1B_1C_1\) преобразованию подобия с коэффициентом подобия \(k\), например гомотетии (рис. 242). При этом получим некоторый треугольник \(A_2B_2C_2\), равный треугольнику \(ABC\). Действительно, у треугольников соответствующие стороны равны:
\(A_2B_2 = kA_1B_1 = AB\),
\(A_2C_2 = kA_1C_1 = AC\),
\(B_2C_2 = kB_1C_1 = BC\).
Следовательно, треугольники \(ABC\) и \(A_2B_2C_2\) равны по третьему признаку (по трем сторонам).
Так как треугольники \(A_1B_1C_1\) и \(A_2B_2C_2\) гомотетичны и, значит, подобны, а треугольники \(A_2B_2C_2\) и \(ABC\) равны и поэтому тоже подобны, то треугольники \(A_1B_1C_1\) и \(ABC\) подобны.
Вопрос 10. Докажите, что катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Ответ. У прямоугольного треугольника один угол прямой. Поэтому по теореме 11.2 для подобия двух прямоугольных треугольников достаточно, чтобы у них было по равному острому углу.
Треугольники \(ABC\) и \(CBD\) имеют общий угол при вершине \(B\). Следовательно, они подобны: \(\triangle ABC \sim \triangle CBD\). Из подобия треугольников следует пропорциональность соответствующих сторон:
Это соотношение обычно формулируют так: катет прямоугольного треугольника есть среднее пропорциональное между гипотенузой и проекцией этого катета на гипотенузу.
Выберем ортонормированный репер (О, Е1, E2) так, чтобы точка О совпала с центром гомотетии. Если М (х, у) —произвольная точка плоскости, а точка M′ (х’, у’) — ее образ, то из формулы (1) получаем аналитическое выражение гомотетии: . (3)
Рассмотрим простейшие свойства гомотетии.
1) Гомотетия с коэффициентом переводит прямую, не проходящую через центр гомотетии, в параллельную ей прямую, а прямую, проходящую через центр гомотетии, — в себя.
2) Гомотетия сохраняет простое отношение трех точек.
Из этих свойств следует, что гомотетия переводит отрезок в отрезок, луч в луч и полуплоскость в полуплоскость.
3) Гомотетия переводит угол в равный ему угол.
□ Пусть ВАС — данный угол, а В′ А′ С’ — образы точек В, А и С. По формуле (2) получаем:
Отсюда следует, что
4) Гомотетия сохраняет ориентацию плоскости.
Таким образом, если М (х, у) — произвольная точка плоскости, а М'(х′, у’) — ее образ в преобразовании то
где =1, если — преобразование подобия первого рода, и = — 1, если — преобразование подобия второго рода. Используя формулы (7), докажем теорему.
Теорема 2. Любое преобразование подобия, отличное от движения, имеет одну и только одну неподвижную точку.
□ Пусть равенства (7) — аналитическое выражение данного преобразования подобия. Точка М (х, у) является неподвижной точкой этого преобразования тогда и только тогда, когда
Итак, существует шесть типов преобразования подобия, которые приведены в следующей таблице:
Это отображение называется гомотетией с центром Мо и коэффициентом m. Для двух точек M1 и М2 и их образов и из формулы (1) получаем:
Отсюда и следует сформулированное выше утверждение.
Теорема 1, сформулированная и доказанная (см. выше), полностью переносится на пространство, т. е. любое преобразование подобия пространства с коэффициентом является произведением гомотетии с тем же коэффициентом и произвольным центром на некоторое движение. Отсюда следует, что подобие пространства переводит плоскость (прямую) в плоскость (прямую), параллельные плоскости (прямые) —в параллельные плоскости (прямые). Подобие сохраняет простое отношение трех точек, поэтому оно переводит отрезок в отрезок, луч — в луч, полуплоскость — в полуплоскость, полупространство — в полупространство. Подобие переводит угол в равный ему угол, взаимно перпендикулярные прямые (плоскости) — во взаимно перпендикулярные прямые (плоскости). Точно так же, как и на плоскости, можно доказать, что любое преобразование подобия либо сохраняет ориентацию пространства, либо меняет ее. В первом случае оно называется преобразованием подобия первого рода, а во втором случае — преобразованием подобия второго рода. Таким образом, гомотетия с положительным коэффициентом является преобразованием подобия первого рода, а гомотетия с отрицательным коэффициентом (в частности, центральная симметрия, ) — преобразованием подобия второго рода.
