ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Ρ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ f
ΠΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ ΠΏΠΎ Π°Π»Π³Π΅Π±ΡΠ΅ «ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ». Π§Π°ΡΡΡ 1.
Π£ΡΠ»ΠΎΠ²ΠΈΠ΅ Π·Π°Π΄Π°ΡΠΈ: ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ Π’=3ΠΏ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ y=sin(2x/3)
ΠΡΠ΄Π΅ΠΌ ΡΠ°Π΄Ρ, Π΅ΡΠ»ΠΈ ΠΡ ΠΏΠΎΠ΄Π΅Π»ΠΈΡΠ΅ΡΡ ΡΡΡΠ»ΠΊΠΎΠΉ Π½Π° ΡΡΠΎΡ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊ Ρ Π΄ΡΡΠ·ΡΡΠΌΠΈ!
ΠΠΈΠ½ΠΏΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΠΏΠ»Π°Π½ΠΈΡΡΠ΅Ρ ΠΎΠ±Π½ΠΎΠ²ΠΈΡΡ ΡΠ΅Π΄Π΅ΡΠ°Π»ΡΠ½ΡΠΉ ΠΏΠ΅ΡΠ΅ΡΠ΅Π½Ρ ΡΡΠ΅Π±Π½ΠΈΠΊΠΎΠ² | |
Β«ΠΠΎΠ»ΠΎΠ΄ΡΠ΅ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΒ»: ΡΡΠ΅Π΄Π½Π΅Π΅ ΠΏΡΠΎΡΠ΅ΡΡΠΈΠΎΠ½Π°Π»ΡΠ½ΠΎΠ΅ ΠΎΠ±ΡΠ°Π·ΠΎΠ²Π°Π½ΠΈΠ΅ Π΄ΠΎΠ»ΠΆΠ½ΠΎ ΡΡΠ°ΡΡ Π²ΠΎΡΡΡΠ΅Π±ΠΎΠ²Π°Π½Π½ΡΠΌ | |
Π‘Π΅ΡΠ³Π΅ΠΉ ΠΡΠ°Π²ΡΠΎΠ² ΡΠ°ΡΡΠΊΠ°Π·Π°Π» ΠΎ ΠΏΡΠΎΠ΅ΠΊΡΠ΅ ΠΏΠΎ ΠΎΠ±Π½ΠΎΠ²Π»Π΅Π½ΠΈΡ ΠΏΡΠ°Π²ΠΈΠ» ΡΡΡΡΠΊΠΎΠ³ΠΎ ΡΠ·ΡΠΊΠ° | |
Π ΠΠΈΠ½ΠΈΡΡΠ΅ΡΡΡΠ²Π΅ ΠΏΡΠΎΡΠ²Π΅ΡΠ΅Π½ΠΈΡ ΡΠ°Π·ΡΠ°Π±ΠΎΡΠ°Π»ΠΈ ΠΌΠ΅ΠΌΠΎΡΠ°Π½Π΄ΡΠΌ ΠΏΠΎ Π²ΠΎΡΠΏΠΈΡΠ°ΡΠ΅Π»ΡΠ½ΠΎΠΉ ΡΠ°Π±ΠΎΡΠ΅ Π² ΡΠΊΠΎΠ»Π°Ρ | |
ΠΠΎΠ·Π΄ΡΠ°Π²Π»ΡΠ΅ΠΌ Ρ Π½Π°ΡΡΡΠΏΠ°ΡΡΠΈΠΌ ΠΠ½ΡΠΌ ΡΡΠΈΡΠ΅Π»Ρ! |
ΠΡΠ»ΠΈ ΠΡ ΡΠΎΠ·Π΄Π°ΡΡΠ΅ Π°Π²ΡΠΎΡΡΠΊΠΈΠ΅ Π²ΠΈΠ΄Π΅ΠΎΡΡΠΎΠΊΠΈ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΡΠΈΡΠ΅Π»Π΅ΠΉ ΠΈ Π³ΠΎΡΠΎΠ²Ρ ΠΎΠΏΡΠ±Π»ΠΈΠΊΠΎΠ²Π°ΡΡ ΠΈΡ , ΡΠΎ ΠΏΡΠΎΡΠΈΠΌ ΠΠ°Ρ ΡΠ²ΡΠ·Π°ΡΡΡΡ Ρ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΎΡΠΎΠΌ ΠΏΠΎΡΡΠ°Π»Π°.
