Докажите что сумма двух четных чисел есть четное число
Четность и нечетность
Соображения четности (нечетности) часто используются при решении математических задач (и элементарных, и весьма «продвинутых»). В данной статье рассматриваются подходы к решению подобных задач.
Мы начнем с простейших примеров, а в заключительной части рассмотрим несколько «олимпиадных» заданий, в решении которых нам помогут соображения четности.
Четные и нечетные числа. Начальные сведения
Сумма, произведение, частное четных (нечетных) чисел
Если вы уже заскучали, переходите ко 2-й части статьи. Потом всегда сможете вернуться. Если же все эти теоретические построения вас не слишком утомили, давайте продолжим.
А почему, собственно, мы рассматриваем только два числа. Давайте мыслить шире!
Так, сумма 2+4+6+. +1022+1024 четна, поскольку все слагаемые четны. Сумма 1+3+5+7+9 нечетна, т. к. содержит 5 нечетных слагаемых. Произведение 2*3*4*. *1001*1002 четно уже хотя бы по той причине, что первый сомножитель является четным.
И вновь о сумме и произведении
Решение. Обозначим исходные числа A и B. Очевидно, возможно 4 варианта:
A | B | A+B | AB | (A+B) + АВ |
Ч | Ч | Ч | Ч | Ч |
Н | Н | Ч | Н | Н |
Ч | Н | Н | Ч | Н |
Н | Ч | Н | Ч | Н |
Во всех случаях (кроме первого) получаем нечетный результат!
Между прочим, наш юный друг Петя утверждает, что получил четное число. Мы доказали, что это невозможно. Петя ошибся.
Сознаю, что первая часть статьи может показаться читателю довольно утомительной и однообразной. К сожалению, обойтись без этих «скучных» базовых понятий нельзя. Обещаю, что дальше будет гораздо интереснее.