3. Многоугольник будет подобным многоугольнику (рис. 2.439).
В этом построении использовалось требование, при котором точка X переходит в такую точку , что а точка о переходит в себя.
Таким образом, задача построения фигуры, подобной данной фигуре, приводит к новому виду преобразований, которое называют гомотетией.
Определение. Гомотетией с центром O и коэффициентом называют преобразование, при котором каждая точка X переходит в точку , такую, что
Если при гомотетии фигура переходит в фигуру , то эти фигуры называют гомотетичными.
Если k = 1, то каждая точка X перейдет сама в себя.
Если k > 0, то гомотетичные фигуры располагаются по одну сторону от центра гомотетии (рис. 2.440, 2.441).
Если k 0 (рис. 2.440), то точки X и лежат на прямой ОХ по одну сторону от центра гомотетии (так, векторы сонаправлены).
Присылайте задания в любое время дня и ночи в ➔
Официальный сайт Брильёновой Натальи Валерьевны преподавателя кафедры информатики и электроники Екатеринбургского государственного института.
Все авторские права на размещённые материалы сохранены за правообладателями этих материалов. Любое коммерческое и/или иное использование кроме предварительного ознакомления материалов сайта natalibrilenova.ru запрещено. Публикация и распространение размещённых материалов не преследует за собой коммерческой и/или любой другой выгоды.
Главная > Учебные материалы > Математика: Планиметрия. Страница 9
1.Преобразование подобия и его свойства
Преобразованием подобия называется преобразование фигуры G в фигуру G’, у которой расстояние между точками изменяется в одно и тоже число раз. Т.е. ОA’ = k OA. Это означает, что для любых двух точек геометрической фигуры выполняется равенство A’B’ = k AB. (Рис.1) Число k называется коэффициентом подобия.
Если взять произвольную точку, например точку О. И отложить отрезок OB’ = k OB, то такое преобразование фигуры G в фигуру G’ называется гомотетией. А число k называется коэффициентом гомотетии. Таким образом, гомотетия есть преобразование подобия.
Свойства преобразования подобия
Преобразование подобия переводит прямые в прямые, полупрямые в полупрямые, отрезки в отрезки и при этом углы между прямыми сохраняются.
Рис.1 Преобразование подобия и его свойства.
2.Подобие фигур. Подобие треугольников по двум углам
Две фигуры называются подобными, если преобразованием подобия они переходят друг в друга. (Рис.2)
Если две фигуры подобны третьей, то они подобны друг другу.
Из свойств преобразования подобия следует, что у подобных фигур, соответсвующие стороны пропорциональны и соответствующие углы равны.
Рис.2 Подобие фигур.
Подобие треугольников по двум углам
Если два угла одного треугольника равны двум углам другого треугольника, то такие треугольники подобны. (Рис.3)
Докажем это утверждение. Пусть даны два треугольника ABC и A’B’C’.
Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A»B»C» равен треугольнику ABC по стороне и прилегающим к ней углам. Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. А т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’.
Рис.3 Подобие треугольников по двум углам.
3.Подобие треугольников по двум сторонам и углу между ними
Если две стороны одного треугольника пропорциональны двум сторонам другого треугольника и углы между этими сторонами равны, то такие треугольники подобны.
Докажем это утверждение. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A’B’C’.
Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. Полученный треугольник A»B»C» равен треугольнику ABC по двум сторонам и углу между ними со сторонами kA’B’=A»B» и kA’C’=A»C». Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. А т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’, т.е. kA’B’=AB, kB’C’=BC и kA’C’=AC.
Рис.3 Подобие треугольников.
4.Подобие треугольников по трем сторонам
Если стороны одного треугольника пропорциональны сторонам другого треугольника, то такие треугольники подобны.
