Цель: обобщить и систематизировать знания учащихся по теме “Периодичность функций”; формировать навыки применения свойств периодической функции, нахождения наименьшего положительного периода функции, построения графиков периодических функций; содействовать повышению интереса к изучению математики; воспитывать наблюдательность, аккуратность.
Оборудование: компьютер, мультимедийный проектор, карточки с заданиями, слайды, часы, таблицы орнаментов, элементы народного промысла
“Математика – это то, посредством чего люди управляют природой и собой” А.Н. Колмогоров
I. Организационный этап.
Проверка готовности учащихся к уроку. Сообщение темы и задач урока.
II. Проверка домашнего задания.
Домашнее задание проверяем по образцам, наиболее сложные моменты обсуждаем.
III. Обобщение и систематизация знаний.
1. Устная фронтальная работа.
1) Сформируйте определение периода функции 2) Назовите наименьший положительный период функций y=sin(x), y=cos(x) 3). Назовите наименьший положительный период функций y=tg(x), y=ctg(x) 4) Докажите с помощью круга верность соотношений:
a) sin( 740º ) = sin(2 0º ) b) cos( 54º ) = cos(-1026º) c) sin(-1000º) = sin( 80º )
2. Доказать, что угол в 540º является одним из периодов функции y= cos(2x)
3. Доказать, что угол в 360º является одним из периодов функции y=tg(x)
a) tg 375º b) ctg 530º c) sin 1268º d) cos (-7363º)
5. Где вы встречались со словами ПЕРИОД, ПЕРИОДИЧНОСТЬ?
Ответы учащихся: Период в музыке – построение, в котором изложено более или менее завершенная музыкальная мысль. Геологический период – часть эры и разделяется на эпохи с периодом от 35 до 90 млн. лет.
Период полураспада радиоактивного вещества. Периодическая дробь. Периодическая печать – печатные издания, появляющиеся в строго определенные сроки. Периодическая система Менделеева.
6. На рисунках изображены части графиков периодических функций. Определите период функции. Определить период функции.
7. Где в жизни вы встречались с построением повторяющихся элементов?
Ответ учащихся: Элементы орнаментов, народное творчество.
IV. Коллективное решение задач.
(Решение задач на слайдах.)
Рассмотрим один из способов исследования функции на периодичность.
Задача 1. Найдите наименьший положительный период функции f(x)=1+35>
Решение: Предположим, что Т-период данной функции. Тогда f(x+T)=f(x) для всех x € D(f), т.е.
Положим x=-0,25 получим
Мы получили, что все периоды рассматриваемой функции (если они существуют) находятся среди целых чисел. Выберем среди этих чисел наименьшее положительное число. Это 1. Проверим, не будет ли оно и на самом деле периодом 1.
Так как=при любом Т, то f(x+1)=3<(x+0.25)+1>+1=3+1=f(x), т.е. 1 – период f. Так как 1 – наименьшее из всех целых положительных чисел, то T=1.
Задача 2. Показать, что функция f(x)=cos 2 (x) периодическая и найти её основной период.
Задача 3. Найдите основной период функции
Допустим Т-период функции, тогда для любого х справедливо соотношение
sin(1,5Т)+5cos(0,75Т)=5
cos=1
=2 π n, n € Z
T=, n € Z
Выберем из всех “подозрительных” на период чисел наименьшее положительное и проверим, является ли оно периодом для f. Это число
Задача 4. Проверим является ли периодической функция f(x)=sin(x)
Пусть Т – период функции f. Тогда для любого х
Если х=0, то sin|Т|=sin0, sin|Т|=0 Т= π n, n € Z.
Предположим. Что при некотором n число π n является периодом
рассматриваемой функции π n>0. Тогда sin| π n+x|=sin|x|
Отсюда вытекает, что n должно быть одновременно и четным и нечетным числом, а это невозможно. Поэтому данная функция не является периодической.
Задача 5. Проверить, является ли периодической функция
f(x)=
Пусть Т – период f, тогда
, отсюда sinT=0, Т= π n, n € Z. Допустим, что при некотором n число π n действительно является периодом данной функции. Тогда и число 2 π n будет периодом
Так как числители равны, то равны и их знаменатели, поэтому
Значит, функция f не периодическая.
Задания для группы 1.
Проверьте является ли функция f периодической и найдите ее основной период (если существует).
Задания для группы 2.
Проверьте является ли функция f периодической и найдите ее основной период (если существует).
Задания для группы 3.
По окончании работы группы презентуют свои решения.
VI. Подведение итогов урока.
Учитель выдаёт учащимся карточки с рисунками и предлагает закрасить часть первого рисунка в соответствии с тем, в каком объёме, как им кажется, они овладели способами исследования функции на периодичность, а в части второго рисунка – в соответствии со своим вкладом в работу на уроке.
Мои умения исследовать функции на периодичность
Мой вклад в работу на уроке
VII. Домашнее задание
1). Проверьте, является ли функция f периодической и найдите её основной период (если он существует)
Определение: Функция f(x) называется периодической, если существует такое число Т≠0,что для любого х из области определения этой функции значения х+Т и х-Т также принадлежат области определения и выполняются равенства f(x-Т)=f(x)=f(x+Т). Число Т называется периодом функции f(x)
Задача1 Доказать,что f(x)=sinx+1 является периодической с периодом 2π Решение: Функция f(x)=sinx+1 определена на R. f(x+2π)=sin(x+2π)+1=sinx+1=f(x)
Задача 3 Доказать,что f(x)= является периодической с периодом 2π Решение: x f (x+2π)=
Задача 6 Найти наименьший положительный период функции Решение: f(x+Т)=f(x) Наименьший положительный период при n=1
Задача 7 Найти наименьший положительный период функции Решение:
Наименьший положительный период функции при n=1 Т=2π
Задача 8 Найти наименьший положительный период функции Решение: Функция y=cosx имеет период 2π. Функция имеет период
Задача 9 Найти наименьший положительный период функции Решение: Так как функция sin2x имеет период а функция cos3x имеет период то период Т функции будет такое наименьшее положительное число, которое кратно одновременно,т.е.наименьшее общее кратное.Т=2π
Задача 10 Найти наименьший положительный период функции Решение: Так как функция имеет период а функция имеет период то период Т функции будет такое наименьшее положительное число, которое кратно одновременно,т.е наименьшее общее кратное. Т=6π
Курс повышения квалификации
Дистанционное обучение как современный формат преподавания
Курс повышения квалификации
Методика обучения математике в основной и средней школе в условиях реализации ФГОС ОО
Курс профессиональной переподготовки
Математика: теория и методика преподавания в образовательной организации
Ищем педагогов в команду «Инфоурок»
Номер материала: ДБ-233469
Не нашли то что искали?
Вам будут интересны эти курсы:
Оставьте свой комментарий
Авторизуйтесь, чтобы задавать вопросы.
В Ленобласти педагоги призеров и победителей олимпиады получат денежные поощрения
Время чтения: 1 минута
Путин поручил не считать выплаты за классное руководство в средней зарплате
Время чтения: 1 минута
В московских школах придумали новый формат классных часов с участием отцов
Время чтения: 2 минуты
В России предложили учредить День семейного волонтерства
Время чтения: 2 минуты
Только каждый 10-й россиянин может дать платное образование своим детям
Время чтения: 2 минуты
Учителям предлагают 1,5 миллиона рублей за переезд в Златоуст
Время чтения: 1 минута
Подарочные сертификаты
Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.
Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.
Пусть основной период данной функции равен Т. Тогда для данной функции при любых действительных х рассмотрим равенство
A sin (m (x + T) + ) = A sin (mx + ).
A (sin (m (x + T) + ) – sin (mx + ) = 0.
Применяя формулу разности синусов, будем иметь:
2А sin cos = 0
2А sin cos = 0
2А sin cos = 0
2А sin cos = 0
Это произведение должно равняться нулю независимо от значений х.
= , или , где nZ.
Из множества значений Т наименьшее положительное значение получим при наименьшем положительном значении n = 1, значит период данной функции
.
Заметим, что период функции у = А sin (mx + ) не зависит от A и .
Аналогично можно найти основные периоды и остальных тригонометрических функций.
Таким образом, функции
y = sin x и y = cos x имеют основной период Т = 2
у = tg x и у = ctg x имеют основной период Т = ,
а функции у = sin (mx + ) и у = cos(mx + ) имеют основной период Т = .
Функции у = tg (mx + ) и у = ctg (mx + ) имеют основной период Т = .
Отметим некоторые свойства периодических функций. Заметим, что сумма разность, произведение и частное двух периодических функций может быть функцией как периодической, так и не периодической.
Теорема 1. Если периодические функции y = f1 (x) и y = f2 (x), x Î X, имеют один и тот же период T, то их сумма, разность, произведение тоже будут периодическими функциями и число Т будет их периодом.