Π‘Π°ΠΉΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΈΠ½ΡΠΎΡΠΌΠ°ΡΠΈΠΎΠ½Π½ΡΠΌ ΠΏΠΎΡΡΠ΅Π΄Π½ΠΈΠΊΠΎΠΌ ΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»ΡΠ΅Ρ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎΡΡΡ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌ ΡΠ°Π·ΠΌΠ΅ΡΠ°ΡΡ ΡΠ²ΠΎΠΈ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π½Π° Π΅Π³ΠΎ ΡΡΡΠ°Π½ΠΈΡΠ°Ρ
.
ΠΡΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠ°Π·ΠΌΠ΅ΡΠ΅Π½Π½ΡΠ΅ Π½Π° ΡΠ°ΠΉΡΠ΅, ΡΠΎΠ·Π΄Π°Π½Ρ ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΡΠΌΠΈ ΡΠ°ΠΉΡΠ° ΠΈ ΠΏΡΠ΅Π΄ΡΡΠ°Π²Π»Π΅Π½Ρ ΠΈΡΠΊΠ»ΡΡΠΈΡΠ΅Π»ΡΠ½ΠΎ Π² ΠΎΠ·Π½Π°ΠΊΠΎΠΌΠΈΡΠ΅Π»ΡΠ½ΡΡ
ΡΠ΅Π»ΡΡ
.
ΠΡΠ±Π»ΠΈΠΊΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π½Π° ΡΠ°ΠΉΡΠ΅, ΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°ΡΠ΅Π»ΠΈ Π±Π΅ΡΡΡ Π½Π° ΡΠ΅Π±Ρ Π²ΡΡ ΠΎΡΠ²Π΅ΡΡΡΠ²Π΅Π½Π½ΠΎΡΡΡ Π·Π° ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΠΈ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΠ΅ Π»ΡΠ±ΡΡ
ΡΠΏΠΎΡΠ½ΡΡ
Π²ΠΎΠΏΡΠΎΡΠΎΠ² Ρ ΡΡΠ΅ΡΡΠΈΠΌΠΈ Π»ΠΈΡΠ°ΠΌΠΈ.
ΠΠ΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΡ ΡΠ°ΠΉΡΠ° Π³ΠΎΡΠΎΠ²Π° ΠΎΠΊΠ°Π·Π°ΡΡ ΠΏΠΎΠ΄Π΄Π΅ΡΠΆΠΊΡ Π² ΡΠ΅ΡΠ΅Π½ΠΈΠΈ Π»ΡΠ±ΡΡ
Π²ΠΎΠΏΡΠΎΡΠΎΠ², ΡΠ²ΡΠ·Π°Π½Π½ΡΡ
Ρ ΡΠ°Π±ΠΎΡΠΎΠΉ ΠΈ ΡΠΎΠ΄Π΅ΡΠΆΠ°Π½ΠΈΠ΅ΠΌ ΡΠ°ΠΉΡΠ°.
ΠΡΠ»ΠΈ Π²Ρ ΠΎΠ±Π½Π°ΡΡΠΆΠΈΠ»ΠΈ, ΡΡΠΎ Π½Π° ΡΠ°ΠΉΡΠ΅ Π½Π΅Π·Π°ΠΊΠΎΠ½Π½ΠΎ ΠΈΡΠΏΠΎΠ»ΡΠ·ΡΡΡΡΡ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ, ΡΠΎΠΎΠ±ΡΠΈΡΠ΅ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΎΡΡ ΡΠ΅ΡΠ΅Π· ΡΠΎΡΠΌΡ ΠΎΠ±ΡΠ°ΡΠ½ΠΎΠΉ ΡΠ²ΡΠ·ΠΈ β ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»Ρ Π±ΡΠ΄ΡΡ ΡΠ΄Π°Π»Π΅Π½Ρ.
ΠΡΠΏΠΎΠ»ΡΠ·ΠΎΠ²Π°Π½ΠΈΠ΅ ΠΌΠ°ΡΠ΅ΡΠΈΠ°Π»ΠΎΠ² ΡΠ°ΠΉΡΠ° Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ»ΡΠΊΠΎ Ρ ΡΠ°Π·ΡΠ΅ΡΠ΅Π½ΠΈΡ Π°Π΄ΠΌΠΈΠ½ΠΈΡΡΡΠ°ΡΠΈΠΈ ΠΏΠΎΡΡΠ°Π»Π°.
Π€ΠΎΡΠΎΠ³ΡΠ°ΡΠΈΠΈ ΠΏΡΠ΅Π΄ΠΎΡΡΠ°Π²Π»Π΅Π½Ρ
Π£ΡΠΎΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ
ΡΡΠ±Π±ΠΎΡΠ°, 4 ΡΠ΅Π½ΡΡΠ±ΡΡ 2021 Π³.
Π£ΡΠΎΠΊ 5. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ· ΡΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ°Π·Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π’ β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
β ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ½Π°ΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ (Π½ΠΎ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°) ΡΡΠ΅Π΄ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ. ΠΠ³ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ .
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ².
Ρ = Ρ β [Ρ ] , Π³Π΄Π΅ [Ρ ] β ΡΠ΅Π»Π°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°. ΠΡΠ»ΠΈ ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ 1 , ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ ΡΡΠΎΠ³ΠΎ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ :
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Ρ
sin (Ξ± + 360 Β° ) = sin Ξ±
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Ξ± ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠ° ( 2Ο ΠΈΠ»ΠΈ 360 Β° ) Π½Π΅ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊ Π»ΡΠ±ΠΎΠΌΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΠΏΡΡΡΡ Ξ± β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ», ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Ρ ΠΎΡΡΡ ΠΡ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ ΠΠ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΎΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ tg Ξ± ΠΈ Ρ tg Ξ± Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΊ ΡΠ³Π»Ρ Ξ± ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ»ΡΠΎΠ±ΠΎΡΠΎΡΠΎΠ²:
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΡΠΈΡΠ»Ρ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° T 1 ΠΈ T 2 ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2Ο ΠΈ Π½Π° 2 ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°, Π½Π΅Ρ.
ΠΠ΅ΡΠΈΠΎΠ΄Π° Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ°Π½Π³Π΅Π½Ρ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 180 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡ β ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
Ρos (β13Ο) = Ρos 13Ο = Ρos (Ο + 6 β 2Ο) = Ρos Ο = β1.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΡ β Π½Π΅ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 360 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π°:
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
sin (7Ρ + 7 t ) = sin (7Ρ + 2 Οk ),
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π°:
ΡΠΎ s 0,3Ρ = ΡΠΎ s 0,3(Ρ + t ) = ΡΠΎ s (0,3Ρ + 0,3 t )
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
y = 5 sin 2 x + 2 ctg 3Ρ .
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π°
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ΅ΡΠΈΠΎΠ΄Π° Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2 ΠΈ Π½Π° Ο ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ :
Π’ΠΎΠ³Π΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ (ΠΠΠ) Π±ΡΠ΄Π΅Ρ :
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ T ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ f?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ T ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ f.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΡΠΈΡΠ»Π° ΡΠ²Π»ΡΡΡΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ ΡΠΈΡΠ»Π° ΡΠ²Π»ΡΡΡΡ ΡΠ°ΡΠΈΠΎΠ½Π°Π»ΡΠ½ΡΠΌΠΈ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΡΠΌΠΌΠ° Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π΅Π³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠ½ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΡΠΌΠΌΠ° Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΠΈΡΠ»Π° ΠΈ Π΅Π³ΠΎ ΠΊΠ²Π°Π΄ΡΠ°ΡΠ° ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅ΡΠ½ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 35 ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΌ ΡΠΈΡΠ»Π° 560, Π° ΡΠΈΡΠ»ΠΎ 18 Π΅Π³ΠΎ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΌ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 35 ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΌ ΡΠΈΡΠ»Π° 560, Π° ΡΠΈΡΠ»ΠΎ 18 Π΅Π³ΠΎ Π΄Π΅Π»ΠΈΡΠ΅Π»Π΅ΠΌ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ΠΌ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΎΠΌ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π²ΡΡΠ°ΠΆΠ΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ Π½Π°ΡΡΡΠ°Π»ΡΠ½ΠΈΠΌ ΡΠΈΡΠ»ΠΎΠΌ.
ΠΠΎΠΊΠ°ΠΆΠΈ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 56 ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΠ»ΠΈΡΠ΅Π»Π΅ΠΌ ΡΠΈΡΠ»Π° 44968?
ΠΠΎΠΊΠ°ΠΆΠΈ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 56 ΡΠ²Π»ΡΠ΅ΡΡΡ Π΄ΠΈΠ»ΠΈΡΠ΅Π»Π΅ΠΌ ΡΠΈΡΠ»Π° 44968.
ΠΠΎΠΊΠ°ΠΆΠΈ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 1 Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ?