Доказательство. (Доказательство аналогично доказательству подобия по двум углам) Пусть даны два треугольника ABC и A’B’C’.
Преобразованием подобия преобразуем треугольник A’B’C’ в треугольник A»B»C» с коэффициентом k, т.е. подвергнем гомотетии. В результате получим треугольник A»B»C», который равен треугольнику ABC по трем сторонам kA’B’=A»B», kВ’C’=В»C» и kA’C’=A»C». Т.к. преобразование подобия сохраняет углы, а расстояние между двумя точками изменяется в k раз. Следовательно треугольники A’B’C’ и A»B»C» подобны. И т.к. треугольники ABC и A»B»C» равны, то треугольник ABC подобен треугольнику A’B’C’.
Рис.4 Подобие треугольников по трем сторонам.
5.Подобие прямоугольных треугольников
Если два прямоугольных треугольника имеют по одному равному острому углу, то такие треугольники подобны.
Пусть дан прямоугольный треугольник ABC. Проведем высоту CD. Треугольники ABC и ADC подобны, т.к. угол А у них общий. Так же как и треугольники ADC и BDC. Следовательно:
Т.е. катет прямоугольного треугольника равен средней геометрической гипотенузы и проекции этого катета на гипотенузу. А высота в прямоугольном треугольнике равна средней геометрической между проекциями катетов на гипотенузу.
Отсюда можно сделать вывод, что в любом треугольнике биссектриса делит противолежащую сторону на отрезки, пропорциональные двум другим сторонам. (Свойство биссектрисы треугольника).
Рис.5 Подобие прямоугольных треугольников.
Т.е. отрезки AD и DC пропорциональны сторонам AB и BC.
Рис.6 Подобие прямоугольных треугольников.
6.Пример 1
Докажите, что фигура подобная окружности, есть окружность.
Доказательство:
Зададим на плоскости систему координат с осями Оx и Oy таким образом, чтобы центр первой окружности F совпал с началом координат. Параллельным переносом переместим вторую окружность F’ так, чтобы ее центр также совпал с началом координат. На окружности F возьмем две произвольные точки А и В. И проведем между ними хорду. Также проведем к этим точкам радиусы ОА и ОВ, которые продлим до окружности F’, т.е. ОA’ и OB’. Оси Оx и Оy повернем так, чтобы ось Oy пересекала хорду под прямым углом (Рис.7). Тогда k OA = OA’.
Теперь рассмотрим треугольник ОАС.
Рис.7 Задача. Докажите, что фигура подобная окружности, есть окружность.
Таким образом, мы пришли к выводу, что A’B’ = k AB. А это означает, что расстояние между любыми двумя точками окружности F’ в k раз больше, чем расстояние между подобными точками в окружности F, т.е фигуру F’ можно получить преобразованием подобия или гомотетией относительно точки О. А это значит, что окружности F и F’ подобны.
Пример 2
У треугольников АВС и А1В1С1 ∠A = ∠A1, ∠B = ∠B1. AB = 6, AC = 9, A1B1 = 10, B1C1 = 10. Найдите остальные стороны треугольников.
Решение:
Пусть даны два треугольника АВС и А1В1С1 ∠A = ∠A1, ∠B = ∠B1 (Рис.8). Данные треугольники подобны по двум углам: ∠A = ∠A1 и ∠В = ∠B1. Отсюда следует, что все стороны второго треугольника отличаются от сторон первого треугольника в k число раз, т.е. коэффициент подобия. Найдем число k:
k = AB / А1В1 = 6 / 10 = 3 / 5
Отсюда следует, что
ВС = k * В1С1 = (3 / 5) * 10 = 6 см
А1С1 = АС / k = 9 / (3 / 5) = 15 см
Рис.8 Задача. У треугольников АВС и А1В1С1.
Пример 3
В трапеции ABCD основание АD = 32 см, а основание ВС = 8 см. Угол между диагональю АС и стороной СD равен углу ∠АВС, т.е. ∠АВС = ∠АСD. Найдите диагональ АС.
Решение:
В трапеции два основания лежат на параллельных прямых (Рис.9). Отсюда следует, что угол ∠CAD = ∠BCA, как внутренние накрест лежащие углы. Следовательно, треугольники АВС и АСD подобны по двум углам: ∠AВС = ∠АCD по условию задачи, ∠CAD = ∠BCA, как внутренние накрест лежащие углы.
Тогда можно составить следующие соотношение:
Рис.9 Задача. В трапеции ABCD основание АD = 32 см.
Пример 4
В остроугольном треугольнике АВС проведены высоты AD, BE, CF. Найдите углы треугольника DEF, если в треугольнике АВС ∠А = α, ∠В = β, ∠С = γ.
Решение:
Рассмотрим два прямоугольных треугольника AFC и ABE. Они подобны по одному острому углу, так как угол при вершине А у них общий. Следовательно, угол ∠FCE = ∠ABE. Обозначим его как ϕ3. Аналогичным образом обозначим:
Рассмотрим два прямоугольных треугольника AFO и DOC. Они подобны по одному острому углу: углы при вершине О равны как вертикальные (Рис.10). Отсюда следует, что треугольники FOD и AOC также подобны по двум пропорциональным сторонам и углу между ними.
Так как OD / OF = OC / AO
Следовательно, OD / OС = OF / AO
Отсюда следует равенство углов:
Треугольники BFO и EOC подобны. У них углы при вершине О равны как вертикальные, а углы при вершинах F и E прямые. Отсюда следует подобие треугольников FOE и BOC. Следовательно,
Рис.10 Задача. В остроугольном треугольнике АВС.
Так как ϕ1 + ϕ2 + ϕ3 = 90° (из прямоугольного треугольника BFC), то в треугольнике FDE угол при вершине F равен:
Аналогичным образом выводится, что:
Пример 5
В треугольник ABC вписан ромб ADEF, таким образом, что угол А у них общий, а вершина Е находится на стороне ВС. АВ = 12 см, АС = 4 см. Найдите сторону ромба.
Решение:
Так как у ромба противоположные стороны параллельны, то треугольники АВС и DBE подобны по двум углам: ∠А = ∠D, ∠C = ∠E как соответственные (Рис.11).
Тогда можно составить следующие соотношение:
Рис.11 Задача. В треугольник ABC вписан ромб ADEF.
О п р е д е л е н и е. Подобием с коэффициентомназывается преобразование плоскости, при котором все расстояния умножаются на .
1. Любое движение является подобием с коэффициентом .
2. Гомотетией с центорм и коэффициентомназывается отображение плоскости в себя, при котором каждой точке ставится в соответствие точка такая, что .
Проверьте, что гомотетия является биективным отображением, а значит, является преобразованием плоскости.
Для любых двух точек и их образов при гомотетии имеем . Тогда и , то есть гомотетия с коэффициентом является подобием с коэффициентом .
Из условия получаем формулы гомотетии
,
позволяющие доказатьсвойства гомотетии:
a. При гомотетии прямая, не проходящая через центр гомотетии, переходит в параллельную ей прямую, а прямая, проходящая через центр гомотетии – в себя.
b. Гомотетия сохраняет простое отношение трех точек прямой, а значит, сохраняет отношение «лежать между» и отрезок переводит в отрезок, луч в луч, угол в угол.
c. Гомотетия переводит угол в равный угол (Почему?).
d. Гомотетия сохраняет ориентацию плоскости. Для доказательства этого свойства находим по формулам гомотетии координаты точек, определяющих репер – образ репера при гомотетии. Затем находим координаты базисных векторов репера и убеждаемся, что определитель матрицы перехода от базиса репера к базису репера равен , то есть реперы и одинаково ориентированы.
Свойства подобий
Т е о р е м а 1. (о разложении подобия в композицию гомотетии и движения) Всякое преобразование подобия можно представить как композицию гомотетии с тем же коэффициентом и движения.
Д о к а з а т е л ь с т в о. Пусть – подобие с коэффициентом . Если – гомотетия с коэффициентом , то – гомотетия с коэффициентом . Тогда композиция является движением и мы имеем – представление подобия в виде композиции гомотетии с тем же коэффициентом и движения.
Из этой теоремы и свойств гомотетии и движения получаем свойства подобий: