Докажите что log2 7 иррациональное число
math4school.ru
Рациональные и иррациональные числа
Немного теории
Рациональное число – число, представляемое обыкновенной дробью m/n, где числитель m – целое число, а знаменатель n – натуральное число. Любое рациональное число представимо в виде периодической бесконечной десятичной дроби. Множество рациональных чисел обозначается Q.
Если действительное число не является рациональным, то оно иррациональное число. Десятичные дроби, выражающие иррациональные числа бесконечны и не периодичны. Множество иррациональных чисел обычно обозначается заглавной латинской буквой I.
Действительное число называется алгебраическим, если оно является корнем некоторого многочлена (ненулевой степени) с рациональными коэффициентами. Любое неалгебраическое число называется трансцендентным.
Множество рациональных чисел располагается на числовой оси всюду плотно: между любыми двумя различными рациональными числами расположено хотя бы одно рациональное число (а значит, и бесконечное множество рациональных чисел). Тем не менее, оказывается, что множество рациональных чисел Q и множество натуральных чисел N эквивалентны, то есть между ними можно установить взаимно однозначное соответствие (все элементы множества рациональных чисел можно перенумеровать).
Множество Q рациональных чисел является замкнутым относительно сложения, вычитания, умножения и деления, то есть сумма, разность, произведение и частное двух рациональных чисел также являются рациональными числами.
Все рациональные числа являются алгебраическими (обратное утверждение – неверное).
Каждое вещественное трансцендентное число является иррациональным.
Каждое иррациональное число является либо алгебраическим, либо трансцендентным.
Множество иррациональных чисел всюду плотно на числовой прямой: между любыми двумя числами имеется иррациональное число (а значит, и бесконечное множество иррациональных чисел).
Множество иррациональных чисел несчётно.
При решении задач бывает удобно вместе с иррациональным числом a + b √ c (где a, b – рациональные числа, с – целое, не являющееся квадратом натурального числа) рассмотреть «сопряжённое» с ним число a – b √ c : его сумма и произведение с исходным – рациональные числа. Так что a + b √ c и a – b √ c являются корнями квадратного уравнения с целыми коэффициентами.
Задачи с решениями
Итак, предположение ложно, значит, число √ 7 иррациональное.
Итак, предположение ложно, значит, число lg 80 иррациональное.
в) Обозначим данное число через х.
Тогда (х – √ 2 ) 3 = 3, или х 3 + 6х – 3 = √ 2· (3х 2 + 2). После возведения этого уравнения в квадрат получаем, что х должен удовлетворять уравнению
х 6 – 6х 4 – 6х 3 + 12х 2 – 36х + 1 = 0.
Его рациональными корнями могут быть только числа 1 и –1. Проверка же показывает, что 1 и –1 не являются корнями.
Итак, данное число √ 2 + 3 √ 3 является иррациональным.
( √ a – √ b )·( √ a + √ b ) = a – b.
½ ( √ a + √ b ) + ½ ( √ a – √ b ) = √ a
– число рациональное, их разность,
тоже рациональное число, что и требовалось доказать.
3. Докажите, что существуют положительные иррациональные числа a и b, для которых число a b является натуральным.
4. Существуют ли рациональные числа a, b, c, d, удовлетворяющие равенству
где n – натуральное число?
Если выполнено равенство, данное в условии, а числа a, b, c, d – рациональные, то выполнено и равенство:
Но 5 – 4 √ 2 (a – b √ 2 ) 2n + (c – d √ 2 ) 2n > 0. Полученное противоречие доказывает то, что исходное равенство невозможно.
Ответ: не существуют.
Если отрезки с длинами a, b, c образуют треугольник, то неравенство треугольника даёт
Остальные случаи проверки неравенства треугольника рассматриваются аналогично, откуда и следует заключение.
6. Докажите, что бесконечная десятичная дробь 0,1234567891011121314. (после запятой подряд выписаны все натуральные числа по порядку) представляет собой иррациональное число.
8. Доказать, что в каждой бесконечной десятичной дроби существует последовательность десятичных знаков произвольной длины, которая в разложении дроби встречается бесконечно много раз.
9. Докажите элементарным путём, что положительный корень уравнения
Для х > 0 левая часть уравнения возрастает с возрастанием х, и легко заметить, что при х = 1,5 она меньше 10, а при х = 1,6 – больше 10. Поэтому единственный положительный корень уравнения лежит внутри интервала (1,5; 1,6).
Запишем корень как несократимую дробь p/q, где p и q – некоторые взаимно простые натуральные числа. Тогда при х = p/q уравнение примет следующий вид:
откуда следует, что р – делитель 10, следовательно, р равно одному из чисел 1, 2, 5, 10. Однако выписывая дроби с числителями 1, 2, 5, 10, сразу же замечаем, что ни одна из них не попадает внутрь интервала (1,5; 1,6).
Итак, положительный корень исходного уравнения не может быть представлен в виде обыкновенной дроби, а значит является иррациональным числом.
10. а) Существуют ли на плоскости три такие точки A, B и C, что для любой точки X длина хотя бы одного из отрезков XA, XB и XC иррациональна?
б) Координаты вершин треугольника рациональны. Докажите, что координаты центра его описанной окружности также рациональны.
а) Да, существуют. Пусть C – середина отрезка AB. Тогда XC 2 = (2XA 2 + 2XB 2 – AB 2 )/2. Если число AB 2 иррационально, то числа XA, XB и XC не могут одновременно быть рациональными.
б) Пусть (a1; b1), (a2; b2) и (a3; b3) – координаты вершин треугольника. Координаты центра его описанной окружности задаются системой уравнений:
Легко проверить, что эти уравнения линейные, а значит, решение рассматриваемой системы уравнений рационально.
в) Такая сфера существует. Например, сфера с уравнением
(x – √ 2 ) 2 + y 2 + z 2 = 2.
Точка O с координатами (0; 0; 0) – рациональная точка, лежащая на этой сфере. Остальные точки сферы иррациональные. Докажем это.
Допустим противное: пусть (x; y; z) – рациональная точка сферы, отличная от точки O. Понятно, что х отличен от 0, так как при x = 0 имеется единственное решение (0; 0; 0), которое нас сейчас не интересует. Раскроем скобки и выразим √ 2 :
x 2 – 2 √ 2 x + 2 + y 2 + z 2 = 2
√ 2 = (x 2 + y 2 + z 2 )/(2x),
Задачи без решений
1. Докажите, что число
3. Существует ли такое число а, чтобы числа а – √ 3 и 1/а + √ 3 были целыми?
5. Докажите, что при любом натуральном n уравнение (х + у √ 3 ) 2n = 1 + √ 3 не имеет решений в рациональных числах (х; у).
Докажите что число является иррациональным
Ответ
Предположим, что √5 – рациональное число.
Тогда его можно представить в виде несократимой дроби, а именно √5 = a/b, где a,b – натуральные числа.
Т.к. 5b² делится на 5, то и a² делится на 5.
Тогда a=5c, где c – натуральное.
Получаем 5b² = (5c)², 5b²=25c², b²=5c², а значит что и b делится на 5. Таким образом мы имеем: a делится на 5 и b делится на 5, что противоречит условию, что a/b это несократимая дробь. Следовательно √5 – иррациональное число
Определение иррационального числа
Например. Иррациональными числами являются:
Операции над иррациональными числами
На множестве иррациональных чисел можно ввести четыре основные арифметические операции: сложение, вычитание, умножение и деление; но ни для одной из перечисленных операций множество иррациональных чисел не обладает свойством замкнутости. Например, сумма двух иррациональных чисел может быть числом рациональным.
Возведем обе части равенства в квадрат, получим
Задача. Доказать, что корень из 3 иррациональное число.
Решение. Проведем доказательство от противного. Допустим, что (sqrt ) рациональное число, то есть представляется в виде несократимой дроби (frac ), где (m) и (n) – целые числа. Возведём предполагаемое равенство в квадрат:
(sqrt = frac Rightarrow 3 = frac Rightarrow m^2 = 3n^2.)
Отсюда следует, что (m^2) кратно 3, значит, и (m) кратно 3 (если бы целое (m) не было кратно 3, то и (m^2) не было бы кратно 3). Пускай (m=3r), где (r) – целое число. Тогда
((3r)^2=3n^2 Rightarrow 9r^2=3n^2 Rightarrow n^2=3r^2)
Следовательно, (n^2) кратно 3, значит, и (n) кратно 3. Мы получили, что (m) и (n) кратны 3, что противоречит несократимости дроби (frac ). Значит, исходное предположение было неверным, и (sqrt ) — иррациональное число.
Докажите что log2 7 иррациональное число
Множество иррациональных чисел обычно обозначается заглавной латинской буквой в полужирном начертании без заливки. Таким образом:
, т.е. множество иррациональных чисел есть разность множеств вещественных и рациональных чисел.
О существовании иррациональных чисел, точнее отрезков, несоизмеримых с отрезком единичной длины, знали уже древние математики: им была известна, например, несоизмеримость диагонали и стороны квадрата, что равносильно иррациональности числа .
Свойства
Примеры
Примеры доказательства иррациональности
Корень из 2
Допустим противное: рационален, то есть представляется в виде несократимой дроби
, где
— целое число, а
— натуральное число. Возведём предполагаемое равенство в квадрат:
.
Отсюда следует, что чётно, значит, чётно и
. Пускай
, где
целое. Тогда
Следовательно, чётно, значит, чётно и
. Мы получили, что
и
чётны, что противоречит несократимости дроби
. Значит, исходное предположение было неверным, и
— иррациональное число.
Двоичный логарифм числа 3
Допустим противное: рационален, то есть представляется в виде дроби
, где
и
— целые числа. Поскольку 0″ src=»http://upload.wikimedia.org/math/d/1/3/d1351d4222403731e31419faebbe54bc.png» />,
и
могут быть выбраны положительными. Тогда
Но чётно, а
нечётно. Получаем противоречие.
История
Концепция иррациональных чисел была неявным образом воспринята индийскими математиками в VII веке до нашей эры, когда Манава (ок. 750 г. до н. э. — ок. 690 г. до н. э.) выяснил, что квадратные корни некоторых натуральных чисел, таких как 2 и 61, не могут быть явно выражены.
Первое доказательство существования иррациональных чисел обычно приписывается Гиппасу из Метапонта (ок. 500 гг. до н. э.), пифагорейцу, который нашёл это доказательство, изучая длины сторон пентаграммы. Во времена пифагорейцев считалось, что существует единая единица длины, достаточно малая и неделимая, которая целое число раз входит в любой отрезок. Однако Гиппас обосновал, что не существует единой единицы длины, поскольку предположение о её существовании приводит к противоречию. Он показал, что если гипотенуза равнобедренного прямоугольного треугольника содержит целое число единичных отрезков, то это число должно быть одновременно и четным, и нечетным. Доказательство выглядело следующим образом:
Греческие математики назвали это отношение несоизмеримых величин алогос (невыразимым), однако согласно легендам не воздали Гиппасу должного уважения. Существует легенда, что Гиппас совершил открытие, находясь в морском походе, и был выброшен за борт другими пифагорейцами «за создание элемента вселенной, который отрицает доктрину, что все сущности во вселенной могут быть сведены к целым числам и их отношениям». Открытие Гиппаса поставило перед пифагорейской математикой серьёзную проблему, разрушив лежавшее в основе всей теории предположение, что числа и геометрические объекты едины и неразделимы.
Феодор Киренский доказал иррациональность корней натуральных чисел до 17 (исключая, естественно, точные квадраты — 1, 4, 9 и 16), но остановился на этом, так как имевшаяся в его инструментарии алгебра не позволяла доказать иррациональность квадратного корня из 17. По поводу того, каким могло быть это доказательство, историками математики было высказано несколько различных предположений. Согласно наиболее правдоподобному предположению Жана Итара (1961), оно было основано на пифагорейской теории чётных и нечётных чисел, в том числе — на теореме о том, что нечётное квадратное число за вычетом единицы делится на восемь треугольных чисел.
Позже Евдокс Книдский (410 или 408 г. до н. э. — 355 или 347 г. до н. э.) развил теорию пропорций, которая принимала во внимание как рациональные, так и иррациональные отношения. Это послужило основанием для понимания фундаментальной сути иррациональных чисел. Величина стала считаться не числом, но обозначением сущностей, таких как отрезки прямых, углы, площади, объёмы, промежутки времени — сущностей, которые могут меняться непрерывно (в современном понимании этого слова). Величины были противопоставлены числам, которые могут меняться лишь «прыжками» от одного числа к соседнему, например, с 4 на 5. Числа составляются из наименьшей неделимой величины, в то время как величины можно уменьшать бесконечно.
Поскольку никакое количественное значение не сопоставлялось величине, Евдокс смог охватить и соизмеримые, и несоизмеримые величины при определении дроби как отношения двух величин, и пропорции как равенства двух дробей. Убрав из уравнений количественные значения (числа), он избежал ловушки, состоящей в необходимости назвать иррациональную величину числом. Теория Евдокса позволила греческим математикам совершить невероятный прогресс в геометрии, предоставив им необходимое логическое обоснование для работы с несоизмеримыми величинами. «Книга 10 Элементов» Евклида посвящена классификации иррациональных величин.
Средние века
Средние века ознаменовались принятием таких понятий как ноль, отрицательные числа, целые и дробные числа, сперва индийскими, затем китайскими математиками. Позже присоединились арабские математики, которые первыми стали считать отрицательные числа алгебраическими объектами (наряду и на равных правах с положительными числами), что позволило развить дисциплину, ныне называемую алгеброй.
Арабские математики соединили древнегреческие понятия «числа» и «величины» в единую, более общую идею вещественных чисел. Они критически относились к представлениям Евклида об отношениях, в противовес ей они развили теорию отношений произвольных величин и расширили понятие числа до отношений непрерывных величин. В своих комментариях на Книгу 10 Элементов Евклида, персидский математик Аль Махани (ок 800 гг. н. э.) исследовал и классифицировал квадратичные иррациональные числа (числа вида) и более общие кубические иррациональные числа. Он дал определение рациональным и иррациональным величинам, которые он и называл иррациональными числами. Он легко оперировал этими объектами, но рассуждал как об обособленных объектах, например:
Рациональной [величиной] является, например, 10, 12, 3%, 6% и так далее, поскольку эти величины произнесены и выражены количественно. Что не рационально, то иррационально, и невозможно произнести или представить соответствующую величину количественно. Например, квадратные корни чисел таких так 10, 15, 20 — не являющихся квадратами. |
В противовес концепции Евклида, что величины суть в первую очередь отрезки прямых, Аль Махани считал целые числа и дроби рациональными величинами, а квадратные и кубические корни — иррациональными. Он также ввел арифметический подход к множеству иррациональных чисел, поскольку именно он показал иррациональность следующих величин:
результат сложения иррациональной величины и рациональной, результат вычитания рациональной величины из иррациональной, результат вычитания иррациональной величины из рациональной. |
Египетский математик Абу Камил (ок. 850 г. н. э. — ок. 930 г. н. э.) был первым, кто счел приемлемым признать иррациональные числа решением квадратных уравнений или коэффициентами в уравнениях — в основном, в виде квадратных или кубических корней, а также корней четвёртой степени. В X веке иракский математик Аль Хашими вывел общие доказательства (а не наглядные геометрические демонстрации) иррациональности произведения, частного и результатов иных математических преобразований над иррациональными и рациональными числами. Ал Хазин (900 г. н. э. — 971 г. н. э.) приводит следующее определение рациональной и иррациональной величины:
Пусть единична величина содержится в данной величине один или несколько раз, тогда эта [данная] величина соответствует целому числу… Каждая величина, которая составляет половину, или треть, или четверть единичной величины, или, сравненная с единичной величиной составляет три пятых от нее, это рациональная величина. И в целом, всякая величина, которая относится к единичной как одно число к другому, является рациональной. Если же величина не может быть представлена как несколько или часть (l/n), или несколько частей (m/n) единичной длины, она иррациональная, то есть невыразимая иначе как с помощью корней. |
Многие из этих идей были позже переняты европейскими математиками после перевода на латынь арабских текстов в XII веке. Аль Хассар, арабский математик из Магриба, специализировавшийся на исламских законах о наследстве, в XII веке ввел современную символьную математическую нотацию для дробей, разделив числитель и знаменатель горизонтальной чертой. Та же нотация появилась затем в работах Фибоначчи в XIII веке. В течение XIV—XVI вв. Мадхава из Сангамаграмы и представители Керальской школы астрономии и математики исследовали бесконечные ряды, сходящиеся к некоторым иррациональным числам, например, к π, а также показали иррациональность некоторых тригонометрических функций. Джестадева привел эти результаты в книге Йуктибхаза.
Наше время
В XVII веке в математике прочно укрепились комплексные числа, вклад в изучение которых внесли Абрахам де Муавр (1667—1754) и Леонард Эйлер (1707—1783). Когда теория комплексных чисел в XIX веке стала замкнутой и чёткой, стало возможным классифицировать иррациональные числа на алгебраические и трансцендентные (доказав при этом существование трансцендентных чисел), тем самым переосмыслив работы Евклида по классификации иррациональных чисел. По этой теме в 1872 были опубликованы работы Вейерштрасса, Гейне, Кантора и Дедекинда. Хотя ещё в 1869 году Мерэ начал рассмотрения, схожие с Гейне, именно 1872 год принято считать годом рождения теории. Вейерштрасс, Кантор и Гейне обосновывали свои теории при помощи бесконечных рядов, в то время как Дедекинд работал с (ныне так называемым) Дедекиндовым сечением множества вещественных чисел, разделяя все рациональные числа на два множества с определёнными характеристическими свойствами.
Цепные дроби, тесно связанные с иррациональными числами (цепная дробь, представляющая данное число, бесконечна тогда и только тогда, когда число является иррациональным), были впервые исследованы Катальди в 1613 году, затем снова привлекли к себе внимание в работах Эйлера, а в начале XIX века — в работах Лагранжа. Дирихле также внёс значительный вклад в развитие теории цепных дробей.
Иррациональные числа также могут быть выражены в виде непрерывных дробей и многими другими способами.
СОДЕРЖАНИЕ
История
Древняя Греция
Теодор из Кирены доказал иррациональность увеличения целых чисел до 17, но остановился на этом, вероятно, потому, что алгебру, которую он использовал, нельзя было применить к квадратному корню из 17.
Только после того, как Евдокс разработал теорию пропорции, которая учитывала иррациональные, а также рациональные соотношения, была создана прочная математическая основа иррациональных чисел.
Индия
Позже в своих трактатах индийские математики писали об арифметике сурдов, включая сложение, вычитание, умножение, рационализацию, а также разделение и извлечение квадратных корней.
Математики, такие как Брахмагупта (в 628 году нашей эры) и Бхаскара I (в 629 году нашей эры), внесли свой вклад в эту область, как и другие математики, которые последовали за ней. В XII веке Бхаскара II оценил некоторые из этих формул и критиковал их, выявляя их ограничения.
Средний возраст
«Это будет рациональным (величина), когда мы, например, скажем 10, 12, 3%, 6% и т. Д., Потому что его значение произносится и выражается количественно. То, что нерационально, является иррациональным, и его невозможно произнести и представляют его значение количественно. Например: корни чисел, таких как 10, 15, 20, которые не являются квадратами, стороны чисел, не являющиеся кубиками, и т. д. «
«их суммы или различия, или результаты их прибавления к рациональной величине, или результаты вычитания такой величины из иррациональной, или рациональной величины из нее».
Современный период
Примеры
Квадратные корни
Общие корни
Логарифмы
Предположим, что log 2 3 рационально. Для некоторых натуральных чисел m и n имеем
Однако число 2, возведенное в любую степень положительного целого числа, должно быть четным (потому что оно делится на 2), а число 3, возведенное в любую степень положительного целого числа, должно быть нечетным (поскольку ни один из его простых делителей не будет равен 2). Ясно, что целое число не может быть одновременно четным и нечетным: приходим к противоречию. Единственное предположение, которое мы сделали, заключалось в том, что log 2 3 является рациональным (и поэтому выражается как частное целых чисел m / n с n 0). Противоречие означает, что это предположение должно быть ложным, т.е. log 2 3 иррационально и никогда не может быть выражено как частное целых чисел m / n с n 0.
Аналогичным образом можно рассматривать такие случаи, как log 10 2.
Трансцендентный / алгебраический
Поскольку алгебраические числа образуют подполе действительных чисел, многие иррациональные действительные числа могут быть построены путем комбинирования трансцендентных и алгебраических чисел. Например, 3 π + 2, π + √ 2 и e √ 3 иррациональны (и даже трансцендентны).
Десятичные разложения
Здесь повторяется 162, а длина повторения равна 3. Сначала мы умножаем на соответствующую степень 10, чтобы переместить десятичную точку вправо так, чтобы она находилась прямо перед повторением. В этом примере мы умножим на 10, чтобы получить:
представляет собой отношение целых чисел и, следовательно, рациональное число.
Иррациональные силы
Пример, обеспечивающий простое конструктивное доказательство:
( 2 ) бревно 2 3 знак равно 3. <\ displaystyle \ left (<\ sqrt <2>> \ right) ^ <\ log _ <\ sqrt <2>> 3> = 3.>
бревно 2 3 знак равно бревно 2 3 бревно 2 2 знак равно бревно 2 3 1 / 2 знак равно 2 бревно 2 3 <\ displaystyle \ log _ <\ sqrt <2>> 3 = <\ frac <\ log _ <2>3> <\ log _ <2><\ sqrt <2>>>> = <\ frac <\ log _ <2>3> <1>> = 2 \ log _ <2>3>
Открытые вопросы
Набор всех иррациональных
Поскольку действительные числа образуют неисчислимое множество, из которых рациональные числа являются счетным подмножеством, дополнительный набор иррациональных чисел неисчислим.