Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹ 4 ΠΈ 9, Π° Π΅Ρ‘ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ 5 ΠΈ 12.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Π°) ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны— ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ.

Π’ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярныЗамСтим, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярнывСрно, ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ 169 = 144 + 25, Ρ‚ΠΎΠ³Π΄Π° ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны— ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ, Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярнытогда Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярнычто ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ оцСнивания выполнСния заданияБаллы
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° a) ΠΈ обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)3
ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ обоснованный ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)

имССтся Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°) ΠΈ ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки

2
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°)

ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки,

обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±) с использованиСм утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°), ΠΏΡ€ΠΈ этом ΠΏΡƒΠ½ΠΊΡ‚ Π°) Π½Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½

1
РСшСниС Π½Π΅ соотвСтствуСт Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π², ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅0
ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π±Π°Π»Π»3

Аналоги ΠΊ заданию β„– 517526: 517528 517535 ВсС

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π”Π°Π½Π° трапСция с диагоналями Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ 6 ΠΈ 8. Π‘ΡƒΠΌΠΌΠ° оснований Ρ€Π°Π²Π½Π° 10.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны.

Π±) НайдитС высоту Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Π°) ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΡ€ΡΠΌΡƒΡŽ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярныНа пСрСсСчСнии этой прямой ΠΈ прямой Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярныотмСтим Ρ‚ΠΎΡ‡ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны— ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ.

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ACC1: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярнытогда ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ACC1 β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ, ΡƒΠ³ΠΎΠ» ACC1 прямой. Π’ΠΎΠ³Π΄Π° ΡƒΠ³ΠΎΠ» COD прямой, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Π±) Высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ оцСнивания выполнСния заданияБаллы
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° a) ΠΈ обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)3
ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ обоснованный ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)

имССтся Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°) ΠΈ ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки

2
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°)

ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки,

обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±) с использованиСм утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°), ΠΏΡ€ΠΈ этом ΠΏΡƒΠ½ΠΊΡ‚ Π°) Π½Π΅ Π²Ρ‹ΠΏΠΎΠ»Π½Π΅Π½

1
РСшСниС Π½Π΅ соотвСтствуСт Π½ΠΈ ΠΎΠ΄Π½ΠΎΠΌΡƒ ΠΈΠ· ΠΊΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠ΅Π², ΠΏΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Ρ… Π²Ρ‹ΡˆΠ΅0
ΠœΠ°ΠΊΡΠΈΠΌΠ°Π»ΡŒΠ½Ρ‹ΠΉ Π±Π°Π»Π»3

Аналоги ΠΊ заданию β„– 517526: 517528 517535 ВсС

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Напомним свойства Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ часто ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡŽΡ‚ΡΡ ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡. НСкоторыС ΠΈΠ· этих свойств Π±Ρ‹Π»ΠΈ Π΄ΠΎΠΊΠ°Π·Π°Π½Ρ‹ Π² заданиях для 9-Π³ΠΎ класса, Π΄Ρ€ΡƒΠ³ΠΈΠ΅ ΠΏΠΎΠΏΡ€ΠΎΠ±ΡƒΠΉΡ‚Π΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ ΡΠ°ΠΌΠΎΡΡ‚ΠΎΡΡ‚Π΅Π»ΡŒΠ½ΠΎ. ΠŸΡ€ΠΈΠ²Π΅Π΄Ρ‘Π½Π½Ρ‹Π΅ рисунки Π½Π°ΠΏΠΎΠΌΠΈΠ½Π°ΡŽΡ‚ Ρ…ΠΎΠ΄ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²Π°.

$$ 4.<2>^<β—‹>$$. Π’ любой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сСрСдины оснований, Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΈ Ρ‚ΠΎΡ‡ΠΊΠ° пСрСсСчСния ΠΏΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠ΅Π½ΠΈΠΈ Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон, Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (Π½Π° рис. 21 Ρ‚ΠΎΡ‡ΠΊΠΈ `M`, `N`, `O` ΠΈ `K`).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

$$ 4.<3>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΡƒΠ³Π»Ρ‹ ΠΏΡ€ΠΈ основании Ρ€Π°Π²Π½Ρ‹ (рис. 22).

$$ 4.<4>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ прямая, проходящая Ρ‡Π΅Ρ€Π΅Π· сСрСдины оснований, пСрпСндикулярна основаниям ΠΈ являСтся осью симмСтрии Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ (рис. 23).

$$ 4.<5>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹ (рис. 24).

$$ 4.<6>^<β—‹>$$. Π’ Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ высота, опущСнная Π½Π° большСС основаниС ΠΈΠ· ΠΊΠΎΠ½Ρ†Π° мСньшСго основания, Π΄Π΅Π»ΠΈΡ‚ Π΅Π³ΠΎ Π½Π° Π΄Π²Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Ρ€Π°Π²Π΅Π½ полуразности оснований, Π° Π΄Ρ€ΡƒΠ³ΠΎΠΉ – ΠΈΡ… полусуммС

(рис. 25, основания Ρ€Π°Π²Π½Ρ‹ `a` ΠΈ `b`, `a>b`).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

$$ 4.<7>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сСрСдины Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ прямой (рис. 26).

$$ 4.<8>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ основаниям ΠΈ Ρ€Π°Π²Π΅Π½ полуразности оснований (рис. 27).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ сумма ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Π° суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторон ΠΈ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠ³ΠΎ произвСдСния оснований, Ρ‚. Π΅. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.

$$ 4.<10>^<β—‹>$$. Π’ΠΎ всякой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ с основаниями `a` ΠΈ `b` ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ с ΠΊΠΎΠ½Ρ†Π°ΠΌΠΈ Π½Π° Π±ΠΎΠΊΠΎΠ²Ρ‹Ρ… сторонах, проходящий Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎ основаниям, Ρ€Π°Π²Π΅Π½ `(2ab)/(a+b)` (Π½Π° рис. 28 ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ `MN`).

$$ 4.<11>^<β—‹>$$. Π’Ρ€Π°ΠΏΠ΅Ρ†ΠΈΡŽ ΠΌΠΎΠΆΠ½ΠΎ Π²ΠΏΠΈΡΠ°Ρ‚ΡŒ Π² ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Ρ‚ΠΎΠ³Π΄Π° ΠΈ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‚ΠΎΠ³Π΄Π°, ΠΊΠΎΠ³Π΄Π° ΠΎΠ½Π° равнобокая.

ΠŸΡ€ΠΈΠΌΠ΅Π½ΡΠ΅ΠΌ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ косинусов (см. рис. 29Π° ΠΈ Π±):

`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,

`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (Ρ‚. ΠΊ. `cos(180^@-varphi)=-cos varphi`).

ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ `CK«|\|«BA` (рис. 29Π²), рассматриваСм Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ послСднСС равСнство, замСняСм Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π² скобках Π² (2), ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ:

`d_1^2+d_2^2=c_1^2+c_2^2+2ab`.

Π’ случаС Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ `d_1=d_2`, `c_1=c_2=c`, поэтому ΠΏΠΎΠ»ΡƒΡ‡Π°Π΅ΠΌ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰ΠΈΠΉ сСрСдины оснований Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ€Π°Π²Π΅Π½ `5`, ΠΎΠ΄Π½Π° ΠΈΠ· Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»Π΅ΠΉ Ρ€Π°Π²Π½Π° `6`. Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли Π΅Ρ‘ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ `ul(BDK)` с Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ `BK=BC+AD=2MN=10` ΠΈ ΠΊΠ°Ρ‚Π΅Ρ‚ΠΎΠΌ `DK=6` ΠΈΠΌΠ΅Π΅Ρ‚ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `BDK` Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ρ‚. ΠΊ. Ссли `DP_|_BK`, Ρ‚ΠΎ

Π”ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, ΠΏΠ΅Ρ€Π΅ΡΠ΅ΠΊΠ°ΡΡΡŒ, Ρ€Π°Π·Π±ΠΈΠ²Π°ΡŽΡ‚ Π΅Ρ‘ Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с ΠΎΠ±Ρ‰Π΅ΠΉ Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ. Найти ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Ссли ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ², ΠΏΡ€ΠΈΠ»Π΅ΠΆΠ°Ρ‰ΠΈΡ… ΠΊ основаниям, Ρ€Π°Π²Π½Ρ‹ `S_1` ΠΈ `S_2`.

Π”Π°Π»Π΅Π΅, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΈ `BOC` ΠΈ `DOA` ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹, ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠΎΠ² относятся ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰ΠΈΡ… сторон, Π·Π½Π°Ρ‡ΠΈΡ‚, `(S_1)/(S_2)=(a/b)^2`. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.ΠžΡ‚ΡΡŽΠ΄Π° Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ `S_0=sqrt(S_1S_2)`, ΠΈ поэтому ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π±ΡƒΠ΄Π΅Ρ‚ Ρ€Π°Π²Π½Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Основания Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹ `8` ΠΈ `10`, высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° `3` (рис. 32).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Найти радиус окруТности, описанной ΠΎΠΊΠΎΠ»ΠΎ этой Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Из ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `ABK` Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ `AB=sqrt(1+9)=sqrt(10)` ΠΈ `sinA=(BK)/(AB)=3/(sqrt10)`. ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ, описанная ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ `ABCD`, описана ΠΈ ΠΎΠΊΠΎΠ»ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `ABD`, Π·Π½Π°Ρ‡ΠΈΡ‚ (Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° (1), Β§ 1), `R=(BD)/(2sinA)`. ΠžΡ‚Ρ€Π΅Π·ΠΎΠΊ `BD` Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ ΠΈΠ· ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (ΠΈΠ»ΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ `d^2=c^2+ab`), Ρ‚ΠΎΠ³Π΄Π°

$$ 4.<12>^<β—‹>$$. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΏΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π΄Π²Π΅ стороны ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ Ρ€Π°Π²Π½Ρ‹ диагоналям Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡ Ρ€Π°Π²Π½Π° суммС оснований.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π£Π·Π½Π°Ρ‚ΡŒ Π΅Ρ‰Ρ‘

Π—Π½Π°Π½ΠΈΠ΅ β€” сила. ΠŸΠΎΠ·Π½Π°Π²Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ информация

Π’ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны

Если Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны, ΠΏΡ€ΠΈ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ Π·Π°Π΄Π°Ρ‡ΠΈ Π±ΡƒΠ΄Π΅Ρ‚ ΠΏΠΎΠ»Π΅Π·Π΅Π½ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ тСорСтичСский ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π».

1. Если Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны, высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° полусуммС оснований.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ C ΠΏΡ€ΡΠΌΡƒΡŽ CF, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ BD, ΠΈ ΠΏΡ€ΠΎΠ΄Π»ΠΈΠΌ ΠΏΡ€ΡΠΌΡƒΡŽ AD Π΄ΠΎ пСрСсСчСния с CF.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π§Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ BCFD β€” ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ ( BC βˆ₯ DF ΠΊΠ°ΠΊ основания Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, BD βˆ₯ CF ΠΏΠΎ ΠΏΠΎΡΡ‚Ρ€ΠΎΠ΅Π½ΠΈΡŽ). Π—Π½Π°Ρ‡ΠΈΡ‚, CF=BD, DF=BC ΠΈ AF=AD+BC.

Π’Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ACF ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ (Ссли прямая пСрпСндикулярна ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· Π΄Π²ΡƒΡ… ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½Ρ‹Ρ… прямых, Ρ‚ΠΎ ΠΎΠ½Π° пСрпСндикулярна ΠΈ Π΄Ρ€ΡƒΠ³ΠΎΠΉ прямой). ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½Ρ‹, Π° CF=BD, Ρ‚ΠΎ CF=AC, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ACF β€” Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½Ρ‹ΠΉ с основаниСм AF. Π—Π½Π°Ρ‡ΠΈΡ‚, Π΅Π³ΠΎ высота CN являСтся Ρ‚Π°ΠΊΠΆΠ΅ ΠΌΠ΅Π΄ΠΈΠ°Π½ΠΎΠΉ. А Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠΌΠ΅Π΄ΠΈΠ°Π½Π° ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, провСдСнная ΠΊ Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·Π΅, Ρ€Π°Π²Π½Π° Π΅Π΅ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅, Ρ‚ΠΎ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Ρ‡Ρ‚ΠΎ Π² ΠΎΠ±Ρ‰Π΅ΠΌ Π²ΠΈΠ΄Π΅ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ ΠΊΠ°ΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π³Π΄Π΅ h β€” высота Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, a ΠΈ b β€” Π΅Π΅ основания.

