Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π€ΠΎΡ€ΠΌΡƒΠ»Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ

Π€ΠΎΡ€ΠΌΡƒΠ»Π° для нахоТдСния расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ A(x1;x2) B(x2;y2) Π½Π° плоскости:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π‘Π½Π°Ρ‡Π°Π»Π° рассмотрим частныС случаи.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x21) Если y1=y2,

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

К этой ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ ΠΏΡ€ΠΈΠ΄Ρ‘ΠΌ, Ссли подставим ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ A ΠΈ B Π² ΠΎΠ±Ρ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

2) Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2Аналогично, Ссли x1=x2:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π­Ρ‚Ρƒ ΠΆΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ, подставив ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ A ΠΈ B Π² ΠΎΠ±Ρ‰ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

3) Если x1=x2 ΠΈ y1=y2, AB=0. Π€ΠΎΡ€ΠΌΡƒΠ»Π° для этого случая Ρ‚Π°ΠΊΠΆΠ΅ Π²Π΅Ρ€Π½Π°.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2ΠŸΡ€ΠΎΠ²Π΅Π΄Ρ‘ΠΌ Ρ‡Π΅Ρ€Π΅Π· Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΈ B прямыС, пСрпСндикулярныС ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹ΠΌ осям. ΠžΠ±ΠΎΠ·Π½Π°Ρ‡ΠΈΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ пСрСсСчСния этих прямых Ρ‡Π΅Ρ€Π΅Π· C.

Из ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° ABC ΠΏΠΎ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π£Ρ€ΠΎΠΊ 3

расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ.

Π΄Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ.

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ.

Ρ‚Π°ΠΊ ΠΊΠ°ΠΊ ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊ ΠŸΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½Ρ‹ΠΉ, Ρ‚ΠΎ По Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ΅ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1. Π½Π°ΠΉΡ‚ΠΈ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π°(-2;3) ΠΈ Π²(5;4).

Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. ΠΈΡΠŸΠΎΠ»ΡŒΠ·ΡƒΡ Π΄Π°Π½Π½ΡƒΡŽ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ, ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ:&amP;NbSP;

ΡƒΠŸΡ€Π°ΠΆΠ½Π΅Π½ΠΈΠ΅. Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π°(0;0), Π²(3;-4), с(-3;4). Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ: Π°) Π°ΠΈ Π²; Π±) Π² ΠΈ с; Π²) Π° ΠΈ с. (ΠΎΡ‚Π²Π΅Ρ‚: Π°) 5, Π±) 10, Π²) 5)

Π΄ΠΎΠΊΠ°Π·Π°Ρ‚Π΅Π»ΡŒΡΡ‚Π²ΠΎ. ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° авс, ΠΈΠ·ΠΎΠ±Ρ€Π°ΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ Π½Π° рисункС, ΠΌΠΎΠΆΠ½ΠΎ Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊ:

выраТая ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ Ρ‚Ρ€Π°ΠŸΠ΅Ρ†ΠΈΠΈ Ρ‡Π΅Ρ€Π΅Π· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π°, Π² ΠΈ с, Π½Π°Ρ…ΠΎΠ΄ΠΈΠΌ:

S adec =1/2 (ad+ce)*de = 1/2( x 3 – x 1 )( y 3 + y 1 )

S bceF =1/2 (ec+bF)*eF = 1/2 ( x 2 – x 3 )( y 2 + y 3 )

S abFd =1/2 (ad+bF)*dF = 1/2 ( x 2 – x 1 )( y 2 + y 1 )

Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° Π²Π΅Ρ€Π½Π° для любого Ρ€Π°ΡΠŸΠΎΠ»ΠΎΠΆΠ΅Π½ΠΈΡ Ρ‚ΠΎΡ‡Π΅ΠΊ Π°, Π², с Π½Π° ΠŸΠ»ΠΎΡΠΊΠΎΡΡ‚ΠΈ, Π° Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ для Ρ‚Π°ΠΊΠΎΠ³ΠΎ, ΠΊΠ°ΠΊ Показано Π½Π° рисункС, ΠŸΡ€ΠΈ условии, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ…ΠΎΠ΄ Π²Π΅Ρ€ΡˆΠΈΠ½ Π° > Π² > с ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ ΠŸΡ€ΠΎΡ‚ΠΈΠ² часовой стрСлки.

Ссли ΠΆΠ΅ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° авс Ρ€Π°ΡΠŸΠΎΠ»ΠΎΠΆΠ΅Π½Ρ‹ Ρ‚Π°ΠΊ, Ρ‡Ρ‚ΠΎ ΠΎΠ±Ρ…ΠΎΠ΄ Π°>Π²>с ΡΠΎΠ²Π΅Ρ€ΡˆΠ°Π΅Ρ‚ΡΡ По часовой стрСлкС, Ρ‚ΠΎ ΠŸΡ€Π°Π²Π°Ρ Ρ‡Π°ΡΡ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ мСняСт Π·Π½Π°ΠΊ Π½Π° ΠŸΡ€ΠΎΡ‚ΠΈΠ²ΠΎΠŸΠΎΠ»ΠΎΠΆΠ½Ρ‹ΠΉ ΠΈ для ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° авс Π½Π°Π΄ΠΎ Π²Π·ΡΡ‚ΡŒ Ρ‚ΠΎ ΠΆΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ со Π·Π½Π°ΠΊΠΎΠΌ «-«.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2. Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π°(1;1), Π²(6;4), с(8;2). Π½Π°ΠΉΡ‚ΠΈ ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° авс.

Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. ΠŸΠΎΠ΄ΡΡ‚Π°Π²Π»ΡΡ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ для ΠŸΠ»ΠΎΡ‰Π°Π΄ΠΈ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

S abc =1/2 |(6 – 1)(2 –1) – (8 – 1)(4 – 1)| = 1/2 l-16l =8

ΡƒΠŸΡ€Π°ΠΆΠ½Π΅Π½ΠΈΠ΅. Π²Ρ‹Ρ‡ΠΈΡΠ»ΠΈΡ‚ΡŒ ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ°, Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ³ΠΎ ΡΠ²Π»ΡΡŽΡ‚ΡΡ Ρ‚ΠΎΡ‡ΠΊΠΈ: Π°) Π°(2;-3), Π²(3;2), с(-2;5) Π±) ΠΌ(-3;2), ΠΊ(5;-2), ΠΎ(1;3) Π²) Ρ…(3;-4), Ρƒ(-2;3), Ρ‚(4;5). (ΠΎΡ‚Π²Π΅Ρ‚: Π°) 14, Π±) 12, Π²) 25).

Π”Π΅Π»Π΅Π½ΠΈΠ΅ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ.

Π·Π°Π΄Π°Ρ‡Π° ΠΎ Π΄Π΅Π»Π΅Π½ΠΈΠΈ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π² Π΄Π°Π½Π½ΠΎΠΌ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ По Π΄Π°Π½Π½ΠΎΠΌΡƒ ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΡŽ Π› ΠΈ Π΄Π°Π½Π½Ρ‹ΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΌ 1, ΠΌ 2 Π½Π°ΠΉΡ‚ΠΈ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌ.

эту Π·Π°Π΄Π°Ρ‡Ρƒ ΠŸΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π°Ρ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΠ°.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 3. Π΄Π°Π½Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π°(-2;3) ΠΈ Π²(4;6). ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ этими Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ Π› =2. Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌ(Ρ…;Ρƒ).

Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ ΠΈ Π› =2 Π² Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠΌ: Ρ…= (-2+2*4) / (1+2)=2; Ρƒ= (3+2*6) / (1+2)=5. ΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ дСлСния ΠΌ(2;5).

Ρ‚Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, ΠΈΠ· рассмотрСнных Π½Π°ΠΌΠΈ Π·Π°Π΄Π°Ρ‡ наглядно Π²ΠΈΠ΄Π½ΠΎ, ΠΊΠ°ΠΊ ΠΌΠ΅Ρ‚ΠΎΠ΄ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠŸΠΎΠ·Π²ΠΎΠ»ΡΠ΅Ρ‚ Ρ€Π΅ΡˆΠΈΡ‚ΡŒ гСомСтричСскиС Π·Π°Π΄Π°Ρ‡ΠΈ чисто алгСбраичСски.

Π½Π° оси ΠΎΡ… Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Ρ‚ΠΎΡ‡ΠΊΡƒ, расстояниС ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π°(3;4) Ρ€Π°Π²Π½ΠΎ 5. (ΠΎΡ‚Π²Π΅Ρ‚: (6;0) ΠΈ (0;0))

Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌ являСтся сСрСдиной ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΎΠ°, ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π΅Π³ΠΎ Π½Π°Ρ‡Π°Π»ΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΎ с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ Π°(-5;2). Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΌ. (ΠΎΡ‚Π²Π΅Ρ‚: (-2,5;1))

Ρ‚ΠΎΡ‡ΠΊΠ° ΠΌ(2;3) Π΄Π΅Π»ΠΈΡ‚ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π°Π² Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 1:2. Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ Π², Ссли извСстно, Ρ‡Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° Π° ΠΈΠΌΠ΅Π΅Ρ‚ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ (1;2). (ΠΎΡ‚Π²Π΅Ρ‚: Π²(4;5))

Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ†Π΅Π½Ρ‚Ρ€Π° тяТСсти ΠΎΠ΄Π½ΠΎΡ€ΠΎΠ΄Π½ΠΎΠΉ ΠŸΠ»Π°ΡΡ‚ΠΈΠ½ΠΊΠΈ, ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΉ Ρ„ΠΎΡ€ΠΌΡƒ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ Π°(-2;1), Π²(2;-1), с(4;3).(ΠΎΡ‚Π²Π΅Ρ‚: Ρ…=4 / 3, Ρƒ=1, ΡƒΠΊΠ°Π·Π°Π½ΠΈΠ΅: Ρ†Π΅Π½Ρ‚Ρ€ тяТСсти Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° находится Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠŸΠ΅Ρ€Π΅ΡΠ΅Ρ‡Π΅Π½ΠΈΡ Π΅Π³ΠΎ ΠΌΠ΅Π΄ΠΈΠ°Π½, которая Π΄Π΅Π»ΠΈΡ‚ ΠΊΠ°ΠΆΠ΄ΡƒΡŽ ΠΈΠ· ΠΌΠ΅Π΄ΠΈΠ°Π½ Π² ΠΎΡ‚Π½ΠΎΡˆΠ΅Π½ΠΈΠΈ 2:1, считая ΠΎΡ‚ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹)

Ρ‚Ρ€ΠΈ Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ ΠŸΠ°Ρ€Π°Π»Π»Π΅Π»ΠΎΠ³Ρ€Π°ΠΌΠΌΠ°- Ρ‚ΠΎΡ‡ΠΊΠΈ Π°(3;7), Π²(2;-3) ΠΈ с(-1;4). Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ Π΄Π»ΠΈΠ½Ρƒ высоты, ΠΎΠŸΡƒΡ‰Π΅Π½Π½ΠΎΠΉ ΠΈΠ· Π²Π΅Ρ€ΡˆΠΈΠ½Ρ‹ Π² Π½Π° сторону ас. (ΠΎΡ‚Π²Π΅Ρ‚: 7 ΠΈΠ»ΠΈ 4)

ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ, ΠΎΠ³Ρ€Π°Π½ΠΈΡ‡Π΅Π½Π½Ρ‹ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π°(1;-3) ΠΈ Π²(4;3), Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ Π½Π° Ρ‚Ρ€ΠΈ Ρ€Π°Π²Π½Ρ‹Π΅ части. ΠΎΠŸΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡Π΅ΠΊ дСлСния. (ΠΎΡ‚Π²Π΅Ρ‚: (2;-1) ΠΈ (3;1))

ΠΎΠŸΡ€Π΅Π΄Π΅Π»ΠΈΡ‚Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΊΠΎΠ½Ρ†ΠΎΠ² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π° ΠΈ Π², ΠΊΠΎΡ‚ΠΎΡ€Ρ‹ΠΉ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΊ(2;2) ΠΈ ΠΌ(1;5) Ρ€Π°Π·Π΄Π΅Π»Π΅Π½ Π½Π° Ρ‚Ρ€ΠΈ Ρ€Π°Π²Π½Ρ‹Π΅ части. (ΠΎΡ‚Π²Π΅Ρ‚: Π°(3;-1) ΠΈ Π²(0;8))

Π½Π°ΠΉΠ΄ΠΈΡ‚Π΅ ΠŸΠ»ΠΎΡ‰Π°Π΄ΡŒ ΠŸΡΡ‚ΠΈΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° с Π²Π΅Ρ€ΡˆΠΈΠ½Π°ΠΌΠΈ ΠΎ(0;0), Π°(3;-2), Π²(5;-1), с(8;4) ΠΈ Π΅(4;5). (ΠΎΡ‚Π²Π΅Ρ‚: 29,5)

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ: Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹, ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρ‹, Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ

Π’ Π΄Π°Π½Π½ΠΎΠΉ ΡΡ‚Π°Ρ‚ΡŒΠ΅ рассмотрим способы ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ тСорСтичСски ΠΈ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡. И для Π½Π°Ρ‡Π°Π»Π° Π²Π²Π΅Π΄Π΅ΠΌ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Π΅ опрСдСлСния.

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ – это Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΈΡ… ΡΠΎΠ΅Π΄ΠΈΠ½ΡΡŽΡ‰Π΅Π³ΠΎ, Π² ΠΈΠΌΠ΅ΡŽΡ‰Π΅ΠΌΡΡ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅. Π—Π°Π΄Π°Ρ‚ΡŒ ΠΌΠ°ΡΡˆΡ‚Π°Π± Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΈΠΌΠ΅Ρ‚ΡŒ для измСрСния Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π΄Π»ΠΈΠ½Ρ‹. ΠŸΠΎΡ‚ΠΎΠΌΡƒ Π² основном Π·Π°Π΄Π°Ρ‡Π° нахоТдСния расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Ρ€Π΅ΡˆΠ°Π΅Ρ‚ΡΡ ΠΏΡ€ΠΈ использовании ΠΈΡ… ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ прямой, Π² ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости ΠΈΠ»ΠΈ Ρ‚Ρ€Π΅Ρ…ΠΌΠ΅Ρ€Π½ΠΎΠΌ пространствС.

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ прямой

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ Ρ†Π΅Π»ΠΎΠΌ ΠΌΠΎΠΆΠ½ΠΎ Π³ΠΎΠ²ΠΎΡ€ΠΈΡ‚ΡŒ ΠΎ Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΡ†Π΅Π½ΠΊΠ° Π΄Π»ΠΈΠ½Ρ‹ Π½Π΅ΠΊΠΎΠ³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° происходит Π² сравнСнии с ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠΌ, принятым Π·Π° Π΅Π΄ΠΈΠ½ΠΈΡ†Ρƒ Π΄Π»ΠΈΠ½Ρ‹ Π² Π·Π°Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ°ΡΡˆΡ‚Π°Π±Π΅.

Если Ρ‚ΠΎΡ‡ΠΊΠ΅ А соотвСтствуСт Ρ†Π΅Π»ΠΎΠ΅ Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число, ΠΎΡ‚Π»ΠΎΠΆΠΈΠ² ΠΏΠΎΡΠ»Π΅Π΄ΠΎΠ²Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ О Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ ΠΏΠΎ прямой О А ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΈ – Π΅Π΄ΠΈΠ½ΠΈΡ†Ρ‹ Π΄Π»ΠΈΠ½Ρ‹, ΠΌΡ‹ ΠΌΠΎΠΆΠ΅ΠΌ ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ Π΄Π»ΠΈΠ½Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° O A ΠΏΠΎ ΠΈΡ‚ΠΎΠ³ΠΎΠ²ΠΎΠΌΡƒ количСству ΠΎΡ‚Π»ΠΎΠΆΠ΅Π½Π½Ρ‹Ρ… Π΅Π΄ΠΈΠ½ΠΈΡ‡Π½Ρ‹Ρ… ΠΎΡ‚Ρ€Π΅Π·ΠΊΠΎΠ².

Π Π΅Π·ΡŽΠΌΠΈΡ€ΡƒΡ: расстояниС ΠΎΡ‚ Π½Π°Ρ‡Π°Π»Π° отсчСта Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΉ соотвСтствуСт Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠ΅ число Π½Π° ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ прямой, Ρ€Π°Π²Π½ΠΎ:

ΠŸΡ€ΠΈ этом ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Ρ‡Ρ‚ΠΎ сама Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Π½Π΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎΠΉ, поэтому, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π·Π½Π°ΠΊ модуля, запишСм расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ O Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ A с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ΠΎΠΉ x A : O A = x A

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости

— Ссли Ρ‚ΠΎΡ‡ΠΊΠΈ А ΠΈ Π’ ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚, Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ Ρ€Π°Π²Π½ΠΎ Π½ΡƒΠ»ΡŽ;

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

— Ссли Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΈ B Π½Π΅ Π»Π΅ΠΆΠ°Ρ‚ Π½Π° прямой, пСрпСндикулярной ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй, Π½Π°ΠΉΠ΄Π΅ΠΌ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, вывСдя Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ расчСта:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π‘Ρ„ΠΎΡ€ΠΌΠΈΡ€ΡƒΠ΅ΠΌ Π²Ρ‹Π²ΠΎΠ΄ ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½ΠΎΠ³ΠΎ Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Π°: расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ А Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ Π’ Π½Π° плоскости опрСдСляСтся расчётом ΠΏΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ с использованиСм ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ этих Ρ‚ΠΎΡ‡Π΅ΠΊ

Для ситуации, ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΈ B Π»Π΅ΠΆΠ°Ρ‚ Π½Π° прямой, пСрпСндикулярной оси абсцисс:

Для случая, ΠΊΠΎΠ³Π΄Π° Ρ‚ΠΎΡ‡ΠΊΠΈ A ΠΈ B Π»Π΅ΠΆΠ°Ρ‚ Π½Π° прямой, пСрпСндикулярной оси ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚:

РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π² пространствС

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Из курса Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ извСстно, Ρ‡Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π΄ΠΈΠ°Π³ΠΎΠ½Π°Π»ΠΈ ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅ΠΏΠΈΠΏΠ΅Π΄Π° Ρ€Π°Π²Π΅Π½ суммС ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΎΠ² Π΅Π³ΠΎ ΠΈΠ·ΠΌΠ΅Ρ€Π΅Π½ΠΈΠΉ. Π˜ΡΡ…ΠΎΠ΄Ρ ΠΈΠ· этого утвСрТдСния ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ равСнство: A B 2 = A x B x 2 + A y B y 2 + A z B z 2

Π˜ΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Ρ€Π°Π½Π΅Π΅ Π²Ρ‹Π²ΠΎΠ΄Ρ‹, запишСм ΡΠ»Π΅Π΄ΡƒΡŽΡ‰Π΅Π΅:

Π˜Ρ‚ΠΎΠ³ΠΎΠ²Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° для опрСдСлСния расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π² пространствС Π±ΡƒΠ΄Π΅Ρ‚ Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ:

ΠŸΠΎΠ»ΡƒΡ‡Π΅Π½Π½Π°Ρ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Π΄Π΅ΠΉΡΡ‚Π²ΠΈΡ‚Π΅Π»ΡŒΠ½Π° Ρ‚Π°ΠΊΠΆΠ΅ для случаСв, ΠΊΠΎΠ³Π΄Π°:

— Π»Π΅ΠΆΠ°Ρ‚ Π½Π° ΠΎΠ΄Π½ΠΎΠΉ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ оси ΠΈΠ»ΠΈ прямой, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»ΡŒΠ½ΠΎΠΉ ΠΎΠ΄Π½ΠΎΠΉ ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Ρ… осСй.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ Π½Π° Π½Π°Ρ…ΠΎΠΆΠ΄Π΅Π½ΠΈΠ΅ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ

РСшСниС

РСшСниС

А Ρ‚Π°ΠΊΠΆΠ΅ ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌ ΠΈΠΌΠ΅ΡŽΡ‰Π΅Π΅ΡΡ условиС, Ρ‡Ρ‚ΠΎ А Π’ = 5 ΠΈ Ρ‚ΠΎΠ³Π΄Π° Π±ΡƒΠ΄Π΅Ρ‚ Π²Π΅Ρ€Π½Ρ‹ΠΌ равСнство:

Ξ» 2 + 16 = 5 Ξ» 2 + 16 = 25 Ξ» = Β± 3

РСшСниС

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

ГрафичСскиС ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. РасстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ.

ГрафичСскиС способы Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ. Π€ΠΎΡ€ΠΌΡƒΠ»Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости.

Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΌΠ°Ρ‚Π΅Ρ€ΠΈΠ°Π»Π΅ Π±ΡƒΠ΄Π΅Ρ‚ рассмотрСн ΠΎΠ΄ΠΈΠ½ ΠΈΠ· ΠΎΡ‡Π΅Π½ΡŒ красивых гСомСтричСских ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ Π·Π°Π΄Π°Ρ‡ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ β€” ΠΌΠ΅Ρ‚ΠΎΠ΄ расстояний. А ΠΈΠΌΠ΅Π½Π½ΠΎ β€” ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρ‹ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠΉ Π΄Π΅ΠΊΠ°Ρ€Ρ‚ΠΎΠ²ΠΎΠΉ систСмы ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ OXY.

Выводится ΠΎΠ½Π° довольно просто.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Как Π²ΠΈΠ΄Π½ΠΎ ΠΈΠ· рисунка, ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ АВ являСтся Π³ΠΈΠΏΠΎΡ‚Π΅Π½ΡƒΠ·ΠΎΠΉ ΠΏΡ€ΡΠΌΠΎΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΎΠ³ΠΎ Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° АВБ с ΠΊΠ°Ρ‚Π΅Ρ‚Π°ΠΌΠΈ АБ ΠΈ Π’Π‘. Π˜Ρ… Π΄Π»ΠΈΠ½Ρ‹ Ρ€Π°Π²Π½Ρ‹ разности абсцисс ΠΈ ΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ ΠΊΠΎΠ½Ρ†ΠΎΠ² А ΠΈ Π’ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

ΠœΠΎΠ΄ΡƒΠ»ΠΈ ставятся для Ρ‚ΠΎΠ³ΠΎ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π±Ρ‹Π»ΠΎ Π½Π΅Π²Π°ΠΆΠ½ΠΎ, ΠΊΠ°ΠΊ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΡ€ΠΈΠ΅Π½Ρ‚ΠΈΡ€ΠΎΠ²Π°Π½ наш ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ ΠΈ какая ΠΈΠ· ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚ большС β€” пСрвая ΠΈΠ»ΠΈ вторая: ΠΌΠΎΠ΄ΡƒΠ»ΡŒ просто отсСкаСт Π²ΠΎΠ·ΠΌΠΎΠΆΠ½Ρ‹ΠΉ минус, Ссли, Π²Π΄Ρ€ΡƒΠ³, скаТСм, Ρ…2 окаТСтся мСньшС, Ρ‡Π΅ΠΌ Ρ…1. Π’Π΅Π΄ΡŒ Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°, ΠΎΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π²Π΅Π»ΠΈΡ‡ΠΈΠ½Π° Π½Π΅ΠΎΡ‚Ρ€ΠΈΡ†Π°Ρ‚Π΅Π»ΡŒΠ½Π°Ρ.

Π’Π΅ΠΏΠ΅Ρ€ΡŒ, ΠΏΡ€ΠΈΠ·Π²Π°Π² Π½Π° ΠΏΠΎΠΌΠΎΡ‰ΡŒ Ρ‚ΡΠΆΡ‘Π»ΡƒΡŽ Π°Ρ€Ρ‚ΠΈΠ»Π»Π΅Ρ€ΠΈΡŽ Π²Π΅Π»ΠΈΠΊΡƒΡŽ ΠΈ ΠΌΠΎΠ³ΡƒΡ‡ΡƒΡŽ Ρ‚Π΅ΠΎΡ€Π΅ΠΌΡƒ ΠŸΠΈΡ„Π°Π³ΠΎΡ€Π°, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ нашС искомоС расстояниС:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ ΠΊΠ°ΠΊ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Ρ‚Π°ΠΊ ΠΈ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΎΠ±Π»Π°Π΄Π°ΡŽΡ‚ ΠΎΠ΄Π½ΠΈΠΌ вСсьма ΡƒΠ΄ΠΎΠ±Π½Ρ‹ΠΌ ΠΈ Π·Π°ΠΌΠ΅Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΌ свойством β€” Ρ‡Ρ‘Ρ‚Π½ΠΎΡΡ‚ΡŒΡŽ, Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΠΈ ΠΏΠΎΠ΄ ΠΊΠΎΡ€Π½Π΅ΠΌ ΠΌΠΎΠΆΠ½ΠΎ ΡΠΎΠ²Π΅Ρ€ΡˆΠ΅Π½Π½ΠΎ спокойно ΠΈ Π±Π΅Π· послСдствий Π·Π°ΠΌΠ΅Π½ΠΈΡ‚ΡŒ Π½Π° ΠΎΠ±Ρ‹Ρ‡Π½Ρ‹Π΅ скобки. πŸ™‚

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ΠΎΡ‚ такая полСзная Ρ„ΠΎΡ€ΠΌΡƒΠ»Π°. Π§Ρ‚ΠΎ ΠΆ, Π½Π° этом краткая тСорСтичСская Ρ‡Π°ΡΡ‚ΡŒ Π·Π°ΠΊΠΎΠ½Ρ‡Π΅Π½Π°. ΠŸΠΎΡ€Π° Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠΎΡΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ, ΠΊΠ°ΠΊ ΠΈΠΌΠ΅Π½Π½ΠΎ эта Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° Ρ€Π°Π±ΠΎΡ‚Π°Π΅Ρ‚ Π½Π° ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Π½Π΅ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π·Π°Π΄Π°Ρ‡ с ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°ΠΌΠΈ ΠΈΠ· ΠΏΡ€ΠΎΡ„ΠΈΠ»ΡŒΠ½ΠΎΠ³ΠΎ Π•Π“Π­ ΠΏΠΎ ΠΌΠ°Ρ‚Π΅ΠΌΠ°Ρ‚ΠΈΠΊΠ΅.

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 1

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π˜Π½Ρ‹ΠΌΠΈ словами, ΠΎΡ‚ нас трСбуСтся Π½Π°ΠΉΡ‚ΠΈ Ρ‚Π°ΠΊΠΈΠ΅ Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… систСма ΠΈΠΌΠ΅Π΅Ρ‚ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ Π² ΠΏΡ€ΠΈΠ½Ρ†ΠΈΠΏΠ΅. Π₯отя Π±Ρ‹ ΠΎΠ΄Π½ΠΎ. Ни сами Ρ€Π΅ΡˆΠ΅Π½ΠΈΡ, Π½ΠΈ ΠΈΡ… количСство Π½Π°Ρ…ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΏΡ€ΠΈ этом Π½Π΅ Π½ΡƒΠΆΠ½ΠΎ.

ΠŸΡ€ΠΎΠ°Π½Π°Π»ΠΈΠ·ΠΈΡ€ΡƒΠ΅ΠΌ наши уравнСния.

НСт, Π½Π°Π΄ΠΎ ΠΈΠ΄Ρ‚ΠΈ ΠΊΠ°ΠΊΠΈΠΌ-Ρ‚ΠΎ ΠΎΠ±Ρ…ΠΎΠ΄Π½Ρ‹ΠΌ ΠΏΡƒΡ‚Ρ‘ΠΌ. Каким ΠΆΠ΅?

Π’ Π΄Π°Π½Π½ΠΎΠΌ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΊΠ°ΠΊ Ρ€Π°Π· Ρ‚Π°ΠΊΠΈ Π·Π΄ΠΎΡ€ΠΎΠ²ΠΎ Π²Ρ‹Ρ€ΡƒΡ‡Π°Π΅Ρ‚ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π½Π° плоскости. Π”Π°Π²Π°ΠΉΡ‚Π΅ присмотримся ΠΊ ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ систСмы:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

ΠšΠ°ΠΆΠ΄Ρ‹ΠΉ ΠΈΠ· ΠΊΠΎΡ€Π½Π΅ΠΉ, Ρ„ΠΈΠ³ΡƒΡ€ΠΈΡ€ΡƒΡŽΡ‰ΠΈΡ… Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ, ΠΎΡ‡Π΅Π½ΡŒ ΠΏΠΎΡ…ΠΎΠΆ Π½Π° Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Π½Π΅ΠΊΠΈΠΌΠΈ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ. Π­Ρ‚ΠΎ Π½Π°ΠΌΡ‘ΠΊ.) Займёмся Ρ€Π°ΡΡˆΠΈΡ„Ρ€ΠΎΠ²ΠΊΠΎΠΉ ΠΊΠ°ΠΆΠ΄ΠΎΠ³ΠΎ корня.

Бопоставим ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ с Π²Ρ‹Π²Π΅Π΄Π΅Π½Π½ΠΎΠΉ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Ρ‡Ρ‚ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ расстояния:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

ΠŸΡ€ΠΎΡΡ‚ΠΎ присматриваСмся ΠΊ этим Π΄Π²ΡƒΠΌ корням ΠΈ сравниваСм. ΠŸΠΎΡ…ΠΎΠΆΠΈ вСдь, ΠΏΡ€Π°Π²Π΄Π°? Π’ΠΎΠ³Π΄Π°, согласно нашСй Ρ„ΠΎΡ€ΠΌΡƒΠ»Π΅ расстояния, ΠΌΠΎΠΆΠ½ΠΎ ΠΏΡ€ΠΈΠ½ΡΡ‚ΡŒ:

Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ β€” это Π½Π° самом Π΄Π΅Π»Π΅ расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ (4; a) Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ (x; y).

Аналогично сопоставив с Ρ„ΠΎΡ€ΠΌΡƒΠ»ΠΎΠΉ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ, ΡƒΠ²ΠΈΠ΄ΠΈΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ Ρ‚ΠΎΠΆΠ΅ прСдставляСт собой расстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ (7; a) ΠΎΠΏΡΡ‚ΡŒ ΠΆΠ΅ Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ (x; y).

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ΅Ρ€Π΅Π²Π΅Π΄Ρ‘ΠΌ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с алгСбраичСского языка (языка Ρ„ΠΎΡ€ΠΌΡƒΠ») Π½Π° гСомСтричСский (язык расстояний).

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π‘ΡƒΠΌΠΌΠ° расстояний ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ (x; y) Π΄ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ (4; a) ΠΈ (7; a) Ρ€Π°Π²Π½Π° Ρ‚Ρ€Ρ‘ΠΌ.

Для наглядности нарисуСм ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ, Ρ‡Ρ‚ΠΎΠ±Ρ‹ ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡ‚ΡŒ, Π° Ρ‡Π΅Π³ΠΎ, собствСнно, ΠΎΡ‚ нас хотят.)

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π—Π½Π°Ρ‡ΠΈΡ‚, согласно рисунку, с гСомСтричСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ систСмы выглядит Ρ‚Π°ΠΊ:

Π³Π΄Π΅ Ρ‚ΠΎΡ‡ΠΊΠΈ А ΠΈ Π’ зафиксированы (для ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠ³ΠΎ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°), Π° Ρ‚Ρ€Π΅Ρ‚ΡŒΡ Ρ‚ΠΎΡ‡ΠΊΠ° Π‘ ΠΊΠ°ΠΊ-Ρ‚ΠΎ «гуляСт» ΠΏΠΎ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½ΠΎΠΉ плоскости.

Π’ΠΎΠΎΠ±Ρ‰Π΅ говоря, мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости, сумма расстояний ΠΎΡ‚ ΠΊΠΎΡ‚ΠΎΡ€Ρ‹Ρ… Π΄ΠΎ Π΄Π²ΡƒΡ… фиксированных Ρ‚ΠΎΡ‡Π΅ΠΊ постоянна ΠΈ Ρ€Π°Π²Π½Π° Π½Π΅ΠΊΠΎΠΌΡƒ ΠΏΠΎΠ»ΠΎΠΆΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎΠΌΡƒ числу, прСдставляСт собой Π·Π°ΠΌΠΊΠ½ΡƒΡ‚ΡƒΡŽ ΠΊΡ€ΠΈΠ²ΡƒΡŽ, которая называСтся красивым словом эллипс, Π° Π΄Π°Π½Π½Ρ‹Π΅ фиксированныС Ρ‚ΠΎΡ‡ΠΊΠΈ ΡΠ²Π»ΡΡŽΡ‚ΡΡ фокусами эллипса. Но ΠΏΡ€ΠΎΠ±Π»Π΅ΠΌΠ° состоит Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ понятиС эллипса Π½Π΅ Π²Ρ…ΠΎΠ΄ΠΈΡ‚ Π² ΡˆΠΊΠΎΠ»ΡŒΠ½ΡƒΡŽ ΠΏΡ€ΠΎΠ³Ρ€Π°ΠΌΠΌΡƒ (Π·Π°Ρ‡Π°ΡΡ‚ΡƒΡŽ Π΄Π°ΠΆΠ΅ Ρ„ΠΈΠ·ΠΈΠΊΠΎ-матСматичСских классов), Π° изучаСтся ΡƒΠΆΠ΅ Π² Π’Π£Π—Π΅ Π² курсС аналитичСской Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΠΈ.) Π’Π°ΠΊ ΠΊΠ°ΠΊ ΠΆΠ΅ ΠΎΠ±ΠΎΠΉΡ‚ΠΈ это Π½Π΅Π·Π½Π°ΠΊΠΎΠΌΠΎΠ΅ (ΠΏΠΎΠΊΠ°) понятиС? ΠœΠΎΠΆΠ΅Ρ‚, Π² Π΄Π°Π½Π½ΠΎΠΉ (ΠΈ ΠΏΠΎΠ΄ΠΎΠ±Π½Ρ‹Ρ… этой) Π·Π°Π΄Π°Ρ‡Π΅ всё Π³ΠΎΡ€Π°Π·Π΄ΠΎ ΠΏΡ€ΠΎΡ‰Π΅?

Π’Ρ‹Π½ΡƒΠΆΠ΄Π΅Π½ ΠΏΡ€ΠΈΠ·Π½Π°Ρ‚ΡŒΡΡ. Π”Π°, всё Π³ΠΎΡ€Π°Π·Π΄ΠΎ ΠΏΡ€ΠΎΡ‰Π΅!

Π”Π΅Π»ΠΎ всё Π² Ρ‚ΠΎΠΌ, Ρ‡Ρ‚ΠΎ понятиС эллипса справСдливо Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² Ρ‚ΠΎΠΌ случаС, Ссли эта самая сумма расстояний Π±ΡƒΠ΄Π΅Ρ‚ большС расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ самими фиксированными Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ. Если ΠΆΠ΅ сумма расстояний ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ Π‘(x; y) Π΄ΠΎ Π΄Π²ΡƒΡ… фиксированных Ρ‚ΠΎΡ‡Π΅ΠΊ (Π² Π΄Π°Π½Π½ΠΎΠΌ случаС A ΠΈ B) Ρ‚ΠΎΡ‡Π½ΠΎ Ρ€Π°Π²Π½Π° Ρ€Π°ΡΡΡ‚ΠΎΡΠ½ΠΈΡŽ AB ΠΌΠ΅ΠΆΠ΄Ρƒ Π½ΠΈΠΌΠΈ, Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ° Π‘(x; y) ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π±ΡƒΠ΄Π΅Ρ‚ Π»Π΅ΠΆΠ°Ρ‚ΡŒ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ AB, ΠΈ Π½ΠΈΠΊΠ°ΠΊΠΎΠ³ΠΎ эллипса ΡƒΠΆΠ΅ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚, Π° Π±ΡƒΠ΄Π΅Ρ‚ просто ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ AB с Β«Π³ΡƒΠ»ΡΡŽΡ‰Π΅ΠΉΒ» ΠΏΠΎ Π½Π΅ΠΌΡƒ Ρ‚Ρ€Π΅Ρ‚ΡŒΠ΅ΠΉ Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ.

Π”Π°Π²Π°ΠΉΡ‚Π΅ посмотрим, Ρ‡Π΅ΠΌΡƒ ΠΆΠ΅ Ρ€Π°Π²Π½ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ нашими фиксированными Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

Π˜Ρ‚Π°ΠΊ, Π΄Π»ΠΈΠ½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ Π² точности ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»Π°ΡΡŒ Ρ€Π°Π²Π½ΠΎΠΉ Ρ‚Ρ€Ρ‘ΠΌ, ΠΊΠ°ΠΊ ΠΈ правая Ρ‡Π°ΡΡ‚ΡŒ уравнСния. Π­Ρ‚ΠΎ Π½Π΅ случайно!) Π§Ρ‚ΠΎ это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚? Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ наша Ρ‚ΠΎΡ‡ΠΊΠ° Π‘(x; y) ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π»Π΅ΠΆΠΈΡ‚ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ AB ΠΈ ΠΊΠ°ΠΊ-Ρ‚ΠΎ ΠΏΠΎ Π½Π΅ΠΌΡƒ гуляСт.) И Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅! Π’Π΅Π΄ΡŒ Π² ΠΏΡ€ΠΎΡ‚ΠΈΠ²Π½ΠΎΠΌ случаС, Ссли Π±Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠ° Π‘ Π»Π΅ΠΆΠ°Π»Π° Π³Π΄Π΅-Ρ‚ΠΎ Π·Π° Π΅Π³ΠΎ ΠΏΡ€Π΅Π΄Π΅Π»Π°ΠΌΠΈ (скаТСм, Π³Π΄Π΅-Ρ‚ΠΎ Π²Ρ‹ΡˆΠ΅ ΠΈΠ»ΠΈ Π³Π΄Π΅-Ρ‚ΠΎ Π½ΠΈΠΆΠ΅), Ρ‚ΠΎ сумма расстояний ΠΎΡ‚ Π½Π΅Ρ‘ Π΄ΠΎ ΠΊΠΎΠ½Ρ†ΠΎΠ² ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ Π±Ρ‹Π»Π° Π±Ρ‹ строго большС Ρ‚Ρ€ΠΎΠΉΠΊΠΈ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΎΡ‚ΠΈΠ²ΠΎΡ€Π΅Ρ‡ΠΈΠ»ΠΎ Π±Ρ‹ ΠΏΠ΅Ρ€Π²ΠΎΠΌΡƒ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ.

Π§Ρ‚ΠΎ Π΅Ρ‰Ρ‘ Π²Π°ΠΆΠ½ΠΎΠ³ΠΎ ΠΌΠΎΠΆΠ½ΠΎ Π·Π°ΠΌΠ΅Ρ‚ΠΈΡ‚ΡŒ Π² Π΄Π°Π½Π½ΠΎΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΈ ΠΈ Π½Π° рисункС? А Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ любом Π·Π½Π°Ρ‡Π΅Π½ΠΈΠΈ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Β«Π°Β» ΠΈΠ³Ρ€Π΅ΠΊΠΎΠ²Ρ‹Π΅ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ А ΠΈ Π’ ΠΊΠΎΠ½Ρ†ΠΎΠ² нашСго ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΡΠΎΠ²ΠΏΠ°Π΄Π°ΡŽΡ‚ (ΠΎΠ±Π΅ Ρ€Π°Π²Π½Ρ‹ Π°). Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ Π² любом случаС наш ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ АВ Π±ΡƒΠ΄Π΅Ρ‚ строго Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»Π΅Π½ (Ρ‚ΠΎ бишь, ΠΏΠ°Ρ€Π°Π»Π»Π΅Π»Π΅Π½ оси ОΠ₯), Π° Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†Ρ‹, Π² зависимости ΠΎΡ‚ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, Π±ΡƒΠ΄ΡƒΡ‚ ΠΊΠ°ΠΊ Π±Ρ‹ ΡΠΊΠΎΠ»ΡŒΠ·ΠΈΡ‚ΡŒ вдоль Π½Π°ΠΏΡ€Π°Π²Π»ΡΡŽΡ‰ΠΈΡ… прямых x=4 ΠΈ x=7 (ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ абсциссы Π΅Π³ΠΎ ΠΊΠΎΠ½Ρ†ΠΎΠ² Π½ΠΈΠΊΠ°ΠΊ Π½Π΅ зависят ΠΎΡ‚ Β«Π°Β», ΠΎΡΡ‚Π°Π²Π°ΡΡΡŒ всё врСмя Ρ€Π°Π²Π½Ρ‹ΠΌΠΈ 4 ΠΈ 7).

Π˜Ρ‚Π°ΠΊ, ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Ρ€Π°Π·Π»ΠΎΠΆΠΈΠ»ΠΈ ΠΏΠΎ ΠΏΠΎΠ»ΠΎΡ‡ΠΊΠ°ΠΌ, ΠΏΠ΅Ρ€Π΅Ρ…ΠΎΠ΄ΠΈΠΌ ΠΊΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌΡƒ.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ΠΎΡ‚ Ρ‚ΡƒΡ‚ Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ ΠΎΠ±Π΅ΠΈΡ… частСй Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ Π²ΠΏΠΎΠ»Π½Π΅ ΠΏΡ€ΠΎΠΊΠ°Ρ‚ΠΈΡ‚. Π’ΠΎΠ·Π²ΠΎΠ΄ΠΈΠΌ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Ну ΠΊΠ°ΠΊ, Π·Π½Π°ΠΊΠΎΠΌΠΎ? Π”Π°, это классичСскоС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (3;2) ΠΈ радиусом 5.

ΠšΡΡ‚Π°Ρ‚ΠΈ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Π° ΠΊΠ°ΠΊ ΠΏΠΎΠ½ΡΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ Π·Π°Π΄Π°Ρ‘Ρ‚ ΠΈΠΌΠ΅Π½Π½ΠΎ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ Π½Π΅ Ρ‡Π΅Ρ€Π΅Π· Π²ΠΎΠ·Π²Π΅Π΄Π΅Π½ΠΈΠ΅ Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚, Π° Ρ‡Π΅Ρ€Π΅Π· расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ? Π‘Π½ΠΎΠ²Π° ΠΏΠ΅Ρ€Π΅Π²ΠΎΠ΄ΠΈΠΌ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ с Π°Π»Π³Π΅Π±Ρ€Ρ‹ Π½Π° Π³Π΅ΠΎΠΌΠ΅Ρ‚Ρ€ΠΈΡŽ, ΠΈΡΠΏΠΎΠ»ΡŒΠ·ΡƒΡ Π½Π°ΡˆΡƒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ расстояния.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

РасстояниС ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ (x;y) Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ (3;2) Ρ€Π°Π²Π½ΠΎ пяти.

А Ρ‡Ρ‚ΠΎ ΠΆΠ΅ это Π·Π° мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ, находящихся ΠΎΡ‚ фиксированной Ρ‚ΠΎΡ‡ΠΊΠΈ (3;2) Π½Π° расстоянии 5? Ну, ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎ! ΠžΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ радиуса 5 с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅. πŸ™‚

Π§Ρ‚ΠΎ ΠΆ, Ρƒ нас ΡƒΠΆΠ΅ имССтся всё Π½Π΅ΠΎΠ±Ρ…ΠΎΠ΄ΠΈΠΌΠΎΠ΅, Ρ‡Ρ‚ΠΎΠ±Ρ‹ Π½Π°Ρ€ΠΈΡΠΎΠ²Π°Ρ‚ΡŒ ΠΎΠ±Ρ‰ΠΈΠΉ Ρ‡Π΅Ρ€Ρ‚Ρ‘ΠΆ ΠΊ Π·Π°Π΄Π°Ρ‡Π΅. ΠŸΠΎΠ΅Ρ…Π°Π»ΠΈ!

1) Π˜Ρ‚Π°ΠΊ, сначала, ΠΊΠ°ΠΊ водится, Ρ‡Π΅Ρ€Ρ‚ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π½Ρ‹Π΅ оси X ΠΈ Y.

2) ΠŸΡ€ΠΎΠ²ΠΎΠ΄ΠΈΠΌ ΠΏΡƒΠ½ΠΊΡ‚ΠΈΡ€ΠΎΠΌ Π²ΡΠΏΠΎΠΌΠΎΠ³Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ Π²Π΅Ρ€Ρ‚ΠΈΠΊΠ°Π»ΡŒΠ½Ρ‹Π΅ прямыС x=4 ΠΈ x=7. Π’Π΄ΠΎΠ»ΡŒ этих прямых, Π² зависимости ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Β«Π°Β», Π±ΡƒΠ΄Π΅Ρ‚ ΡΠΊΠΎΠ»ΡŒΠ·ΠΈΡ‚ΡŒ наш ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ АВ, всё врСмя ΠΎΡΡ‚Π°Π²Π°ΡΡΡŒ Π³ΠΎΡ€ΠΈΠ·ΠΎΠ½Ρ‚Π°Π»ΡŒΠ½Ρ‹ΠΌ. Как вагонная ось катится ΠΏΠΎ Ρ€Π΅Π»ΡŒΡΠ°ΠΌ.))

3) ΠžΡ‚ΠΌΠ΅Ρ‡Π°Π΅ΠΌ Ρ‚ΠΎΡ‡ΠΊΡƒ (3; 2) β€” Ρ†Π΅Π½Ρ‚Ρ€ нашСй окруТности.

4) БобствСнно, рисуСм саму ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ с Ρ†Π΅Π½Ρ‚Ρ€ΠΎΠΌ Π² Π΄Π°Π½Π½ΠΎΠΉ Ρ‚ΠΎΡ‡ΠΊΠ΅ ΠΈ радиусом β€” пятёрка.

5) Π“ΠΎΡ‚ΠΎΠ²ΠΎ! Π§Ρ‚ΠΎ Π² ΠΊΠΎΠ½Π΅Ρ‡Π½ΠΎΠΌ ΠΈΡ‚ΠΎΠ³Π΅ ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΎΡΡŒ β€” смотрим рисунок Π½ΠΈΠΆΠ΅.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠΎΡ€Π° Ρ€Π°ΡΡΡƒΠΆΠ΄Π°Ρ‚ΡŒ ΠΈ Π²ΠΊΠ»ΡŽΡ‡Π°Ρ‚ΡŒ Π²ΠΎΠΎΠ±Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅.) Π’ Π·Π°Π΄Π°Ρ‡Π΅ ΠΎΡ‚ нас трСбуСтся, Ρ‡Ρ‚ΠΎΠ±Ρ‹ систСма ΠΈΠΌΠ΅Π»Π° хотя Π±Ρ‹ ΠΎΠ΄Π½ΠΎ Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅. Π§Ρ‚ΠΎ это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ с Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния нашСго рисунка? А Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ наши ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ (ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅) ΠΈ ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒ (Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅) Π΄ΠΎΠ»ΠΆΠ½Ρ‹ ΠΈΠΌΠ΅Ρ‚ΡŒ хотя Π±Ρ‹ ΠΎΠ΄Π½Ρƒ ΠΎΠ±Ρ‰ΡƒΡŽ Ρ‚ΠΎΡ‡ΠΊΡƒ. Когда Ρ‚Π°ΠΊΠΎΠ΅ Π²ΠΎΠ·ΠΌΠΎΠΆΠ½ΠΎ?

ИмССм Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Π΅ ситуации.

Π˜Ρ‚Π°ΠΊ, ΠΌΠΎΠΆΠ½ΠΎ Π΄Π°ΠΆΠ΅ ΡΠΎΡΡ‚Π°Π²ΠΈΡ‚ΡŒ Π·Π°Π³ΠΎΡ‚ΠΎΠ²ΠΊΡƒ для Π±ΡƒΠ΄ΡƒΡ‰Π΅Π³ΠΎ ΠΎΡ‚Π²Π΅Ρ‚Π°:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

ΠŸΡ€ΠΈΡ‡Ρ‘ΠΌ Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Π΅ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π° нас Ρ‚ΠΎΠΆΠ΅ ΡƒΡΡ‚Ρ€Π°ΠΈΠ²Π°ΡŽΡ‚, посСму всС скобки ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½Ρ‹Π΅.

Π§Ρ‚ΠΎ ΠΆ, ΠΎΡΡ‚Π°ΡŽΡ‚ΡΡ сущиС пустяки β€” ΠΎΠΏΡ€Π΅Π΄Π΅Π»ΠΈΡ‚ΡŒ эти самыС Π³Ρ€Π°Π½ΠΈΡ‡Π½Ρ‹Π΅ значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°.)

Начнём с Π»Π΅Π²ΠΎΠ³ΠΎ ΠΊΠΎΠ½Ρ†Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°. Π’ΠΎ Π΅ΡΡ‚ΡŒ, Ρ‚ΠΎΡ‡ΠΊΠΈ А(4; a). ΠŸΠΎΠ΄ΡΡ‚Π°Π²ΠΈΠΌ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ А Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ окруТности (вСдь ΠΌΡ‹ ΠΆΠ΅ ΠΊΠ°ΠΊ Ρ€Π°Π· ΠΎΡ‚Π»Π°Π²Π»ΠΈΠ²Π°Π΅ΠΌ пСрСсСчСниС ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° с ΠΎΠΊΡ€ΡƒΠΆΠ½ΠΎΡΡ‚ΡŒΡŽ!):

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π΄Π²Π° значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°. ΠžΡ‡Π΅Π²ΠΈΠ΄Π½ΠΎ, Π·Π½Π°ΠΊ минус соотвСтствуСт ΠΊΡ€Π°ΠΉΠ½Π΅ΠΌΡƒ Π½ΠΈΠΆΠ½Π΅ΠΌΡƒ полоТСнию ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° ΠΏΡ€ΠΈ a = a1, Π° Π·Π½Π°ΠΊ плюс β€” ΠΊΡ€Π°ΠΉΠ½Π΅ΠΌΡƒ Π²Π΅Ρ€Ρ…Π½Π΅ΠΌΡƒ ΠΏΡ€ΠΈ Π° = Π°4. Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ,

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Аналогично расправляСмся ΠΈ с ΠΏΡ€Π°Π²Ρ‹ΠΌ ΠΊΠΎΠ½Ρ†ΠΎΠΌ β€” с Ρ‚ΠΎΡ‡ΠΊΠΎΠΉ B(7; a):

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Всё! ВсС ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‰ΠΈΠ΅ нас значСния ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π½Π°ΠΉΠ΄Π΅Π½Ρ‹, ΠΈ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΌΠΎΠΆΠ½ΠΎ с чистой ΡΠΎΠ²Π΅ΡΡ‚ΡŒΡŽ Π·Π°ΠΏΠΈΡΡ‹Π²Π°Ρ‚ΡŒ ΠΎΠΊΠΎΠ½Ρ‡Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹ΠΉ ΠΎΡ‚Π²Π΅Ρ‚.)

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

Π’ рассмотрСнном ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ Π±Ρ‹Π»Π° ΠΏΠΎΠ΄Π°Π½Π° Π½Π° Π±Π»ΡŽΠ΄Π΅Ρ‡ΠΊΠ΅ ΠΏΡ€ΠΎΡΠ»Π΅ΠΆΠΈΠ²Π°Π»Π°ΡΡŒ довольно явно. А Π²ΠΎΡ‚ ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠΉ ΠΏΡ€ΠΈΠΌΠ΅Ρ€ Π±ΡƒΠ΄Π΅Ρ‚ Π³ΠΎΡ€Π°Π·Π΄ΠΎ слоТнСС. Π’Π°ΠΌ, Π²ΠΎ-ΠΏΠ΅Ρ€Π²Ρ‹Ρ…, Π² Π½Π°Π³Ρ€ΡƒΠ·ΠΊΡƒ добавятся ΠΌΠΎΠ΄ΡƒΠ»ΠΈ, Π° Π²ΠΎ-Π²Ρ‚ΠΎΡ€Ρ‹Ρ…, ΠΏΠΎΡ‚Ρ€Π΅Π±ΡƒΡŽΡ‚ΡΡ Π΄ΠΎΠΏΠΎΠ»Π½ΠΈΡ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ прСобразования. Но Π½ΠΈΡ‡Π΅Π³ΠΎ, ΠΌΡ‹ Ρ‚ΠΎΠΆΠ΅ Π΅Π³ΠΎ распутаСм.)

ΠŸΡ€ΠΈΠΌΠ΅Ρ€ 2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ΠΎ, накрутили… Π‘ΡƒΠΌΠΌΠ° ΠΊΠΎΡ€Π½Π΅ΠΉ, ΠΏΠΎΠ΄ корнями модули… ΠšΠΎΡˆΠΌΠ°Ρ€!

Как здСсь ΠΌΠΎΠΆΠ½ΠΎ ΡƒΠ·Π½Π°Ρ‚ΡŒ Ρ„ΠΎΡ€ΠΌΡƒΠ»Ρƒ расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ? Ясно, Ρ‡Ρ‚ΠΎ Π½Π°Π΄ΠΎ ΠΊΠ°ΠΊ-Ρ‚ΠΎ ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Ρ‹Π²Π°Ρ‚ΡŒ ΠΈ ΠΏΡ€ΠΈΠ²ΠΎΠ΄ΠΈΡ‚ΡŒ ΠΊ красивому Π²ΠΈΠ΄Ρƒ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅.

ΠŸΠΎΡΠΌΠΎΡ‚Ρ€ΠΈΠΌ, Ρ‡Ρ‚ΠΎ получаСтся ΠΏΠΎΠ΄ ΠΏΠ΅Ρ€Π²Ρ‹ΠΌ ΠΊΠΎΡ€Π½Π΅ΠΌ. РаскроСм скобки:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

А Π²ΠΎΡ‚ Π²Ρ‚ΠΎΡ€ΠΎΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ сразу Ρ‚Π°ΠΊ красиво ΠΏΡ€Π΅ΠΎΠ±Ρ€Π°Π·ΠΎΠ²Π°Ρ‚ΡŒ Π½Π΅ Π²Ρ‹ΠΉΠ΄Π΅Ρ‚: вСдь Ρ‚Π°ΠΌ Ρƒ нас совсСм Π½Π΅Ρ‚ икса Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π΅, Π° вмСсто этого затСсался ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ Π°, Π΄Π° Π΅Ρ‰Ρ‘ ΠΈ ΠΈΠ³Ρ€Π΅ΠΊ Π² ΠΏΠ΅Ρ€Π²ΠΎΠΉ стСпСни. Π§Ρ‚ΠΎΠ±Ρ‹ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ Π° ΠΈ y, Π²ΠΎΡΠΏΠΎΠ»ΡŒΠ·ΡƒΠ΅ΠΌΡΡ Π²Ρ‚ΠΎΡ€Ρ‹ΠΌ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ΠΌ ΠΈ подставим Π² ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ вмСсто y Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ x 2 +a:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ΠΎΡ‚ Ρ‚Π°ΠΊ. И Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ систСмы стало Π²Ρ‹Π³Π»ΡΠ΄Π΅Ρ‚ΡŒ Π³ΠΎΡ€Π°Π·Π΄ΠΎ симпатичнСС:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π£ΠΆΠ΅ ΠΏΠΎΡ‚ΠΈΡ…ΠΎΠ½ΡŒΠΊΡƒ вырисовываСтся Π½Π΅Ρ‡Ρ‚ΠΎ Π·Π½Π°ΠΊΠΎΠΌΠΎΠ΅, ΠΏΡ€Π°Π²Π΄Π°? Π§Ρ‚ΠΎ Π΄Π΅Π»Π°Ρ‚ΡŒ дальшС? Ясно, Ρ‡Ρ‚ΠΎ Π½Π°Π΄ΠΎ Ρ€Π°ΡΠΊΡ€Ρ‹Π²Π°Ρ‚ΡŒ ΠΌΠΎΠ΄ΡƒΠ»ΠΈ. Π›ΡƒΡ‡ΡˆΠ΅, ΠΊΠΎΠ³Π΄Π° ΠΈΡ… Π½Π΅Ρ‚.) Π”Π°Π²Π°ΠΉΡ‚Π΅ Π½Π°Ρ‡Π½Ρ‘ΠΌ с ΠΏΠ΅Ρ€Π²ΠΎΠ³ΠΎ корня, Ρ‚ΠΎ Π΅ΡΡ‚ΡŒ с икса.

Если xβ‰₯0, Ρ‚ΠΎ ΠΌΠΎΠ΄ΡƒΠ»ΡŒ раскрываСтся с плюсом (|x| = x), ΠΈ Ρ‚ΠΎΠ³Π΄Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, Ссли xβ‰₯0, Ρ‚ΠΎ ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ ΠΊΠΎΡ€Π΅Π½ΡŒ прСдставляСт собой расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ (x; y) ΠΈ (3; 0). Π‘ ΠΊΠ°ΠΊΠΎΠΉ Ρ‚Π°ΠΊΠΎΠΉ стати? Π­Π»Π΅ΠΌΠ΅Π½Ρ‚Π°Ρ€Π½ΠΎ!

Π’Π΅Π΄ΡŒ ΠΌΠΎΠΆΠ½ΠΎ ΠΆΠ΅ Π·Π°ΠΏΠΈΡΠ°Ρ‚ΡŒ Π΄Π°Π½Π½ΠΎΠ΅ Π²Ρ‹Ρ€Π°ΠΆΠ΅Π½ΠΈΠ΅ Π²ΠΎΡ‚ Ρ‚Π°ΠΊ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ΠΎΡ‡Π½ΠΎ Ρ‚Π°ΠΊ ΠΆΠ΅, раскрывая ΠΌΠΎΠ΄ΡƒΠ»ΡŒ ΠΈΠ³Ρ€Π΅ΠΊΠ° Π²ΠΎ Π²Ρ‚ΠΎΡ€ΠΎΠΌ Ρ€Π°Π΄ΠΈΠΊΠ°Π»Π΅, ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠΌ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ нашСй систСмы разбиваСтся Π½Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅ случая раскрытия ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

КаТдоС ΠΈΠ· ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠΉ Π²Ρ‹Ρ€Π°ΠΆΠ°Π΅Ρ‚ сумму расстояний ΠΎΡ‚ Π½Π΅ΠΊΠΈΡ… Π΄Π²ΡƒΡ… фиксированных Ρ‚ΠΎΡ‡Π΅ΠΊ плоскости ОXY Π΄ΠΎ Ρ‚ΠΎΡ‡ΠΊΠΈ (x; y), Β«Π³ΡƒΠ»ΡΡŽΡ‰Π΅ΠΉΒ» Π³Π΄Π΅-Ρ‚ΠΎ ΠΏΠΎ плоскости. И эта сумма расстояний Ρƒ нас постоянна ΠΈ Ρ€Π°Π²Π½Π° пяти.

Π—Π΄Π΅ΡΡŒ ΠΎΠΏΡΡ‚ΡŒ Ρ‚Π°ΠΊΠΈ Π½Π΅ Π±ΡƒΠ΄Π΅ΠΌ Π²Ρ‹ΠΏΠ΅Π½Π΄Ρ€ΠΈΠ²Π°Ρ‚ΡŒΡΡ ΠΈ сдСлаСм Π²ΠΈΠ΄, Ρ‡Ρ‚ΠΎ понятия Π½Π΅ ΠΈΠΌΠ΅Π΅ΠΌ ΠΏΡ€ΠΎ эллипс, Π° вмСсто этого снова посчитаСм расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ.)

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’Π΅ΠΏΠ΅Ρ€ΡŒ ΠΏΠΎΠ΄Ρ€ΠΎΠ±Π½ΠΎ рассмотрим, ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Ρƒ, ΠΏΠ΅Ρ€Π²Ρ‹ΠΉ случай:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Он прСдставляСт собой сумму расстояний ΠΎΡ‚ Ρ‚ΠΎΡ‡ΠΊΠΈ (x; y) Π΄ΠΎ Ρ‚ΠΎΡ‡Π΅ΠΊ A ΠΈ B.

Вычислим Π΄Π»ΠΈΠ½Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° АВ ΠΈΠ· Ρ‚Ρ€Π΅ΡƒΠ³ΠΎΠ»ΡŒΠ½ΠΈΠΊΠ° AOB:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

ΠŸΠΎΠ»ΡƒΡ‡ΠΈΠ»ΠΈ Π² точности пятёрку. Π’ΠΎ Π΅ΡΡ‚ΡŒ, Π΄Π»ΠΈΠ½Ρƒ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° AB! Π§Ρ‚ΠΎ это ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚? Π­Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚, Ρ‡Ρ‚ΠΎ наша Ρ‚ΠΎΡ‡ΠΊΠ° с ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Π°ΠΌΠΈ (x; y) ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ Π»Π΅ΠΆΠΈΡ‚ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ АВ ΠΈ ΠΊΠ°ΠΊ-Ρ‚ΠΎ ΠΏΠΎ Π½Π΅ΠΌΡƒ гуляСт! Π’Π°ΠΊΠΈΠΌ ΠΆΠ΅ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ доказываСтся, Ρ‡Ρ‚ΠΎ ΠΈ Π² ΠΎΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… Ρ‚Ρ€Ρ‘Ρ… случаях Ρ‚ΠΎΡ‡ΠΊΠ° (x; y) Π»Π΅ΠΆΠΈΡ‚ Π½Π° ΡΠΎΠΎΡ‚Π²Π΅Ρ‚ΡΡ‚Π²ΡƒΡŽΡ‰Π΅ΠΌ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅. Π˜Ρ‚Π°ΠΊ, мноТСство Ρ‚ΠΎΡ‡Π΅ΠΊ, ΠΎΠΏΠΈΡΡ‹Π²Π°ΡŽΡ‰ΠΈΡ… ΠΏΠ΅Ρ€Π²ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ систСмы, β€” Ρ€ΠΎΠΌΠ± ABCD со стороной 5. КаТдая сторона Ρ€ΠΎΠΌΠ±Π° ΠΎΡ‚Π²Π΅Ρ‡Π°Π΅Ρ‚ Π·Π° свой случай раскрытия ΠΌΠΎΠ΄ΡƒΠ»Π΅ΠΉ.

А Π²ΠΎΡ‚ Π²Ρ‚ΠΎΡ€ΠΎΠ΅ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ нашСй систСмы β€” обычная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° y = x 2 с Π²Π΅Ρ€ΡˆΠΈΠ½ΠΎΠΉ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ (0; a), Π³ΡƒΠ»ΡΡŽΡ‰Π°Ρ Π²Π²Π΅Ρ€Ρ…-Π²Π½ΠΈΠ· вдоль оси ΠΈΠ³Ρ€Π΅ΠΊΠΎΠ² Π² зависимости ΠΎΡ‚ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°. Π’ΠΎΡ‚ наша ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ°:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

А Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ (Π²Π½ΠΈΠΌΠ°Π½ΠΈΠ΅!) Π½Π°Ρ‡ΠΈΠ½Π°Π΅ΠΌ Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒ Π½Π°ΡˆΡƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ снизу Π²Π²Π΅Ρ€Ρ… вдоль оси OY, мСняя Ρ‚Π΅ΠΌ самым ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€ Π°!

Π’Π°ΠΊΠΈΠΌ ΠΎΠ±Ρ€Π°Π·ΠΎΠΌ, пСрвая Ρ‡Π°ΡΡ‚ΡŒ ΠΎΡ‚Π²Π΅Ρ‚Π° Π±ΡƒΠ΄Π΅Ρ‚ такая:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

Π‘Π°ΠΌΠΈ Π³Ρ€Π°Π½ΠΈΡ†Ρ‹ нас Π½Π΅ ΡƒΡΡ‚Ρ€Π°ΠΈΠ²Π°ΡŽΡ‚ ΠΈ Π² ΠΎΡ‚Π²Π΅Ρ‚, СстСствСнно, Π½Π΅ Π²ΠΊΠ»ΡŽΡ‡Π°ΡŽΡ‚ΡΡ.

Но… Π­Ρ‚ΠΎ Π΅Ρ‰Ρ‘ Π½Π΅ всё!) ΠŸΡ€ΠΎΠ΄ΠΎΠ»ΠΆΠΈΠΌ дальшС Π΄Π²ΠΈΠ³Π°Ρ‚ΡŒ Π²Π²Π΅Ρ€Ρ… ΠΏΠΎ оси ОY Π½Π°ΡˆΡƒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρƒ. Когда Π²Π΅Ρ€ΡˆΠΈΠ½Π° окаТСтся Ρ‡ΡƒΡ‚ΡŒ Π²Ρ‹ΡˆΠ΅ Ρ‚ΠΎΡ‡ΠΊΠΈ Π‘, Ρ‚ΠΎ пСрСсСчСний станСт ΡƒΠΆΠ΅ ΡˆΠ΅ΡΡ‚ΡŒ: ΠΏΠΎ Π΄Π²Π° с Π½ΠΈΠΆΠ½ΠΈΠΌΠΈ сторонами Ρ€ΠΎΠΌΠ±Π° ΠΈ ΠΏΠΎ ΠΎΠ΄Π½ΠΎΠΌΡƒ с Π²Π΅Ρ€Ρ…Π½ΠΈΠΌΠΈ. И Ρ‚Π°ΠΊ Π±ΡƒΠ΄Π΅Ρ‚ Π΄ΠΎ Ρ‚Π΅Ρ… ΠΏΠΎΡ€, ΠΏΠΎΠΊΠ° Π²Π΅Ρ‚Π²ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π½Π΅ станут ΠΊΠ°ΡΠ°Ρ‚ΡŒΡΡ сторон CD ΠΈ CB Ρ€ΠΎΠΌΠ±Π° (красный Ρ†Π²Π΅Ρ‚). Π’ случаС касания Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ снова станСт Ρ‡Π΅Ρ‚Ρ‹Ρ€Π΅, Ρ‡Ρ‚ΠΎ ΠΎΡ‚ нас ΠΈ трСбуСтся. И это Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° касаСтся Π½ΠΈΠΆΠ½ΠΈΡ… сторон Ρ€ΠΎΠΌΠ±Π°, Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ Π½Π°ΠΌ ΠΈ прСдстоит Β«ΠΎΡ‚Π»ΠΎΠ²ΠΈΡ‚ΡŒΒ».)

На ΠΏΠΎΠΌΠΎΡ‰ΡŒ ΠΏΡ€ΠΈΠ΄Ρ‘Ρ‚ Ρ‚Π°ΠΊΠΎΠΉ ΠΌΠΎΡ‰Π½Ρ‹ΠΉ инструмСнт, ΠΊΠ°ΠΊ производная. Π’ силу симмСтрии ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠΈ, Ρ€Π°ΡΡΠΌΠ°Ρ‚Ρ€ΠΈΠ²Π°Ρ‚ΡŒ Π±ΡƒΠ΄Π΅ΠΌ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΏΡ€Π°Π²ΡƒΡŽ Π²Π΅Ρ‚Π²ΡŒ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π˜Ρ‚Π°ΠΊ, ΠΏΡƒΡΡ‚ΡŒ наша красная ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π° касаСтся Π½ΠΈΠΆΠ½Π΅Π³ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ° Ρ€ΠΎΠΌΠ±Π° Π‘Π’ Π² ΠΊΠ°ΠΊΠΎΠΉ-Ρ‚ΠΎ Ρ‚ΠΎΡ‡ΠΊΠ΅ М.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ прямой, Π·Π°Π΄Π°ΡŽΡ‰Π΅ΠΉ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ Π‘Π’, Π±ΡƒΠ΄Π΅Ρ‚

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

ΠΏΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ тангСнс ΡƒΠ³Π»Π° Π½Π°ΠΊΠ»ΠΎΠ½Π° прямой CB ΠΊ оси ОΠ₯ Ρ€Π°Π²Π΅Π½:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π£Ρ€Π°Π²Π½Π΅Π½ΠΈΠ΅ нашСй ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π±ΡƒΠ΄Π΅Ρ‚ y = x 2 + a. ΠœΡ‹ Π½Π΅ Π·Π½Π°Π΅ΠΌ ΠΏΠΎΠΊΠ°, Ρ‡Π΅ΠΌΡƒ Ρ€Π°Π²Π½ΠΎ Β«Π°Β», Π½ΠΎ Π·Π°Ρ‚ΠΎ Ρ‚Π²Ρ‘Ρ€Π΄ΠΎ Π·Π½Π°Π΅ΠΌ, Ρ‡Ρ‚ΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΎΠΊ CB Π΅Ρ‘ касаСтся, Π° Π·Π½Π°Ρ‡ΠΈΡ‚, производная нашСй ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ Π² Ρ‚ΠΎΡ‡ΠΊΠ΅ касания M Π΄ΠΎΠ»ΠΆΠ½Π° Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π½Π° 4/3.

Вычислим эту ΡΠ°ΠΌΡƒΡŽ ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΡƒΡŽ:

ΠŸΠΎΡΠΊΠΎΠ»ΡŒΠΊΡƒ Ρ‚ΠΎΡ‡ΠΊΠ° M Π»Π΅ΠΆΠΈΡ‚ Π½Π° ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ΅ CB, Ρ‚ΠΎ Π΅Ρ‘ ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ ΠΎΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠ΄ΠΎΠ²Π»Π΅Ρ‚Π²ΠΎΡ€ΡΡŽΡ‚ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ этого ΠΎΡ‚Ρ€Π΅Π·ΠΊΠ°:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π—Π½Π°Ρ‡ΠΈΡ‚, ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ нашСй Ρ‚ΠΎΡ‡ΠΊΠΈ касания ΡΠ»Π΅Π΄ΡƒΡŽΡ‰ΠΈΠ΅:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Но! Π’ΠΎΡ‡ΠΊΠ° M ΠΏΡ€ΠΈΠ½Π°Π΄Π»Π΅ΠΆΠΈΡ‚ Π½Π΅ Ρ‚ΠΎΠ»ΡŒΠΊΠΎ ΠΎΡ‚Ρ€Π΅Π·ΠΊΡƒ, Π½ΠΎ Π΅Ρ‰Ρ‘ ΠΈ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Π΅! ΠŸΠΎΡΡ‚ΠΎΠΌΡƒ, подставив ΠΊΠΎΠΎΡ€Π΄ΠΈΠ½Π°Ρ‚Ρ‹ Ρ‚ΠΎΡ‡ΠΊΠΈ M Π² ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹, ΠΌΡ‹ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ ΡƒΠΆΠ΅ Π±Π΅Π· Ρ‚Ρ€ΡƒΠ΄Π° Π½Π°ΠΉΠ΄Ρ‘ΠΌ ΠΈΠ½Ρ‚Π΅Ρ€Π΅ΡΡƒΡŽΡ‰Π΅Π΅ нас Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ Π°:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π’ΠΎΡ‚ Ρ‚Π΅ΠΏΠ΅Ρ€ΡŒ всё. ВсС Ρ…Π°Ρ€Π°ΠΊΡ‚Π΅Ρ€Π½Ρ‹Π΅ полоТСния ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹ прСдставлСны Π½Π° ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ΅.

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π›Π΅Π³ΠΊΠΎ Π²ΠΈΠ΄Π΅Ρ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΏΡ€ΠΈ дальнСйшСм ростС ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π° Π° Ρ‡Π΅Ρ‚Ρ‹Ρ€Ρ‘Ρ… Ρ€Π΅ΡˆΠ΅Π½ΠΈΠΉ ΡƒΠΆΠ΅ Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚, Π° Π±ΡƒΠ΄Π΅Ρ‚ Π»ΠΈΠ±ΠΎ Π΄Π²Π°, Π»ΠΈΠ±ΠΎ ΠΎΠ΄Π½ΠΎ, Π»ΠΈΠ±ΠΎ Π½ΠΈ ΠΎΠ΄Π½ΠΎΠ³ΠΎ.

ΠšΡΡ‚Π°Ρ‚ΠΈ ΡΠΊΠ°Π·Π°Ρ‚ΡŒ, Π° ΠΌΠΎΠΆΠ½ΠΎ Π»ΠΈ Π² Π΄Π°Π½Π½ΠΎΠΉ ситуации ΠΎΠ±ΠΎΠΉΡ‚ΠΈΡΡŒ Π±Π΅Π· ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ? Π£ΠΆ больно напряТно с Π½Π΅ΠΉ Π²ΠΎΠ·ΠΈΡ‚ΡŒΡΡ, ΠΊΠ°ΠΊ правило…

Π§Ρ‚ΠΎ ΠΆ, ΡΠΏΠ΅Ρ†ΠΈΠ°Π»ΡŒΠ½ΠΎ для Ρ€Π°Π·ΡƒΠΌΠ½Ρ‹Ρ… халявщиков ΠΏΡ€Π΅Π΄Π»Π°Π³Π°ΡŽ способ-Π»Π°ΠΉΡ‚.) Но, слСдуСт ΠΏΡ€Π΅Π΄ΡƒΠΏΡ€Π΅Π΄ΠΈΡ‚ΡŒ, Ρ‡Ρ‚ΠΎ ΠΎΠ½ срабатываСт Ρ‚ΠΎΠ»ΡŒΠΊΠΎ Π² случаС ΠΊΠ°ΠΊΠΈΡ…-Π½ΠΈΠ±ΡƒΠ΄ΡŒ ΠΏΡ€ΠΎΡΡ‚Π΅Π½ΡŒΠΊΠΈΡ… Π³Ρ€Π°Ρ„ΠΈΠΊΠΎΠ² β€” Π² основном для ΠΏΠ°Ρ€Π°Π±ΠΎΠ»Ρ‹. Π’ случаС Π±ΠΎΠ»Π΅Π΅ слоТных Ρ„ΡƒΠ½ΠΊΡ†ΠΈΠΉ способ с ΠΏΡ€ΠΎΠΈΠ·Π²ΠΎΠ΄Π½ΠΎΠΉ β€” самый Π½Π°Π΄Ρ‘ΠΆΠ½Ρ‹ΠΉ.)

Π˜Ρ‚Π°ΠΊ, Π½Π°ΠΌ трСбуСтся ΠΎΡ‚Ρ‹ΡΠΊΠ°Ρ‚ΡŒ Π·Π½Π°Ρ‡Π΅Π½ΠΈΠ΅ ΠΏΠ°Ρ€Π°ΠΌΠ΅Ρ‚Ρ€Π°, ΠΏΡ€ΠΈ ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠΌ происходит касаниС прямой

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2.

Π§Ρ‚ΠΎ ΠΎΠ·Π½Π°Ρ‡Π°Π΅Ρ‚ сСй Ρ„Π°ΠΊΡ‚ с алгСбраичСской Ρ‚ΠΎΡ‡ΠΊΠΈ зрСния? Волько Ρ‚ΠΎ, Ρ‡Ρ‚ΠΎ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

ΠΈΠΌΠ΅Π΅Ρ‚ строго ΠΎΠ΄ΠΈΠ½ ΠΊΠΎΡ€Π΅Π½ΡŒ! Π’ΠΎ Π΅ΡΡ‚ΡŒ, дискриминант ΠΏΠΎΠ»ΡƒΡ‡ΠΈΠ²ΡˆΠ΅Π³ΠΎΡΡ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Π½ΠΎΠ³ΠΎ уравнСния обязан Π±Ρ‹Ρ‚ΡŒ Ρ€Π°Π²Π΅Π½ Π½ΡƒΠ»ΡŽ!

Π§Ρ‚ΠΎ ΠΆ, остаётся Ρ‚ΠΎΠ»ΡŒΠΊΠΎ привСсти нашС ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΊ стандартному Π²ΠΈΠ΄Ρƒ, ΠΏΠΎΡΡ‡ΠΈΡ‚Π°Ρ‚ΡŒ дискриминант Π΄Π° ΠΏΡ€ΠΈΡ€Π°Π²Π½ΡΡ‚ΡŒ Π΅Π³ΠΎ ΠΊ Π½ΡƒΠ»ΡŽ.) ДСйствуСм:

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Как ΠΈ слСдовало ΠΎΠΆΠΈΠ΄Π°Ρ‚ΡŒ, Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ получился Ρ‚Π΅ΠΌ ΠΆΠ΅ самым.)

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Π—Π°ΠΊΠ»ΡŽΡ‡Π΅Π½ΠΈΠ΅: Ссли Π² ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π΅ ΠΏΡ€Π΅Π΄Π»ΠΎΠΆΠ΅Π½ΠΎ ΠΊΠ°ΠΊΠΎΠ΅-Ρ‚ΠΎ звСрскоС Π½Π° Π²ΠΈΠ΄ ΡƒΡ€Π°Π²Π½Π΅Π½ΠΈΠ΅ ΠΈΠ»ΠΈ нСравСнство с корнями, Π½ΠΎ ΠΏΠΎΠ΄ΠΊΠΎΡ€Π΅Π½Π½Ρ‹Π΅ выраТСния ΠΏΡ€Π΅Π΄ΡΡ‚Π°Π²Π»ΡΡŽΡ‚ собой ΠΊΠ°ΠΊΠΈΠ΅-Ρ‚ΠΎ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ΠΈΡ‡Π½Ρ‹Π΅ конструкции ΠΎΡ‚ x ΠΈ y Π²ΠΈΠ΄Π°

Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ Ρ„ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π‘ΠΌΠΎΡ‚Ρ€Π΅Ρ‚ΡŒ ΠΊΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΡƒ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. ΠšΠ°Ρ€Ρ‚ΠΈΠ½ΠΊΠ° ΠΏΡ€ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2. Π€ΠΎΡ‚ΠΎ Π”ΠΎΠΊΠ°ΠΆΠΈΡ‚Π΅ Ρ‡Ρ‚ΠΎ расстояниС ΠΌΠ΅ΠΆΠ΄Ρƒ Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ a x1 ΠΈ b x2

Ρ‚ΠΎ Π½ΠΈ Π² ΠΊΠΎΠ΅ΠΌ случаС Π½Π΅ Π²ΠΎΠ·Π²ΠΎΠ΄ΠΈΠΌ ΠΎΠ±Π΅ части Π² ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚ с Ρ†Π΅Π»ΡŒΡŽ ΠΈΠ·Π±Π°Π²ΠΈΡ‚ΡŒΡΡ ΠΎΡ‚ ΠΊΠΎΡ€Π½Π΅ΠΉ ΠΈ Π½Π΅ Ρ‚Ρ€Π°Ρ‚ΠΈΠΌ своё врСмя! ВмСсто этого ΠΏΡ€ΠΎΠ±ΡƒΠ΅ΠΌ Π²Ρ‹Π΄Π΅Π»ΠΈΡ‚ΡŒ ΠΏΠΎΠ»Π½Ρ‹Π΅ ΠΊΠ²Π°Π΄Ρ€Π°Ρ‚Ρ‹ ΠΏΠΎΠ΄ корнями ΠΏΠΎ ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΈΠ· ΠΏΠ΅Ρ€Π΅ΠΌΠ΅Π½Π½Ρ‹Ρ….

ΠžΡ‡Π΅Π½ΡŒ часто Π² Ρ‚Π°ΠΊΠΈΡ… конструкциях срабатываСт ΠΈΠΌΠ΅Π½Π½ΠΎ Ρ„ΠΎΡ€ΠΌΡƒΠ»Π° расстояния ΠΌΠ΅ΠΆΠ΄Ρƒ двумя Ρ‚ΠΎΡ‡ΠΊΠ°ΠΌΠΈ, Ρ‡Ρ‚ΠΎ Π·Π½Π°Ρ‡ΠΈΡ‚Π΅Π»ΡŒΠ½ΠΎ ΡƒΠΏΡ€ΠΎΡ‰Π°Π΅Ρ‚ дальнСйшСС Ρ€Π΅ΡˆΠ΅Π½ΠΈΠ΅ ΠΏΡ€ΠΈΠΌΠ΅Ρ€Π° ΠΈ Ρ‚Π΅ΠΌ самым ΠΎΡ‚ΠΊΡ€Ρ‹Π²Π°Π΅Ρ‚ Π΄ΠΎΡ€ΠΎΠ³Ρƒ ΠΊ успСху.

Π˜ΡΡ‚ΠΎΡ‡Π½ΠΈΠΊ

Π”ΠΎΠ±Π°Π²ΠΈΡ‚ΡŒ ΠΊΠΎΠΌΠΌΠ΅Π½Ρ‚Π°Ρ€ΠΈΠΉ

Π’Π°Ρˆ адрСс email Π½Π΅ Π±ΡƒΠ΄Π΅Ρ‚ ΠΎΠΏΡƒΠ±Π»ΠΈΠΊΠΎΠ²Π°Π½. ΠžΠ±ΡΠ·Π°Ρ‚Π΅Π»ΡŒΠ½Ρ‹Π΅ поля ΠΏΠΎΠΌΠ΅Ρ‡Π΅Π½Ρ‹ *