Доказательство Так как функция y = f1 (x) – периодическая с периодом Т ¹ 0, то для любого x Î X выполняется равенство
Так как функция y = f2 (x) – периодическая с периодом Т ¹ 0, то для любого x Î X выполняется равенство
Рассмотрим функцию z (x) = f1 (x) ± f2 (x), заданную на множестве X. Тогда для любого x Î X согласно равенствам (1) и (2) будем иметь
Последнее равенство доказывает периодичность функции z (x) представляющей собой сумму или разность двух периодических функций с одним и тем же периодом Т.
Рассмотрим функцию t (x) = f1 (x)×f2 (x), заданную на множестве Х. Тогда для любого x Î X согласно равенствам (1) и (2) будем иметь
Данное равенство доказывает периодичность функции t(x) представляющей собой произведение двух периодических функций с одним и тем же периодом Т, причем число Т является периодом как функции t(x), так и функции z(x).
Замечание. Если число Т было наименьшим положительным периодом (т.е. основным периодом) двух заданных функций, то после их сложения или умножения Т может перестать быть наименьшим из положительных периодов.
Пример 5. Функция f1 (x) = 3 sin x + 2 имеет основной период 2p, функция f2 (x) = 2 – 3 sin x имеет основной период 2p, а их сумма
z (x ) = f1 (x) +f2 (x) = 3 sin x + 2 + 2 – 3 sin x = 4
наименьшего положительного периода не имеет, так как при любом действительном значении a ¹ 0 z(x+a) = z(x), т.е. любое действительное число является периодом функции z(x), а наименьшего положительного среди действительных чисел нет.
Пример 6. Функция j1(x) = sin x +1 и j2(x) = 1- sin x имеют наименьший положительный период 2p, а для произведения
t(x) = j1(x) × j2(x) = (sin x +1)(1- sin x) = 1- sin 2 x = cos 2 x =
Определение Периоды функций Т1 и Т2 называются соизмеримыми, если существуют такие целые отличные от нуля числа m и n, что m×T1 = n×Т2.
Пример 7. Выясним, являются ли соизмеримыми периоды Т1 = и
Т2=
Решение. Данные периоды будут соизмеримыми, если уравнение ×m = ×n имеет решение на множестве Z \ <0>. Умножим обе части данного уравнения на 6 (наименьшее общее кратное чисел 3 и 2), получим равносильное уравнение 4m = 15n, откуда m = 15k, n = 4k, где k Î Z \ <0>. Например, при k = 1 получим
× 15 = ×4 = 10
Ответ: Периоды Т1 и Т2 соизмеримы.
Теорема 2. Если периодические функции y = f1(x) и y = f2(x), x Î X, имеют соизмеримые периоды Т1 и Т2 то они имеют общий период.
Доказательство. Так как периоды Т2 и Т2 соизмеримы, то существуют целые отличные от нуля числа m и n такие, что m ×T1 = n × T2 = T ¹ 0. Следовательно, Т – общий период функций y = f1(x) и y = f2 (x). Теорема доказана.
Замечание. По теореме 1 число Т будет также периодом функций
Пример 8. Найти период функции
Для того, чтобы найти общий период функции, представим периоды
Т1 = p; Т2 =p и Т3 = p в другом виде, а именно, коэффициенты при p в полученных периодах приведем к общему знаменателю, получим
Т1 = p = 6×; Т2 = p = 4× и Т3 = p = ×p и найдем наименьшее общее кратное числителей этих коэффициентов 6, 4 и 15. Оно равно 60. Следовательно, число Т = 60× = 10p – основной период данной функции.
Пример 9. Найти период функции y = cos5x-sin2x.
Решение. Функция y = cos5x имеет период T1 = ; функция y = sin2x – период Т2 = = p. Представим периоды Т1 и Т2 в другом виде: Т1 = 2×; Т2 = 5×. Таким образом видно, что периоды Т1 и Т2 соизмеримы: 5Т1 = 2Т2, откуда 5× = 2×p = 2p. Следовательно, число 2p является периодом данной функции.
Пример 10. Найти основной период функции y = sin 2 x.
Решение. Понизим степень функции y = sin 2 x. Тогда y = =
—cos2x. Период этой функции равен периоду cos2x = p. Таким образом основной период данной функции равен p.
Замечание. Если Т1 и Т2 – основные периоды функций f1(x) и f2(x), то наименьшее положительное число Т, удовлетворяющее условиям:
Т = mT1 = nT2, где m, n Î Z \ <0>, не обязательно является основным периодом функций f1(x) ± f2(x) и f1(x) × f2(x).
Или, вернемся к примеру 6 и посмотрим на функцию y = sin 2 x как на произведение функций y = sinx ×sinx. Основной период функции y = sinx есть число 2p, но решая пример 6, мы показали, что основной период функции
y = sin 2 x равен p.
Заметим, что сложная функция, промежуточным аргументом которой служит периодическая функция, есть функция периодическая, причем периоды этих функций совпадают. Докажем
Теорему 3. Если y = f(j(x)) – сложная функция, где j(x) – периодическая функция с периодом Т, то и сложная функция периодическая с периодом Т.
Доказательство. Так как j(x) – периодическая функция с периодом Т, то для любого действительного x из области определения функции j(x) имеем
тогда для функции y = f(j(x)) при любом действительном х из области определения функции j(x) будем иметь
j(x + Т) = f (j(x)) = f(j(x)) = y(x).
Последнее равенство доказывает, что функция y = f(j(x)) периодическая с периодом Т.
Пример 11. Функция y = cos3x периодическая с периодом = p. В силу теоремы 3 функция y = 5cos 2 2x + +3 периодическая с периодом p.
Рассмотрим примеры на доказательство периодичности или не периодичности функций.
Пример 12. Доказать, что функция y = sin не является периодической.
Доказательство. I способ: D(y) = [0;+¥). Пусть положительное число
Т – период данной функции, тогда должно выполнятся условие (х-Т) Î D(y), для любого x Î D(y). Но при x = 0 (х-Т) Ï D(y), следовательно, T > 0 не является периодом функции.
Докажем, что Т 2 x не является периодической.
Доказательство. Пусть данная функция имеет период Т ¹ 0. Тогда для любого x Î D(y) (D(y) = R) должно выполнятся равенство
cos (x+T) 2 = cos x 2 или
Преобразуем данное равенство по формуле разности косинусов, получим
2 sin × sin
2sin (x 2 + T×x + ) × sin (T×x + ) = o
Это произведение должно равняться нулю независимо от значений переменной величины x, а это невозможно, sin (T×x + ) ¹ o и
sin (x 2 + T×x + ) ¹ 0. Значит допущение, что функция y = cos 2 x периодическая неверно, т.е. данная функция не является периодической.
Пример 14. Доказать, что функция y = |sin (x)| является периодической с периодом p.
Доказательство. D(y) = R. Пусть периодом данной функции будет число Т ¹ 0. Тогда
Это равенство будет выполнятся в двух случаях:
1) sin (x + Т) = sin (x) и тогда
2 cos (x + )×sin = 0.
Это произведение должно равняться нулю независимо от переменной x, а это возможно только при sin = 0. Откуда
= pk и Т = 2pk, что приводит к основному периоду 2p.
Тогда sin (x + Т) +sin (x) = 0 и
2 sin (x + )×cos = 0.
Откуда = и Т = pn, что приводит к основному периоду Т = p. Так как при Т = p выполняется равенство (4), следовательно, и равенство (3). Значит, Т = p есть период функции y = |sin (x)|.
§5 Тестовые контрольные работы по теме «Числовые функции. Сложная функция. Четные нечетные функции. Периодические функции»
Рассмотрим комплект тестовых заданий по теме «Числовые функции. Сложная функция. Четные нечетные функции. Периодические функции».
При разработке данного комплекта тестовых заданий учитывались следующие моменты:
1) содержание заданий, вопросов охватывает наиболее принципиальные стороны и идеи темы;
2) в задания сделан акцент не на проверку навыков, а на выявление глубины освоения идейного содержания темы, проявлению математической эрудиции;
3) по усмотрению учителя тестовое задание может предлагаться ученикам не полностью, а частями.
4) задания обеспечивают возможность проведения итоговых занятий на заключительном этапе изучения понятия функции в школьном курсе математики.
Комплект тестовых заданий составлен в четырех вариантах и включает двенадцать вопросов. На каждый из них дается четыре ответа для выбора правильного из них. Вопросы в заданиях предлагаются в текстовой и графической формах. Задания рассчитаны на 45 минут работы школьника.
1. Какое равенство не задает функцию?
а) y 2 = x 2 ; б) y = x 2 ; в) y = lg x; г) y = .
2. На каком из рисунков изображено множество точек координатной плоскости, которое нельзя рассматривать как график функции?