ΠΠΎΠΊΠ°ΠΆΠΈ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 1 Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ?
ΠΠΎΠΊΠ°ΠΆΠΈ ΡΡΠΎ ΡΠΈΡΠ»ΠΎ 1 Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠΎΡΡΠ°Π²Π½ΡΠΌ ΡΠΈΡΠ»ΠΎΠΌ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ Π΄Π°Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΡΠΌ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅, ΡΡΠΎ Π΄Π°Π½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ Π½Π΅ ΡΠ²Π»ΡΠ΅ΡΡΡ ΠΏΡΠΎΡΡΡΠΌ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»Π° 260 ΠΈ 117 ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ Π²Π·Π°ΠΈΠ½ΠΎΠΏΡΠΎΡΡΡΠΌΠΈ?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΠΎ ΡΡΠΎ ΡΠΈΡΠ»Π° 260 ΠΈ 117 ΡΠ²Π»ΡΡΡΡΡ Π½Π΅ Π²Π·Π°ΠΈΠ½ΠΎΠΏΡΠΎΡΡΡΠΌΠΈ.
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ Π΄Π°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ :ΠΠΎΠΆΠ°Π»ΡΠΉΡΡΠ°?
ΠΠΎΠΊΠ°ΠΆΠΈΡΠ΅ ΡΡΠΎ Π΄Π°Π½Π½Π°Ρ ΡΡΠ½ΠΊΡΠΈΡ Π² ΠΎΠ±Π»Π°ΡΡΠΈ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΠ²Π»ΡΠ΅ΡΡΡ ΡΠ±ΡΠ²Π°ΡΡΠ΅ΠΉ :
Π£ΡΠΎΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ Π΄Π»Ρ ΡΠΊΠΎΠ»ΡΠ½ΠΈΠΊΠΎΠ² ΠΈ ΡΠΎΠ΄ΠΈΡΠ΅Π»Π΅ΠΉ
Π£ΡΠΎΠΊΠΈ ΠΌΠ°ΡΠ΅ΠΌΠ°ΡΠΈΠΊΠΈ ΠΈ ΡΠΈΠ·ΠΈΠΊΠΈ (RU + UA)
ΡΡΠ±Π±ΠΎΡΠ°, 4 ΡΠ΅Π½ΡΡΠ±ΡΡ 2021 Π³.
Π£ΡΠΎΠΊ 5. ΠΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ½ΠΎΡΡΡ ΡΡΠΈΠ³ΠΎΠ½ΠΎΠΌΠ΅ΡΡΠΈΡΠ΅ΡΠΊΠΈΡ ΡΡΠ½ΠΊΡΠΈΠΉ
ΠΠ· ΡΡΠΎΠ³ΠΎ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΡ ΡΡΠ°Π·Ρ ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π΅ΡΠ»ΠΈ Π’ β ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
β ΡΠ°ΠΊΠΆΠ΅ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΡΠ½ΠΊΡΠΈΠΉ. ΠΠ½Π°ΡΠΈΡ Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π±Π΅ΡΠΊΠΎΠ½Π΅ΡΠ½ΠΎ ΠΌΠ½ΠΎΠ³ΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ².
Π§Π°ΡΠ΅ Π²ΡΠ΅Π³ΠΎ (Π½ΠΎ Π½Π΅ Π²ΡΠ΅Π³Π΄Π°) ΡΡΠ΅Π΄ΠΈ ΠΌΠ½ΠΎΠΆΠ΅ΡΡΠ²Π° ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠ² ΡΡΠ½ΠΊΡΠΈΠΈ ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡΠΈ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠΈΠΉ. ΠΠ³ΠΎ Π½Π°Π·ΡΠ²Π°ΡΡ ΠΎΡΠ½ΠΎΠ²Π½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ .
ΠΡΠ°ΡΠΈΠΊ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠΎΡΡΠΎΠΈΡ ΠΈΠ· Π½Π΅ΠΎΠ³ΡΠ°Π½ΠΈΡΠ΅Π½Π½ΠΎ ΠΏΠΎΠ²ΡΠΎΡΡΡΡΠΈΡ ΡΡ ΠΎΠ΄ΠΈΠ½Π°ΠΊΠΎΠ²ΡΡ ΡΡΠ°Π³ΠΌΠ΅Π½ΡΠΎΠ².
Ρ = Ρ β [Ρ ] , Π³Π΄Π΅ [Ρ ] β ΡΠ΅Π»Π°Ρ ΡΠ°ΡΡΡ ΡΠΈΡΠ»Π°. ΠΡΠ»ΠΈ ΠΊ ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° ΡΡΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π΄ΠΎΠ±Π°Π²ΠΈΡΡ 1 , ΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ ΠΎΡ ΡΡΠΎΠ³ΠΎ Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΠΈΡΡΡ :
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΠΏΡΠΈ Π»ΡΠ±ΠΎΠΌ Π·Π½Π°ΡΠ΅Π½ΠΈΠΈ Ρ
sin (Ξ± + 360 Β° ) = sin Ξ±
Π’Π°ΠΊΠΈΠΌ ΠΎΠ±ΡΠ°Π·ΠΎΠΌ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΡ Ξ± ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠ»Π½ΠΎΠ³ΠΎ ΠΎΠ±ΠΎΡΠΎΡΠ° ( 2Ο ΠΈΠ»ΠΈ 360 Β° ) Π½Π΅ ΠΌΠ΅Π½ΡΡΡ ΡΠ²ΠΎΠΈΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠΉ.
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π‘Π»Π΅Π΄ΠΎΠ²Π°ΡΠ΅Π»ΡΠ½ΠΎ, ΡΡΠ½ΠΊΡΠΈΠΈ sin Ξ± ΠΈ cos Ξ± β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠΈΠ΅.
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΏΠΎΠ»ΠΎΠΆΠΈΡΠ΅Π»ΡΠ½ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ, ΠΎΡ ΠΏΡΠΈΠ±Π°Π²Π»Π΅Π½ΠΈΡ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ ΠΊ Π»ΡΠ±ΠΎΠΌΡ Π΄ΠΎΠΏΡΡΡΠΈΠΌΠΎΠΌΡ Π·Π½Π°ΡΠ΅Π½ΠΈΡ Π°ΡΠ³ΡΠΌΠ΅Π½ΡΠ° Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΠ΅ΡΡΡ Π·Π½Π°ΡΠ΅Π½ΠΈΠ΅ ΡΡΠ½ΠΊΡΠΈΠΈ, Π½Π°Π·ΡΠ²Π°Π΅ΡΡΡ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ ΡΡΠ½ΠΊΡΠΈΠΈ.
Π ΡΠ°ΠΌΠΎΠΌ Π΄Π΅Π»Π΅, ΠΏΡΡΡΡ Ξ± β ΠΏΡΠΎΠΈΠ·Π²ΠΎΠ»ΡΠ½ΡΠΉ ΡΠ³ΠΎΠ», ΡΠΎΡΡΠ°Π²Π»Π΅Π½Π½ΡΠΉ Ρ ΠΎΡΡΡ ΠΡ ΠΏΠΎΠ΄Π²ΠΈΠΆΠ½ΡΠΌ ΡΠ°Π΄ΠΈΡΡΠΎΠΌ ΠΠ Π΅Π΄ΠΈΠ½ΠΈΡΠ½ΠΎΠΉ ΠΎΠΊΡΡΠΆΠ½ΠΎΡΡΠΈ.
ΠΎΡΡΡΠ΄Π° ΡΠ»Π΅Π΄ΡΠ΅Ρ, ΡΡΠΎ Π·Π½Π°ΡΠ΅Π½ΠΈΡ tg Ξ± ΠΈ Ρ tg Ξ± Π½Π΅ ΠΈΠ·ΠΌΠ΅Π½ΡΡΡΡΡ, Π΅ΡΠ»ΠΈ ΠΊ ΡΠ³Π»Ρ Ξ± ΠΏΡΠΈΠ±Π°Π²ΠΈΡΡ Π»ΡΠ±ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ ΠΏΠΎΠ»ΡΠΎΠ±ΠΎΡΠΎΡΠΎΠ²:
Π³Π΄Π΅ k β Π»ΡΠ±ΠΎΠ΅ ΡΠ΅Π»ΠΎΠ΅ ΡΠΈΡΠ»ΠΎ.
Π²ΡΡΠΈΡΠ»ΡΡΡΡΡ ΠΏΠΎ ΡΠΎΡΠΌΡΠ»Π΅
ΡΠ°Π²Π΅Π½ Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅ΠΌΡ ΡΠΈΡΠ»Ρ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° T 1 ΠΈ T 2 ΠΏΠΎΠ»ΡΡΠ°ΡΡΡΡ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2Ο ΠΈ Π½Π° 2 ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°, Π½Π΅Ρ.
ΠΠ΅ΡΠΈΠΎΠ΄Π° Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠ°Π½Π³Π΅Π½Ρ β ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 180 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΊΠΎΡΠΈΠ½ΡΡ β ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 2Ο , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
Ρos (β13Ο) = Ρos 13Ο = Ρos (Ο + 6 β 2Ο) = Ρos Ο = β1.
ΠΠΎΠΊΠ°Π·Π°ΡΡ ΡΠ»Π΅Π΄ΡΡΡΠ΅Π΅ ΡΡΠ²Π΅ΡΠΆΠ΄Π΅Π½ΠΈΠ΅ :
Π’Π°ΠΊ ΠΊΠ°ΠΊ ΡΠΈΠ½ΡΡ β Π½Π΅ΡΡΡΠ½Π°Ρ ΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΈΡΠ΅ΡΠΊΠ°Ρ ΡΡΠ½ΠΊΡΠΈΡ Ρ ΠΌΠΈΠ½ΠΈΠΌΠ°Π»ΡΠ½ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ΠΎΠΌ 20 β 360 Β° , ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π°:
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
sin (7Ρ + 7 t ) = sin (7Ρ + 2 Οk ),
ΠΠ°ΠΉΡΠΈ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΡΡΡ Π’ ΠΎΡΠ½ΠΎΠ²Π½ΠΎΠΉ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ, ΡΠΎΠ³Π΄Π°:
ΡΠΎ s 0,3Ρ = ΡΠΎ s 0,3(Ρ + t ) = ΡΠΎ s (0,3Ρ + 0,3 t )
ΡΠ°ΠΊ ΠΊΠ°ΠΊ 2 Οk ΠΏΠ΅ΡΠΈΠΎΠ΄ ΠΊΠΎΡΠΈΠ½ΡΡΠ°, ΡΠΎ ΠΏΠΎΠ»ΡΡΠΈΠΌ :
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
y = 5 sin 2 x + 2 ctg 3Ρ .
ΠΠ°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΡΠΈΡΠ»ΠΎ, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π°
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ°Ρ ΠΎΠ΄ΠΈΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ ΡΠ»Π°Π³Π°Π΅ΠΌΡΡ . ΠΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ
ΠΡΠ΅Π²ΠΈΠ΄Π½ΠΎ, ΡΡΠΎ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ ΡΠ°Π²Π΅Π½
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΠ΅ΡΠΈΠΎΠ΄Π° Ρ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ Π½Π΅ ΡΡΡΠ΅ΡΡΠ²ΡΠ΅Ρ, ΡΠ°ΠΊ ΠΊΠ°ΠΊ Π½Π΅Ρ ΡΠ°ΠΊΠΎΠ³ΠΎ ΡΠΈΡΠ»Π°, ΠΏΡΠΈ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΊΠΎΡΠΎΡΠΎΠ³ΠΎ Π½Π° 2 ΠΈ Π½Π° Ο ΠΎΠ΄Π½ΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎ ΠΏΠΎΠ»ΡΡΠ°Π»ΠΈΡΡ Π±Ρ ΡΠ΅Π»ΡΠ΅ ΡΠΈΡΠ»Π°.
ΠΠ°ΠΉΡΠΈ ΠΏΠ΅ΡΠΈΠΎΠ΄ ΡΡΠ½ΠΊΡΠΈΠΈ :
ΠΡΠΈΠ²Π΅Π΄ΡΠΌ ΠΊ ΠΎΠ±ΡΠ΅ΠΌΡ Π·Π½Π°ΠΌΠ΅Π½Π°ΡΠ΅Π»Ρ ΠΏΠ΅ΡΠΈΠΎΠ΄Ρ :
Π’ΠΎΠ³Π΄Π° Π½Π°ΠΈΠΌΠ΅Π½ΡΡΠ΅Π΅ ΠΎΠ±ΡΠ΅Π΅ ΠΊΡΠ°ΡΠ½ΠΎΠ΅ (ΠΠΠ) Π±ΡΠ΄Π΅Ρ :
Π’Π΅ΠΏΠ΅ΡΡ Π½Π°ΠΉΠ΄ΡΠΌ ΠΏΠ΅ΡΠΈΠΎΠ΄ Π·Π°Π΄Π°Π½Π½ΠΎΠΉ ΡΡΠ½ΠΊΡΠΈΠΈ :