Докажите что боковые ребра правильной пирамиды образуют с плоскостью основания равные углы
Узнать ещё
Знание — сила. Познавательная информация
Пирамиды, в которых все боковые ребра равны
Рассмотрим свойства пирамид, в которых все боковые ребра равны, с соответствующими чертежами.
Если все боковые ребра пирамиды равны между собой, то вершина пирамиды проецируется в центр описанной около основания окружности.
Прямоугольные треугольники, образованные высотой пирамиды, боковыми ребрами и их проекциями (равными радиусу описанной окружности), равны. Поэтому также
— все боковые ребра пирамиды образуют с плоскостью основания равные углы;
— все углы, которые боковые ребра образуют с высотой пирамиды, равны.
Решение задач на пирамиду, в которой все боковые ребра равны (либо все боковые ребра образуют равные углы с основанием пирамиды или с высотой пирамиды) начинается с чертежа.
Если основание пирамиды — треугольник.
Центр окружности, описанной около остроугольного треугольника, лежит внутри треугольника.
Центр окружности, описанной около тупоугольного треугольника, лежит вне треугольника.
На рисунке тупой угол — это угол B.
Радиус окружности, описанной около произвольного остроугольного либо тупоугольного треугольника ABC, можно найти по следствию из теоремы синусов:
Центр описанной около прямоугольного треугольника окружности лежит на середине гипотенузы.
Радиус описанной около основания окружности в этом случае равен
Отсюда для данного треугольника ABC с прямым углом B
Если основание пирамиды — параллелограмм
Из всех параллелограммов описать окружность можем только около прямоугольника (квадрат — его частный случай). Поэтому, если в задаче сказано, что пирамиде все боковые ребра равны, либо все боковые ребра одинаково наклонены к плоскости основания, либо все боковые ребра образуют с высотой пирамиды равные углы, а в основании — параллелограмм, то это может быть только прямоугольник (квадрат).
Центр описанной около прямоугольника окружности — точка пересечения его диагоналей. Соответственно, радиус R равен половине диагонали прямоугольника.
Из всех трапеций описать окружность можно только около равнобочной трапеции.
Радиус описанной окружности ищем как радиус окружности, описанной около одного из треугольников ABC или ACD по одной из формул, приведенных выше.
Если диагональ трапеции перпендикулярна боковой стороне
боковые ребра пирамиды равны
В этом случае центр описанной около трапеции окружности лежит на середине большего основания, а высота пирамиды лежит в боковой грани, содержащей это большее основание.
Радиус R в этом случае — половина гипотенузы прямоугольного треугольника ACD.
Если основание пирамиды — произвольный четырехугольник
Радиус описанной около основания окружности находим как радиус окружности, описанной около одного из треугольников основания: ABC, BCD, ACD или ABD.
Поскольку описать около четырехугольника окружность можно только тогда, когда сумма его противолежащих углов равна 180 градусов, то
Пирамида
Вершина пирамиды — точка, соединяющая боковые рёбра и не лежащая в плоскости основания.
Основание — многоугольник, которому не принадлежит вершина пирамиды.
Апофема — высота боковой грани правильной пирамиды, проведенная из ее вершины.
Высота — отрезок перпендикуляра, проведённого через вершину пирамиды к плоскости её основания (концами этого отрезка являются вершина пирамиды и основание перпендикуляра).
Диагональное сечение пирамиды — сечение пирамиды, проходящее через вершину и диагональ основания.
Некоторые свойства пирамиды
1) Если все боковые ребра равны, то
– около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр
– боковые ребра образуют с плоскостью основания равные углы
Если боковые ребра образуют с плоскостью основания равные углы, то все боковые ребра пирамиды равны.
Если около основания пирамиды можно описать окружность, причём вершина пирамиды проецируется в её центр, то все боковые ребра пирамиды равны.
Виды пирамид
Для правильной пирамиды справедливо:
– боковые ребра правильной пирамиды равны;
– в правильной пирамиде все боковые грани — равные равнобедренные треугольники;
– в любую правильную пирамиду можно вписать сферу;
– около любой правильной пирамиды можно описать сферу;
– площадь боковой поверхности правильной пирамиды равна половине произведения периметра основания на апофему.
Усечённой пирамидой называется многогранник, заключённый между основанием пирамиды и секущей плоскостью, параллельной её основанию.
Тетраэдр – треугольная пирамида. В тетраэдре любая из граней может быть принята за основание пирамиды.
Докажите что боковые ребра правильной пирамиды образуют с плоскостью основания равные углы
Ключевые слова: пирамида, многогранник, правильная пирамида, грань, объем, боковая поверхность
Многогранник, у которого одна грань, называемая основанием, – многоугольник,
а другие грани – треугольники с общей вершиной, называется пирамидой.
Грани, отличные от основания, называются боковыми.
Общая вершина боковых граней называется вершиной пирамиды.
Ребра, соединяющие вершину пирамиды с вершинами основания, называются боковыми.
Высотой пирамиды называется перпендикуляр, проведенный из вершины пирамиды на ее основание.
Пирамида называется правильной, если ее основание – правильный многоугольник, а высота проходит через центр основания.
Апофемой боковой грани правильной пирамиды называется высота этой грани, проведенная из вершины пирамиды.
Плоскость, параллельная основанию пирамиды, отсекает ее на подобную пирамиду и усеченную пирамиду.
Если все боковые ребра равны, то
Если боковые грани наклонены к плоскости основания под одним углом, то
См. также:
Усеченная пирамида
Решение задач с использованием свойств различных видов пирамид
Разделы: Математика
Как показала практика, учащиеся с большим интересом принимают участие не только в решении данных задач, но и в их составлении. Они с удовольствием предлагают различные решения придуманных ими задач.
К этому учащихся необходимо подводить хорошо продуманной системой теоретических положений и практических упражнений.
Учебники Л.С. Атанасяна и др. “Геометрия 10–11” и А.В.Погорелова “Геометрия 10–11” содержат опорный теоретический материал по теме “Пирамида и ее элементы”.
В дополнение к нему можно рассмотреть следующие свойства часто встречающихся видов пирамид.
Теория.
Теоремы о пирамидах, в которых основание высоты является центром описанной или вписанной окружности основания пирамиды.
а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды;
б) все боковые ребра пирамиды равны между собой.
а) все боковые ребра пирамиды образуют с плоскостью основания равные углы;
в) все боковые ребра пирамиды равны между собой.
а) основание высоты пирамиды совпадает с центром окружности, описанной около основания пирамиды;
б) все боковые ребра пирамиды составляют с плоскостью ее основания равные между собой углы.
Теоремы о пирамидах, в которых одна или две боковые грани перпендикулярны плоскости основания.
Задачи для решения.
Задания из книги “Самостоятельные и контрольные работы по геометрии для 11-го класса” Ершовой А.П., Голобородько В.В.
Пирамиды, в которых основание высоты является центром описанной или вписанной окружности основания пирамиды.
а) Опишите построение высоты пирамиды SO.
б) Докажите равенство отрезков АО, ВО, СО и ДО.
в) Обоснуйте положение точки О в прямоугольнике АВСД и найдите длину высоты SO.
а) Опишите построение высоты пирамиды, высот боковых граней и их проекций на плоскость основания. Обоснуйте двугранные углы при основании пирамиды.
б) обоснуйте положение основания высоты пирамиды в данном равнобедренном треугольнике.
в) Найдите высоту пирамиды.
а) Обоснуйте положение основания высоты пирамиды в данном равнобедренном треугольнике.
в) Найдите высоту пирамиды.
а) Обоснуйте данные двугранные углы и положение основания высоты пирамиды в ромбе.
б) Найдите высоту пирамиды.
в) Двумя способами – путем вычисления площадей боковых граней и с помощью теоремы об ортогональной проекции многоугольника – найдите боковую поверхность пирамиды. Сравните полученные результаты.
а) Обоснуйте положение основания высоты пирамиды.
б) При каких условиях высота пирамиды лежит внутри пирамиды?
в) Найдите высоту пирамиды.
г) Найдите площадь основания пирамиды.
а) обоснуйте положение основания высоты пирамиды.
б) Найдите высоту трапеции, лежащей в основании пирамиды.
в) Не вычисляя площадей боковых граней, найдите боковую поверхность пирамиды.
Пирамиды, в которых одна или две боковые грани перпендикулярны плоскости основания.
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте угол .
в) Найдите площадь третьей боковой грани.
г) Найдите боковую поверхность пирамиды.
а) Из вершины пирамиды в плоскости грани, перпендикулярной основанию, проведите перпендикуляр к ребру основания и обоснуйте, почему он будет высотой пирамиды.
б) Обоснуйте углы наклона, равные .
в) Докажите, что основание высоты пирамиды равноудалено от двух сторон правильного треугольника, и обоснуйте положение основания высоты на стороне правильного треугольника.
г) Найдите боковую поверхность пирамиды.
а ) Обоснуйте положение высоты пирамиды.
б ) Обоснуйте углы, равные .
в ) Докажите, что боковые грани пирамиды попарно равны.
г ) Найдите боковую поверхность пирамиды.
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте положение основания высоты пирамиды.
в) Найдите высоту пирамиды.
г) Найдите боковую поверхность пирамиды.
а) Обоснуйте положение высоты пирамиды.
б) Обоснуйте углы, равные .
в) Найдите боковую поверхность пирамиды.
а ) Обоснуйте положение высоты пирамиды.
б) Обоснуйте положение основания высоты пирамиды.
в) Найдите площадь основания пирамиды.
г) Найдите боковую поверхность пирамиды.
Пирамиды, в которых заданы расстояния между точками и элементами пирамиды.
б ) Найдите площадь основания пирамиды.
б ) Найдите площадь основания пирамиды.
Указанный в статье перечень задач может быть расширен Вами и вашими учениками.
Презентация к уроку
I. Домашнее задание каждый ученик получает на заранее отпечатанных листочках.
Теория: по учебнику п.14.2, стр.110-111,2)и 3 задачи:
II. Устная работа по готовым чертежам. (Каждый ребёнок получает лист А-4 с чертежами треугольной пирамиды).
2.1. Докажем 3 (прямые) теоремы. Дано: МАВС треугольная пирамида, МО – высота пирамиды.
1. Ученики доказывают “ простую” теорему из одного условия и одного заключения
2. Используют признак равенства прямоугольных треугольников по катету и гипотенузе
3. Делают вывод: из того что АО = ВО =СО, следует О – центр окружности, описанной около основания.
4.Учитель уточняет формулировки данного обстоятельства “основание пирамиды совпадает с центром окружности, описанной около основания” или “ вершина пирамиды проектируется в центр окружности, описанной около основания.
(к рис.2,3). Заменить условие теоремы, сохранить её заключение. Опираясь на признаки равенства прямоугольных треугольников, ученики приходят к выводу о том, что можно потребовать равенство углов между боковыми рёбрами и плоскостью основания или равенство углов между боковыми рёбрами и высотой пирамиды.
Рисунок 1
Рисунок 2
Рисунок 3
Доказать: АО = ВО = СО
Доказать: АО = ВО = СО
2.2. Сформулируем обратные утверждения. Верны ли эти утверждения?
Ученики, используя признаки равенства прямоугольных треугольников, доказывают обратные утверждения. Дано: МАВС треугольная пирамида, МО – высота пирамиды, О – центр окружности, описанной около основания, АО=ВО=СО.
Рисунок 4
Рисунок 5
Рисунок 6
2.3. Формулировка теоремы для n-угольной пирамиды.
Постановка проблемы: справедливо ли данное утверждение для n-угольной пирамиды? Ученикам предлагается доказать три прямых утверждения по аналогии.
Теорема. В n-угольной пирамиде с равными боковыми рёбрами основание высоты совпадает с центром окружности, описанной около основания; высота составляет равные углы с боковыми ребрами; боковые ребра составляют равные углы с плоскостью основания.
2.4. Работа после доказательства теоремы (взгляд назад).
В – Боковые рёбра пирамиды составляют с плоскостью основания равные углы
С – Боковые рёбра пирамиды составляют с высотой пирамиды равные углы
М – Основание пирамиды совпадает с центром окружности, описанной около основания
А, А
, А
В, В
, В
,
М, М
,М
С, С
, С
2. Учитель показывает утверждении А( В, С,М), ученик формулирует 3 простые теоремы.
III. Формулировка темы урока. (Свойства пирамиды с равными боковыми ребрами).
Какая же тема сегодняшнего урока? (Любое из утверждений А, В, С, М может быть принято за тему урока).
IV. Составление алгоритма
Дано: треугольной пирамиды МАВС, МО – высота пирамиды. Определить высоту пирамиды. |
Алгоритм решения двух шаговых задач.
1. Наличие в условии задачи одного из условий (А,В,С,). Из этих условий вытекает М.
2. Решить основание (найти радиус окружности, описанной около основания).
3. Решить прямоугольный треугольник, например, МОА.
2. Актуализация знаний:
а) центр окружности, описанной около основания – точка пересечения серединных перпендикуляров к сторонам треугольника;
б) расположение центра описанной окружности в остроугольном, тупоугольном, прямоугольном треугольниках;
в) формула S = .
V. Применение свойств пирамиды с равными боковыми ребрами к решению задач.
Найти высоту пирамиды.
Рисунок 8
2. Стереометрический чертёж не делаем.
Решение. Работаем по алгоритму:
Наличие условия “ В”
Рисунок 9
1. Наличие условия “А”.
Рисунок 10
1. Наличие условия “ С”
О – вне треугольника,
АО – серединный перпендикуляр к ВС, треугольник АОС равносторонний, АВ =,
R = .
3.Строим треугольник АМО, МО = = 6
Ответ: 6
VI. Итог урока подвести при решении задач:
1. В основании пирамиды лежит трапеция, боковые рёбра равны. Определить вид трапеции (равнобедренная).
2. В основании пирамиды лежит параллелограмм, углы между боковыми рёбрами и плоскостью основания равны. Определить вид параллелограмма( прямоугольник).
3. В основании пирамиды лежит ромб. Углы между боковыми рёбрами и высотой пирамиды равны. Найти углы ромба. (90 о ).