Докажите что середины оснований трапеции точка пересечения ее диагоналей и точка пересечения
Докажите что середины оснований трапеции точка пересечения ее диагоналей и точка пересечения
Напомним свойства трапеции, которые часто используются при решении задач. Некоторые из этих свойств были доказаны в заданиях для 9-го класса, другие попробуйте доказать самостоятельно. Приведённые рисунки напоминают ход доказательства.
$$ 4.<2>^<○>$$. В любой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжении боковых сторон, лежат на одной прямой (на рис. 21 точки `M`, `N`, `O` и `K`).
$$ 4.<3>^<○>$$. В равнобокой трапеции углы при основании равны (рис. 22).
$$ 4.<4>^<○>$$. В равнобокой трапеции прямая, проходящая через середины оснований, перпендикулярна основаниям и является осью симметрии трапеции (рис. 23).
$$ 4.<5>^<○>$$. В равнобокой трапеции диагонали равны (рис. 24).
$$ 4.<6>^<○>$$. В равнобокой трапеции высота, опущенная на большее основание из конца меньшего основания, делит его на два отрезка, один из которых равен полуразности оснований, а другой – их полусумме
(рис. 25, основания равны `a` и `b`, `a>b`).
$$ 4.<7>^<○>$$. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой (рис. 26).
$$ 4.<8>^<○>$$. Во всякой трапеции отрезок, соединяющий середины диагоналей, параллелен основаниям и равен полуразности оснований (рис. 27).
Во всякой трапеции сумма квадратов диагоналей равна сумме квадратов боковых сторон и удвоенного произведения оснований, т. е. `d_1^2+d_2^2=c_1^2+c_2^2+2*ab`.
$$ 4.<10>^<○>$$. Во всякой трапеции с основаниями `a` и `b` отрезок с концами на боковых сторонах, проходящий через точку пересечения диагоналей параллельно основаниям, равен `(2ab)/(a+b)` (на рис. 28 отрезок `MN`).
$$ 4.<11>^<○>$$. Трапецию можно вписать в окружность тогда и только тогда, когда она равнобокая.
Применяем теорему косинусов (см. рис. 29а и б):
`ul(DeltaACD):` `d_1^2=a^2+c_2^2-2a*c_2*cos varphi`,
`ul(DeltaBCD):` `d_2^2=b^2+c_2^2+2b*c_2*cos varphi` (т. к. `cos(180^@-varphi)=-cos varphi`).
Проводим `CK«|\|«BA` (рис. 29в), рассматриваем треугольник `ul(KCD):` `c_1^2=c_2^2+(a-b)^2-2c_2*(a-b)*cos varphi`. Используя последнее равенство, заменяем выражение в скобках в (2), получаем:
`d_1^2+d_2^2=c_1^2+c_2^2+2ab`. |
В случае равнобокой трапеции `d_1=d_2`, `c_1=c_2=c`, поэтому получаем
Отрезок, соединяющий середины оснований трапеции, равен `5`, одна из диагоналей равна `6`. Найти площадь трапеции, если её диагонали перпендикулярны.
Прямоугольный треугольник `ul(BDK)` с гипотенузой `BK=BC+AD=2MN=10` и катетом `DK=6` имеет площадь `S=1/2DK*BD=1/2DKsqrt(BK^2-DK^2)=24`. Но площадь треугольника `BDK` равна площади трапеции, т. к. если `DP_|_BK`, то
Диагонали трапеции, пересекаясь, разбивают её на четыре треугольника с общей вершиной. Найти площадь трапеции, если площади треугольников, прилежащих к основаниям, равны `S_1` и `S_2`.
Далее, треугольники `BOC` и `DOA` подобны, площади подобных треугольников относятся как квадраты соответствующих сторон, значит, `(S_1)/(S_2)=(a/b)^2`. Таким образом, `(S_0+S_1)/(S_0+S_2)=sqrt((S_1)/(S_2))`.Отсюда находим `S_0=sqrt(S_1S_2)`, и поэтому площадь трапеции будет равна
Основания равнобокой трапеции равны `8` и `10`, высота трапеции равна `3` (рис. 32).
Найти радиус окружности, описанной около этой трапеции.
Из прямоугольного треугольника `ABK` находим `AB=sqrt(1+9)=sqrt(10)` и `sinA=(BK)/(AB)=3/(sqrt10)`. Окружность, описанная около трапеции `ABCD`, описана и около треугольника `ABD`, значит (формула (1), § 1), `R=(BD)/(2sinA)`. Отрезок `BD` находим из прямоугольного треугольника `KDB:` `BD=sqrt(BK^2+KD^2)=3sqrt(10)` (или по формуле `d^2=c^2+ab`), тогда
$$ 4.<12>^<○>$$. Площадь трапеции равна площади треугольника, две стороны которого равны диагоналям трапеции, а третья равна сумме оснований.
Докажите, что точка пересечения продолжений боковых сторон трапеции, середины оснований и точка пересечения диагоналей лежат на одной прямой.
Из подобия треугольников QBM и QAN следует, что =
, а из подобия треугольников QCM и QDN —
=
. Поэтому
=
, а т.к. BM = CM, то AN = DN, т.е. N — середина AD.
Аналогично докажем, что прямая, проходящая через точку O пересечения диагоналей и середину одного из оснований, проходит через середину другого основания.
При гомотетии с центром в точке O персечения диагоналей AC и BD, переводящей вершину B трапеции ABCD в вершину D, точка C переходит в точку A, основание BC — в основание DA, середина M основания BC — в середину N основания DA. Следовательно, прямая MN проходит через центр гомотетии, т.е. через точку O.
Аналогично докажем, что прямая MN проходит через точку пересечения прямых AB и DC.
Из подобия треугольников QBM и QAN следует, что =
, а из подобия треугольников QCM и QDN —
=
. Поэтому
=
, а т.к. BM = CM, то AN = DN, т.е. N — середина AD.
Аналогично докажем, что прямая, проходящая через точку O пересечения диагоналей и середину одного из оснований, проходит через середину другого основания.
При гомотетии с центром в точке O персечения диагоналей AC и BD, переводящей вершину B трапеции ABCD в вершину D, точка C переходит в точку A, основание BC — в основание DA, середина M основания BC — в середину N основания DA. Следовательно, прямая MN проходит через центр гомотетии, т.е. через точку O.
Аналогично докажем, что прямая MN проходит через точку пересечения прямых AB и DC.
Из подобия треугольников QBM и QAN следует, что =
, а из подобия треугольников QCM и QDN —
=
. Поэтому
=
, а т.к. BM = CM, то AN = DN, т.е. N — середина AD.
Аналогично докажем, что прямая, проходящая через точку O пересечения диагоналей и середину одного из оснований, проходит через середину другого основания.
При гомотетии с центром в точке O персечения диагоналей AC и BD, переводящей вершину B трапеции ABCD в вершину D, точка C переходит в точку A, основание BC — в основание DA, середина M основания BC — в середину N основания DA. Следовательно, прямая MN проходит через центр гомотетии, т.е. через точку O.
Аналогично докажем, что прямая MN проходит через точку пересечения прямых AB и DC.
Трапеция
Определения
Трапеция – это выпуклый четырехугольник, у которого две стороны параллельны, а две другие стороны не параллельны.
Параллельные стороны трапеции называются её основаниями, а две другие стороны – боковыми сторонами.
Высота трапеции – это перпендикуляр, опущенный из любой точки одного основания к другому основанию.
Теоремы: свойства трапеции
2) Диагонали делят трапецию на четыре треугольника, два из которых подобны, а два другие – равновелики.
Доказательство
Определение
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Теорема
Средняя линия трапеции параллельна основаниям и равна их полусумме.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
1) Докажем параллельность.
\[MN=MM’+M’N’+N’N=\dfrac12 AB’+B’C’+\dfrac12 C’D=\] \[=\dfrac12 \left(AB’+B’C’+BC+C’D\right)=\dfrac12\left(AD+BC\right)\]
Теорема: свойство произвольной трапеции
Середины оснований, точка пересечения диагоналей трапеции и точка пересечения продолжений боковых сторон лежат на одной прямой.
Доказательство*
С доказательством рекомендуется ознакомиться после изучения темы “Подобие треугольников”.
2) Докажем, что точки \(N, O, M\) лежат на одной прямой.
\(\triangle BNO\sim \triangle DMO\) по двум углам ( \(\angle OBN=\angle ODM\) как накрест лежащие при \(BC\parallel AD\) и \(BD\) секущей; \(\angle BON=\angle DOM\) как вертикальные). Значит: \[\dfrac
Определения
Трапеция называется прямоугольной, если один из ее углов – прямой.
Трапеция называется равнобедренной, если ее боковые стороны равны.
Теоремы: свойства равнобедренной трапеции
1) У равнобедренной трапеции углы при основании равны.
2) Диагонали равнобедренной трапеции равны.
3) Два треугольника, образованные диагоналями и основанием, являются равнобедренными.
Доказательство
2)
Теоремы: признаки равнобедренной трапеции
1) Если у трапеции углы при основании равны, то она равнобедренная.
2) Если у трапеции диагонали равны, то она равнобедренная.
Доказательство
Замечательные свойства трапеции
Для начала я обозначу некоторые очень важные факты об отрезках в трапеции.
1. Во всякой трапеции середины оснований, точка пересечения диагоналей и точка пересечения продолжения боковых сторон лежат на одной прямой.
2. Во всякой трапеции середины боковых сторон и середины диагоналей лежат на одной прямой, называемой средней линией трапеции или среднем арифметическим оснований.
3. Отрезок, соединяющий середины диагоналей трапеции, равен полуразности оснований.
4. Отрезок, параллельный основаниям и разбивающий трапецию на две равновеликие трапеции, равен среднему квадратичному оснований:
5. Отрезок,разбивающий трапецию на две подобные трапеции, имеет длину, равную среднему геометрическому длин оснований.
6. Отрезок, проходящий через точку пересечения диагоналей параллельно основаниям, равен среднему гармоническому оснований.
Между средними отрезками выполняются следующие соотношения
Доказательства этих фактов я не считаю нужным и уместным приводить в докладе, так как любой уважающий себя школьник должен их знать и уметь делать самостоятельно
Теперь, когда мы знаем эти, весьма важные, факты преступим к решению поистине прекрасных задач.
Применим приём достраивания.
Ответ: не может быть.
∆ DOA (по двум накрестлежащим углам)→
3. Подставляем a =2 b в равенство , находим b =3 и а=6.
Для того, чтобы решать задачи, где рассматривается площадь трапеции, необходимо помнить несколько очень важных утверждений:
2. Если прямая L 1║ L 2 и треугольники не имеют общегооснования, то
.
Высоты у этих треугольников равные, следовательно, площади этих треугольников относятся, как их снования.
Через точку М, лежащую внутри треугольника АВС проведены три прямые, параллельные его сторонам. При этом образовались три треугольника(см.рис.), площади которых равны S 1, S 2, S 3. Найдите площадь треугольника АВС.
Ответ:
Мне захотелось убедиться, возможно ли в трапеции похожее соотношение площадей. И действительно в трапеции нашёлся похожий случай. Рассмотрим его в следующей задачи.
Дана трапеция ABCD ; в трапеции проведены диагонали, пересекающиеся в точке О. Выразите площадь трапеции из площадей образовавшихся треугольников.
5. Правые части равенств (1) и (2) одинаковы, следовательно одинаковы и правые части:
Ответ: площадь трапеции равна .