Докажите что если 2 n 1 простое то n простое
Совершенные числа
Собственный делитель натурального числа — это любой делитель, кроме самого этого числа. Если число равно сумме своих собственных делителей, то оно называется совершенным. Так, 6 = 3 + 2 + 1 — это наименьшее из всех совершенных чисел (1 не в счет), 28 = 14 + 7 + 4 + 2 + 1 — это еще одно такое число.
Совершенные числа были известны еще в древности и интересовали ученых во все времена. В «Началах» Евклида доказано, что если простое число имеет вид 2 n – 1 (такие числа называют простыми числами Мерсенна), то число 2 n–1 (2 n – 1) — совершенное. А в XVIII веке Леонард Эйлер доказал, что любое четное совершенное число имеет такой вид.
Задача
Попробуйте доказать эти факты и найти еще пару-тройку совершенных чисел.
Подсказка 1
а) Чтобы доказать утверждение из «Начал» (что если простое число имеет вид 2 n – 1, то число 2 n –1 (2 n – 1) — совершенное), удобно рассмотреть сигма-функцию, которая равна сумме всех положительных делителей натурального числа n. Например, σ(3) = 1 + 3 = 4, а σ(4) = 1 + 2 + 4 = 7. Эта функция обладает полезным свойством: она мультипликативна, то есть σ(ab) = σ(a)σ(b); равенство выполняется для любых двух взаимно простых натуральных чисел a и b (взаимно простыми называются числа, у которых нет общих делителей). Это свойство можно попытаться доказать или принять на веру.
При помощи сигма-функции доказательство совершенности числа N = 2 n –1 (2 n – 1) сводится к проверке того, что σ(N) = 2N. Для этого пригодится мультипликативность этой функции.
б) Другой путь решения не использует никаких дополнительных конструкций вроде сигма-функции. Он опирается только на определение совершенного числа: нужно выписать все делители числа 2 n–1 (2 n – 1) и найти их сумму. Должно получиться это же число.
Подсказка 2
Получается, что 2·2 k ·m = (2 k +1 – 1)σ(m). Значит, 2 k +1 – 1 делит произведение 2 k +1 ·m, а поскольку 2 k +1 – 1 и 2 k +1 взаимно просты, то m должно делиться на 2 k +1 – 1. То есть m можно записать в виде m = (2 k +1 – 1)·M. Подставив это выражение в предыдущее равенство и сократив на 2 k +1 – 1, получим 2 k +1 ·M = σ(m). Теперь до окончания доказательства остается всего один, хотя и не самый очевидный, шаг.
Решение
В подсказках содержится значительная часть доказательств обоих фактов. Восполним здесь недостающие шаги.
а) Для начала нужно доказать, что сигма-функция действительно мультипликативна. На самом деле, поскольку каждое натуральное число однозначно раскладывается на простые множители (это утверждение называют основной теоремой арифметики), достаточно доказать, что σ(pq) = σ(p)σ(q), где p и q — различные простые числа. Но довольно очевидно, что в этом случае σ(p) = 1 + p, σ(q) = 1 + q, а σ(pq) = 1 + p + q + pq = (1 + p)(1 + q).
Скорее всего, Евклид не был знаком с сигма-функцией (да и вообще с понятием функции), поэтому его доказательство изложено несколько другим языком и ближе к решению из пункта б). Оно содержится в предложении 36 из IX книги «Начал» и доступно, например, здесь.
Прежде чем доказывать теорему Эйлера, отметим еще, что если 2 n – 1 — простое число Мерсенна, то n также должно быть простым числом. Дело в том, что если n = km — составное, то 2 km – 1 = (2 k ) m – 1 делится на 2 k – 1 (поскольку выражение x m – 1 делится на x – 1, это одна из формул сокращенного умножения). А это противоречит простоте числа 2 n – 1. Обратное утверждение — «если n — простое, то 2 n – 1 также простое» — не верно: 2 11 – 1 = 23·89.
Вернемся к теореме Эйлера. Наша цель — доказать, что любое четное совершенное число имеет вид, полученный еще Евклидом. В подсказке 2 были намечены первые этапы доказательства, и осталось сделать решающий шаг. Из равенства 2 k +1 ·M = σ(m) следует, что m делится на M. Но m делится также и на само себя. При этом M + m = M + (2 k +1 – 1)·M = 2 k +1 ·M = σ(m). Это означает, что у числа m нет других делителей, кроме M и m. Значит, M = 1, а m — простое число, которое имеет вид 2 k +1 – 1. Тогда N = 2 k ·m = 2 k (2 k +1 – 1), что и требовалось.
Итак, формулы доказаны. Применим их, чтобы найти какие-нибудь совершенные числа. При n = 2 формула дает 6, а при n = 3 получается 28; это первые два совершенных числа. По свойству простых чисел Мерсенна, нам нужно подобрать такое простое n, что 2 n – 1 будет также простым числом, а составные n можно вообще не рассматривать. При n = 5 получится 2 n – 1 = 32 – 1 = 31, это нам подходит. Вот и третье совершенное число — 16·31 = 496. На всякий случай проверим его совершенность явно. Выпишем все собственные делители 496: 1, 2, 4, 8, 16, 31, 62, 124, 248. Их сумма равна 496, так что всё в порядке. Следующее совершенное число получается при n = 7, это 8128. Соответствующее простое число Мерсенна равно 2 7 – 1 = 127, и довольно легко проверить, что оно действительно простое. А вот пятое совершенное число получается при n = 13 и равно 33 550 336. Но проверять его вручную уже очень утомительно (однако это не помешало кому-то открыть его еще в XV веке!).
Послесловие
Первые два совершенных числа — 6 и 28 — были известны с незапамятных времен. Евклид (и мы вслед за ним), применив доказанную нами формулу из «Начал», нашел третье и четвертое совершенные числа — 496 и 8128. То есть сначала было известно всего два, а потом четыре числа с красивым свойством «быть равными сумме своих делителей». Больше таких чисел обнаружить не могли, да и эти, на первый взгляд, ничего не объединяло. В эпоху древности люди были склонны вкладывать мистический смысл в таинственные и непонятные явления, поэтому и совершенные числа получили особый статус. Пифагорейцы, оказавшие сильное влияние на развитие науки и культуры того времени, также поспособствовали этому. «Всё есть число», — говорили они; число 6 в их учении обладало особыми магическими свойствами. А ранние толкователи Библии объясняли, что мир был сотворен именно на шестой день, потому что число 6 — самое совершенное среди чисел, ибо оно первое среди них. Также многим казалось неслучайным, что Луна делает оборот вокруг Земли примерно за 28 дней.
Пятое совершенное число — 33 550 336 — было найдено только в XV веке. Еще почти через полтора века итальянец Катальди нашел шестое и седьмое совершенные числа: 8 589 869 056 и 137 438 691 328. Им соответствуют n = 17 и n = 19 в формуле Евклида. Обратите внимание, что счет идет уже на миллиарды, и страшно даже представить, что все вычисления были проделаны без калькуляторов и компьютеров!
Вернемся к четным совершенным числам. Девятое число было найдено в 1883 году сельским священником из Пермcкой губернии И. М. Первушиным. В этом числе 37 цифр. Таким образом, к началу XX века было найдено всего 9 совершенных чисел. В это время появились механические арифметические машины, а в середине века — и первые компьютеры. С их помощью дело пошло быстрее. Сейчас найдено 47 совершенных чисел. Причем только у первых сорока известны порядковые номера. Еще про семь чисел пока точно не установлено, какие они по счету. В основном поиском новых мерсенновских простых (а с ними — и новых совершенных чисел) занимаются участники проекта GIMPS (mersenne.org).
Дано n чисел. Для каждого из них определяется, простое ли оно. Если простое, выводится 1, иначе 0.
Здравствуйте! Помогите, пожалуйста. Нужно уменьшить время выполнения программы, как это можно.
Докажите, что существуют две точки, из которых выходит одно и то же число отрезков
Привет всем.Помогите пожалуйста решить задачу.Уже 2-ой час сижу и не могу додумать)Возможно для вас.
Удалить из файла целых чисел второе, третье и пятое простое число
Составить две программы: 1. Сформировать типизированный файл из исходных данных(конкретно, создать.
докажите что отношение будет отношением эквивалентности
докажите что отношения будут отношения эквивалентности «принадлежность до одной группы» в.
Докажите, что во всяком исчислении высказывания данная формула будет теоремой
Докажите, что во всяком исчислении высказывания, в котором правилом вывода является правило МР и в.
Если в матрице есть хотя бы одно простое число, то повернуть ее на 180 градусов против часовой стрелки
Дан даумерный целочисленный массив если среди элементов есть хотя бы одно простое число, то.
Если среди элементов матрицы есть хотя бы одно простое число, отсортировать элементы ее строк по возрастанию
Дана матрица А(M,N). Если среди элементов матрицы есть хотя бы одно простое число, отсортировать.
Имеется ли среди трех введенных чисел хотя бы одно простое
Реализовать функцию is_prime, определяющую, является ли ее аргумент простым числом. Разработать.
Закономерности в распределении простых чисел
Введение
Простое число — это натуральное число, имеющее ровно два различных натуральных делителя — единицу и самого себя. Такие числа представляют огромный интерес. Дело в том, что никто так и не смог полностью понять и описать закономерность по которой простые числа располагаются в ряду натуральных чисел.
Ещё до нашей эры Евклид сформулировал и доказал первые теоремы о простых числах. С тех пор математики, среди них Гаусс, Ферма, Риман, Эйлер, продолжали исследования и надо отдать им должное заметно продвинулись. Было обнаружено много интересных свойств простых чисел, выдвинуто много предположений, некоторые из которых были доказаны. Однако много гипотез связанных с простыми числами до сих пор остаются необоснованными.
Распределение простых чисел
Первостепенная задача, решение которой автоматически привело бы к решению большинства вопросов связанных с простыми числами заключается в следующем:
Получить рекуррентную формулу для очередного простого числа
Существует родственная ей задача о количестве простых чисел, не превосходящих заданной величины:
Найти функцию p(x), значение которой в точке x равно числу простых чисел на отрезке [1, x]. Где x – любое действительное число не меньшее единицы.
Функция называется функцией распределения простых чисел.
К решению вышеуказанных задач существует множество подходов. Рассмотрим некоторые из них.
Основная теорема арифметики гласит, что любое натуральное число большее единицы может быть представлено в виде произведения простых множителей (причём единственным образом, с точностью до порядка множителей).
Отсюда и из определения простого числа следует, что натуральное число, большее двух, является простым тогда и только тогда, когда оно не делится ни на одно из простых чисел меньших самого себя.
Первое простое число p1 =2. Значит все последующие простые числа должны не делится на 2, то есть иметь вид 2k+1, где k – натуральное. То есть все простые числа начиная со второго — нечётные.
Второе простое число p2 = 3. Значит все последующие простые числа должны иметь вид 3m+1, либо 3m+2, где m – целое. Это равносильно утверждению о том, что все простые числа начиная с третьего не делятся на три. Однако при этом числа ещё должны не делится на два, то есть иметь вид 2k+1.
Решая диофантовы уравнения
найдём k и m и получим, что все простые числа начиная с p3 обязательно представимы в виде , либо в виде
, где t – целое.
И правда, какое бы простое число мы ни взяли оно представимо таким образом:
Однако обратное неверно, то есть любое натуральное число вида 6t+1 или 6t+5 не обязательно простое. Например, .
Третье простое число p3 = 5. И если по аналогии учесть, что любое простое число, начиная с четвёртого не делится на 5, также не делится на p1 = 2 и на p2 = 3, то получим, что все простые числа начиная с p4 обязательно имеют одно из представлений
Затем учтём p4, p5 и т.д. Проблема в том, что на каждом шаге нам придётся решать всё большую систему диофантовых уравнений, поэтому такой прямолинейный подход оказывается весьма сложным.
На самом деле, при различных попытках решения поставленной нами задачи в большом количестве случаев появляются одни и те же конструкции. Например, произведение Эйлера. Рассмотрим, как это происходит, на следующем примере.
Итак, как же найти функцию F(x)? Сначала рассмотрим множество всех натуральных чисел. Какова доля чисел, которые не делятся ни на одно из простых p1, p2, …, pn?
Каждое второе число делится на p1 = 2. Значит, часть всех чисел делится на p1.
Каждое третье число делится на 3. Значит, всех чисел делится на p2. При этом надо учесть, что каждое шестое число делится и на 2 и на 3 одновременно.
Значит, доля чисел не делящихся ни на 2, ни на 3 равна
Если преобразовать выражение, то оно примет вид:
Опять же можно представить выражение в виде
Будем обозначать такое произведение P(n). Кстати, если учесть все простые числа (n→∞), то мы получим обратную величину от так называемого произведения Эйлера.
Почему так происходит? Когда мы получали формулу (1), мы пользовались рассуждениями, что среди всех натуральных чисел доля, делящихся на pn, равна . Но нельзя сделать такое утверждение о конечном наборе последовательных натуральных чисел. Например, возьмём набор 1,2, 3,4,5,6,7,8,9. Здесь 4 числа из 9 делятся на два. И несложно заметить, что
отличается от
. То есть, при применении к конечному набору чисел, данный метод даёт результат с некоторой погрешностью.
Это будет мешать далее получать точные формулы. Но если оценить эту погрешность, то можно (например, приняв и используя приведённые выше рассуждения) получить оценку для pn+1-го простого числа. Однако, получение таких оценок — это тема отдельной работы. И поэтому здесь я не буду на этом останавливаться, а приведу лишь некоторые результаты, полученные математиками.
Одна из оценок для простого числа с номером n:
оценка верна для всех n, начиная с 6.
А вот формула для функции распределения простых чисел:
Для функции Риман получил приближение, используя интегральный логарифм и нетривиальные нули дзета-функции Римана. Однако, это приближение верно, только если верна гипотеза Римана. Причём если гипотеза Римана верна, то оно является наилучшим.
Гипотеза Римана до сих пор не доказана и не опровергнута. Она, как мы могли видеть, тесно связана с простыми числами и, вообще, имеет огромное значение для теории чисел. Из-за своей важной роли в математике, гипотеза Римана была объявлена одной из семи задач тысячелетия.
Проблемы Ландау
Насчёт простых чисел выдвинуто очень много интересных гипотез. Среди них видное место занимают гипотезы Ландау (проблемы Ландау). Формулируются они так:
1. Гипотеза Гольдбаха
Можно ли любое целое чётное число, большее 2, записать в виде суммы двух простых?
2. Гипотеза о числах-близнецах
Бесконечно ли число простых p таких, что p + 2 тоже простое?
3. Гипотеза Лежандра
Всегда ли существует по меньшей мере одно простое число, лежащее между двумя последовательными полными квадратами?
4. Гипотеза о почти квадратных простых числах
Существует ли бесконечно много простых чисел p вида .
Проблемы Ландау ни доказаны, ни опровергнуты по состоянию на 2020 год. Далее кратко расскажу про каждую из них.
1. Гипотеза Гольдбаха
Существуют две гипотезы Гольдбаха: слабая (тернарная) и сильная (бинарная).
Слабая гипотеза Гольдбаха: Каждое нечётное число, большее 5, можно представить в виде суммы трёх простых чисел.
Эту гипотезу доказал Харольд Гельфготт в 2013 году используя так называемые большие дуги. Финальная часть доказательства заняла 133 страницы.
Сильная гипотеза Гольдбаха: Каждое чётное число, большее двух, можно представить в виде суммы двух простых чисел.
Надо заметить, что в обоих случаях гипотезы Гольдбаха простые числа не обязательно должны быть различными.
Заметьте, что в сильной гипотезе речь идёт только о чётных числах. Давайте покажем, что нечётное число не обязано быть представимо в виде суммы двух простых чисел. Просто приведём пример. Число 11 не представимо в виде суммы двух простых. Вроде бы несложно.
Но переформулируем проблему так: существует ли такое число, что любое нечётное, большее этого числа, представимо в виде суммы двух простых чисел? Давайте проверим. Пусть существует некоторое нечётное натуральное число N, такое, что любое нечётное число представимо в виде суммы двух простых чисел.
Возьмём произвольное нечётное . По предположению существуют такие простые p1 и p2, что
. Если сумма двух натуральных чисел нечётна, то это значит, что одно из слагаемых чётно, а другое нет. Пусть для определённости p1 – чётное. Единственное чётное простое число — это 2. Значит,
. То есть, K-2 (предыдущее перед K нечётное число) является простым. Поскольку всё вышесказанное верно для любого нечётного большего N, то получается, что все нечётные числа, начиная с N-2, являются простыми. Это неверно. Если бы это было так, то
при n→ ∞. Однако, как говорилось выше
при n→ ∞.
Итак, не существует такого числа, начиная с которого все нечётные числа могут быть представлены в виде суммы двух простых.
А что же насчёт чётных? Гипотеза не была опровергнута, не было найдено ни одного контрпримера. Но это не значит, что их не существует. Доказать же гипотезу полностью пока никому не удалось.
2. Гипотеза о числах-близнецах
Бесконечно ли число простых чисел близнецов?
Для начала сформулируем определение. Два простых числа называются близнецами если отличаются друг от друга на 2.
Так же доказано, что существует бесконечно много простых чисел, разница между которыми составляет 246. Это наилучшая из обоснованных на данный момент оценок. Если же использовать некоторые недоказанные гипотезы о простых числах, то оценку можно улучшить.
3. Гипотеза Лежандра
Всегда ли существует, по меньшей мере, одно простое число, лежащее между двумя последовательными полными квадратами?
Аналогичная гипотеза доказана для кубов, начиная с некоторого n. То есть, существует, по меньшей мере, одно простое число, лежащее между и
для достаточно большого n. Для квадратов же, гипотеза Лежандра пока не доказана.
4. Почти квадратные простые числа
Заключение
Как мы видим, в этой области теории чисел существует очень много пробелов, а также недоказанных гипотез. Отдельно хочется сказать про численную проверку утверждений. Например, ни для одной из гипотез Ландау не был найден контрпример, даже с использованием значительных вычислительных мощностей в течение большого времени. Однако, в истории математики 20-го и 21-го века были случаи, когда контрпример, опровергающий гипотезу, был настолько огромным числом, что его не удавалось найти с помощью вычислительных машин.
Также, постоянный интерес к простым числам обусловлен их обширным применением в криптографии. Итак, как мы убедились, исследование простых чисел — это, действительно, важная и очень интересная задача.