2. Если Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны, Ρ‚ΠΎ Π΅Π΅ высота Ρ€Π°Π²Π½Π° срСднСй Π»ΠΈΠ½ΠΈΠΈ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ срСдняя линия Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ m Ρ€Π°Π²Π½Π° полусуммС оснований, Ρ‚ΠΎ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

3. Если Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны, Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Π° ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ высоты Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ (ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ полусуммы оснований, ΠΈΠ»ΠΈ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ).

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ находится ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π° высота, полусумма оснований ΠΈ срСдняя линия Ρ€Π°Π²Π½ΠΎΠ±ΠΎΠΊΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ с пСрпСндикулярными диагоналями Ρ€Π°Π²Π½Ρ‹ ΠΌΠ΅ΠΆΠ΄Ρƒ собой:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

4. Если Π² Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны, Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΅Π΅ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π΅Π½ ΠΏΠΎΠ»ΠΎΠ²ΠΈΠ½Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π° суммы оснований, Π° Ρ‚Π°ΠΊΠΆΠ΅ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΌΡƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ высоты ΠΈ ΡƒΠ΄Π²ΠΎΠ΅Π½Π½ΠΎΠΌΡƒ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρƒ срСднСй Π»ΠΈΠ½ΠΈΠΈ.

Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Π²Ρ‹ΠΏΡƒΠΊΠ»ΠΎΠ³ΠΎ Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅Ρ…ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‡Π΅Ρ€Π΅Π· Π΅Π³ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΈ ΡƒΠ³ΠΎΠ» ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

sin 90 ΒΊ =1, ΠΈ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ Ρ€Π°Π²Π½Ρ‹, Ρ‚ΠΎ ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ€Π°Π²Π½ΠΎΠ±Π΅Π΄Ρ€Π΅Π½Π½ΠΎΠΉ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ, Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ Π²Π·Π°ΠΈΠΌΠ½ΠΎ пСрпСндикулярны, Ρ€Π°Π²Π½Π°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π”Π°Π½Π° трапСция с диагоналями Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ 8 ΠΈ 15. Π‘ΡƒΠΌΠΌΠ° оснований Ρ€Π°Π²Π½Π° 17.

Π°) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅, Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ пСрпСндикулярны.

Π±) НайдитС ΠΏΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ.

Π°) ΠŸΡ€ΠΎΠ²Π΅Π΄Π΅ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΡ€ΡΠΌΡƒΡŽ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΡƒΡŽ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярныНа пСрСсСчСнии этой прямой ΠΈ прямой Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярныотмСтим Ρ‚ΠΎΡ‡ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны— ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌ.

Π’ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ΅ ACC1: Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

Π—Π°ΠΌΠ΅Ρ‚ΠΈΠΌ, Ρ‡Ρ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ ΠΏΠ΅Ρ€ΠΏΠ΅Π½Π΄ΠΈΠΊΡƒΠ»ΡΡ€Π½Ρ‹ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярнытогда ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅, ΠΎΠ±Ρ€Π°Ρ‚Π½ΠΎΠΉ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ACC1 β€” ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ, ΡƒΠ³ΠΎΠ» ACC1 прямой. Π’ΠΎΠ³Π΄Π° ΡƒΠ³ΠΎΠ» COD прямой, Ρ‡Ρ‚ΠΎ ΠΈ Ρ‚Ρ€Π΅Π±ΠΎΠ²Π°Π»ΠΎΡΡŒ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚ΡŒ.

Π±) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ Ρ‚Ρ€Π°ΠΏΠ΅Ρ†ΠΈΠΈ пСрпСндикулярны

ΠšΡ€ΠΈΡ‚Π΅Ρ€ΠΈΠΈ оцСнивания выполнСния заданияБаллы
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° a) ΠΈ обоснованно ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)3
ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½ обоснованный ΠΎΡ‚Π²Π΅Ρ‚ Π² ΠΏΡƒΠ½ΠΊΡ‚Π΅ Π±)

имССтся Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°) ΠΈ ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки

2
Π˜ΠΌΠ΅Π΅Ρ‚ΡΡ Π²Π΅Ρ€Π½ΠΎΠ΅ Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ утвСрТдСния ΠΏΡƒΠ½ΠΊΡ‚Π° Π°)

ΠΏΡ€ΠΈ обоснованном Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡƒΠ½ΠΊΡ‚Π° Π±) ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½ Π½Π΅Π²Π΅Ρ€Π½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚ ΠΈΠ·-Π·Π° арифмСтичСской ошибки,

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *