Докажите что функция f есть первообразная для функции f
как доказать что функция F есть первобразная для функции f?
Функция F называется первообразной для функции f на промежутке, если для всех x из этого промежутка F'(x) = f(x)
Функция F(x) называется первообразной функцией функции f(x) на отрезке [a, b], если в любой точке этого отрезка верно равенство:
F¢(x) = f(x).
Пример
Методы интегрирования Рассмотрим три основных метода интегрирования.
Способ подстановки (замены переменных)
Если требуется найти интеграл, но сложно отыскать первообразную, то с помощью замены x = j(t) и dx = j¢(t)dt получается:
Интегрирование по частям
Способ основан на известной формуле производной произведения: (uv)¢ = u¢v + v¢u
где u и v – некоторые функции от х. В дифференциальной форме: d(uv) = udv + vdu
Примеры
Интегрирование элементарных дробей
Примеры
Интегрирование рациональных функций
Пример.
Интегрирование некоторых тригонометрических функций Интегралов от тригонометрических функций может быть бесконечно много. Большинство из этих интегралов вообще нельзя вычислить аналитически, поэтому рассмотрим некоторые главнейшие типы функций, которые могут быть проинтегрированы всегда. Интеграл вида Здесь R – обозначение некоторой рациональной функции от переменных sinx и cosx..
Интеграл произведения синусов и косинусов
Интегрирование некоторых иррациональных функций Далеко не каждая иррациональная функция может иметь интеграл, выраженный элементарными функциями. Для нахождения интеграла от иррациональной функции следует применить подстановку, которая позволит преобразовать функцию в рациональную, интеграл от которой может быть найден как известно всегда.
Интегрирование биноминальных дифференциалов Биноминальным дифференциалом называется выражение xm(a + bxn)pdx где m, n, и p – рациональные числа.
Тригонометрическая подстановка
Подстановки Эйлера Метод неопределенных коэффициентов
Примеры
Алгебра и начала математического анализа. 11 класс
Конспект урока
Алгебра и начала математического анализа, 11 класс
Урок №21. Первообразная.
Перечень вопросов, рассматриваемых в теме
1) Нахождение первообразной
2) Определение первообразной, график которой проходит через заданную точку
3) Решение задач, обратных задаче нахождения закона изменения скорости материальной точки по закону ее движения
Функцию y = F(x) называют первообразной для функции y = f(x) на промежутке Х, если для выполняется равенство F’ (x) = f(x).
Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.
Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.
Теоретический материал для самостоятельного изучения
Сегодня мы познакомимся с новым математическим понятием – первообразной. Что это такое?
Для начала обратимся к задаче, которая поможет сформулировать определение первообразной.
С точки зрения механики скорость прямолинейного движения определяется как производная пути по времени. Если некоторая точка прошла путь S(t), то ее мгновенная скорость . Если теперь рассмотреть обратную задачу – нахождение пути, пройденного точкой с заданной скоростью, то придем к функции S(t), которую называют первообразной функции v(t), т.е. такой функцией, что
.
Итак, функцию y = F(x) называют первообразной для функции y = f(x) на промежутке Х, если для х Х выполняется равенство F’ (x) = f(x).
Как следует из определения, операция нахождения первообразной – обратна нахождению производной функции
Примеры и разбор решения заданий тренировочного модуля
№1.Материальная точка движется прямолинейно со скоростью v(t)=8t–4. Найдите закон движения точки, если в момент времени t=2c пройденный путь составил 4 м.
Воспользуемся определением первообразной, т.к. S(t)=v0t+at 2 /2
Подставим t=2c и пройденный путь S=4 м.
Следовательно, закон движения будет выглядеть следующим образом:
№2. По графику первообразной функции y = F(x) определите количество точек, в которых функция y = f(x) равна нулю.
№3. По графику первообразной функции y = F(x) определите числовые промежутки, на которых функция y = f(x) имеет отрицательный знак.
Так как F’(x) = f(x)- по определению первообразной, то числовые промежутки, на которых функция f(x) (производная функции F(x)) имеет отрицательный знак – это промежутки убывания функции F(x). Таких промежутков на данном графике 2. Это (-2; 1) и (2; 5).
№4. Докажите, что функция y = F(x) является первообразной для функции y = f(x).
По определению первообразной, F'(x)=f(x), следовательно, F'(x) и есть первообразная для функции f(x)
№5. Для функции f(x) = х 2 найти первообразную, график которой проходит через точку (-3; 10).
Найдем все первообразные функции f(x) :
Найдем число С, такое, чтобы график функции f(x) = х 2 проходил через точку (-3; 10). Подставим х = – 3, y = 10, получим:
Следовательно,
Ответ: