Докажите что множества точек стороны и диагонали квадрата равномощны
Равномощные множества. Способы установления равномощности множеств. Счетные и несчетные множества.
Определение. Множества X и Y называются равномощными, если между ними можно установить взаимно однозначное соответствие.
Если множества X и Y равномощны, то пишут X
Нетрудно увидеть, что множества, которые были рассмотрены в примерах 1 и 2, равномощны.
Равномощными могут быть как конечные, так и бесконечные множества. Равномощные конечные множества называют еще равночисленными. В начальном обучении математике равночисленность выражается словами «столько же» и может использоваться при ознакомлении учащихся со многими другими понятиями. Например, чтобы ввести равенство чисел, сравнивают два множества, устанавливая между их элементами взаимно однозначное соответствие. Например, пишут, что 5 = 5, так как кружков столько же, сколько квадратов (рис. 76).
Как уже было сказано, равномощными могут быть и бесконечные множества. Приведем примеры таких множеств.




На первый взгляд кажется парадоксальным тот факт, что можно установить взаимно однозначные соответствия между множеством и его частью: для конечных множеств такая ситуация невозможна. Однако в математике доказано, что для бесконечного множества А всегда найдется такое его подмножество B, что между А и В можно установить взаимно однозначное соответствие. Иногда это утверждение считают определением бесконечного множества.
Если бесконечное множество равномощно множеству N натуральных чисел, его называют счетным. Любое бесконечное подмножество множества N счетно: чтобы пронумеровать его элементы, надо расположить элементы подмножества в порядке возрастания и нумеровать один за другим (т.е. так, как это сделано в примере 4). Так, счетно множество всех нечетных натуральных чисел, множество натуральных чисел, кратных 5 и др. Счетными являются также множества всех целых чисел, всех рациональных.
Существуют ли множества, отличные от счетных? Доказано, что бесконечным множеством, не равномощным множеству N натуральных чисел, является множество R всех действительных чисел.
Упражнения
1.Задайте при помощи графа три соответствия между множествами X = и Y = <2, 4, 6>так, чтобы одно из них было взаимно однозначным.
3.Как можно изменить множества X и Y, данные в упражнении 2, чтобы соответствие Р: «прямоугольник х имеет площадь, равную у», было взаимно однозначным?
4.Даны множества: А = <1, 2, 5>, В = <3, 7>. Найдите А х В и В х А. Верно ли, что найденные множества равномощны?
5.Докажите, что множество А счетно, если:
6. Покажите, что, выполняя нижеприведенные задания, учащиеся начальных классов используют понятие равночисленности множеств:
![]() |
а) Нарисуй на другой фигуре (рис. 80) столько же точек, сколько на первой (точки не пересчитывать).
б) Нарисуй, не считая, столько же квадратов и столько же отрезков, сколько на рисунке 81 треугольников.
в) У Димы было 28 марок, а у Коли на 7 марок больше. Сколько марок было у Коли?
г) У Маши 9 игрушек, а у Риты на 2 меньше. Сколько игрушек у Риты?
д) Для детского сада купили 4 зеленых мяча, а красных в 3 раза больше, чем зеленых. Сколько красных мячей купили детям?
е) Для детского сада купили 15 красных мячей, а зеленых в 3 раза меньше. Сколько зеленых мячей купили детям?
43. Основные выводы § 8
Изучая материал этого параграфа, мы установили, что любое соответствие S между двумя множествами X и Y есть подмножество декартова произведения этих множеств, т.е. S с X х Y. Выяснили, что соответствия задают также, как и множества вообще. Познакомились с новыми понятиями:
— соответствие, обратное данному;
— взаимно однозначное соответствие;
Установили, что графики взаимно обратных соответствий между числовыми множествами симметричны относительно биссектрисы 1-го и 3-го координатных углов.
Лекция 18. Числовые функции
1. Определение числовой функции как частного случая соответствия.. Способы задания функции. Область определения и область значения функции.
2. График функции. Свойство монотонности функции
§ 9. ЧИСЛОВЫЕ ФУНКЦИИ
В начальном курсе математики понятие функции и все, что с ним связано, в явном виде не изучается, но идея функциональной зависимости буквально пронизывает его, а правильное понимание таких свойств реальных явлений, как взаимозависимость и изменяемость, является основой научного мировоззрения. Безусловно, все это требует от учителя начальных классов определенных знаний о функции и ее свойствах, и прежде всего таких, которые помогут ему осуществлять в начальной школе пропедевтику понятия функции.
44. Понятие функции. Способы задания функций
Выполним два задания для младших школьников.
1) Увеличь каждое нечетное однозначное число в 2 раза.
| Уменьшаемое |
| Вычитаемое |
| Разность |
С какими математическими понятиями мы имеем дело, выполняя эти задания?
Определение.Числовой функцией называется такое соответствие между числовым множеством X и множеством R действительных чисел, при котором каждому числу из множества X сопоставляется единственное число из множества R.
Множество X называют областью определения функции.
Функции принято обозначать буквами f, g, h и др. Если f— функция, заданная на множестве X, то действительное число у, соответствующее числу x из множества X, часто обозначают f(х) и пишут у = f(х). Переменную х при этом называют аргументом (или независимой переменной) функции f. Множество чисел вида f(х) для всех х из множества X называют областью значений функции f.
В рассмотренном выше первом примере функция задана на множестве X = <1, 3, 5, 7>— это ее область определения. А область значений этой функции есть множество <2, 6, 10, 14>.
Из определения функции вытекает, что для задания функции необходимо указать, во-первых, числовое множество X, т.е. область определения функции, и, во-вторых, правило, по которому каждому числу из множества X соответствует единственное действительное число.
08. Примеры равномощных множеств
Приведенные выше примеры и теоремы показывают, что установить равномощность различных множеств далеко не просто. В этом параграфе мы рассмотрим примеры построения биекции между различными множествами. Будут приведены примеры доказательств равномощности ряда множеств.
Пример 1. Установить биекцию между отрезком [0, 1] и отрезком [а, в].
Решение. Легко устанавливается биективность линейного отображения x = (в – a)t + a отрезка [0, 1] на отрезок [а, в].
Пример 2. Установить биекцию между интервалом (0, 1) и интервалом (–¥, +¥).
Решение. Легко устанавливается биективность отображения x= ctg(pt) интервала (0, 1) на интервал (–¥, +¥).
Задача. Рассмотреть основные элементарные функции и найти промежутки, на которых они являются биективным отображением.
Пример 3. Построить биекцию между отрезком [0, 1] и интервалом (0, 1).
Решение. Решение этой задачи основано на несчетности рассматриваемых множеств и теореме 4 из параграфа 6. Идея решения состоит в том, что из интервала (0, 1) выделяют некоторое счетное множество А. Затем к нему добавляют две точки <0>и <1>. Вновь полученное множество (обозначим его В Ì [0, 1]), также является счетным. Следовательно, множества А и В равномощны и существует биекция f, отображающая B на A. Построим теперь биекцию отрезка [0, 1] на интервал (0, 1) следующим образом:
Пример 4. Построить биекцию между окружностью единичного радиуса и отрезком [0, 1].
Схема решения. Легко устанавливается биекция между точкой окружности и углом, соответствующим этой точке. Этим получается биекция окружности и полуотрезка [0, 2p). Затем по схеме примера 3 строится биекция полуотрезка [0, 2p) на отрезок [0, 1].
Пример 6. Доказать, что множество точек разрыва монотонной функции, заданной на отрезке [а, в], конечно или счетно.
Математический портал
Nav view search
Navigation
Search
Счетность и несчетность множеств. Равномощность множеств.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Примеры.
Доказать, что следующие множества счетны:
Решение.
Что и требовалось доказать.
Решение.
Что и требовалось доказать.
Решение.
Что и требовалось доказать.
Решение.
Что и требовалось доказать.
Примеры:
Доказательство.
Что и требовалось доказать.
Доказательство.
Проведем доказательство в несколько этапов:
Что и требовалось доказать.
Домашнее задание.
Доказать, что следующие множества счетны:
1.70. Используя результат задачи 1.68, доказать, что множество всех точек плскости с рациональными координатами счетно.
Докажите что множества точек стороны и диагонали квадрата равномощны
Войти
Авторизуясь в LiveJournal с помощью стороннего сервиса вы принимаете условия Пользовательского соглашения LiveJournal
| [ | userinfo | | | livejournal userinfo | ] |
| [ | archive | | | journal archive | ] |






