Окружность проходит через вершины B и C треугольника ABC и пересекает AB и AC в точках C1 и B1 соответственно.
а) Докажите, что треугольник ABC подобен треугольнику AB1C1.
б) Найдите радиус данной окружности, если ∠A = 45°, B1C1 = 6 и площадь треугольника AB1C1 в восемь раз меньше площади четырёхугольника BCB1C1.
Четырёхугольник BCB1C1 вписан в окружность, поэтому
Следовательно, треугольники ABC и AB1C1 подобны по двум углам.
б) Площадь треугольника AB1C1 в восемь раз меньше площади четырёхугольника BCB1C1, поэтому площадь треугольника ABC в девять раз больше площади треугольника AB1C1 и коэффициент подобия этих треугольников равен 3. Пусть тогда Найдём BB1 по теореме косинусов:
Теперь по теореме синусов из треугольника ABB1 получаем:
Но поскольку синусы смежных углов равны. Получаем
Теперь находим радиус окружности, описанной около треугольника BB1C:
Ответ:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
На стороне АС треугольника АВС выбраны точки D и E так, что отрезки AD и CE равны (см. рисунок). Оказалось, что отрезки BD и BE тоже равны. Докажите, что треугольник АВС — равнобедренный.
Так как по условию то треугольник является равнобедренным. Пусть угол при основании этого треугольника равен x, тогда Треугольники и равны по двум сторонам и углу между ними, поэтому и треугольник —равнобедренный.
Высоты AA1 и BB1 остроугольного треугольника ABC пересекаются в точке E. Докажите, что углы AA1B1 и ABB1 равны.
Рассмотрим треугольники и они прямоугольные, углы и равны как вертикальные, следовательно, треугольники подобны, откуда
Рассмотрим треугольники и углы и равны как вертикальные, из предыдущей пропорции следовательно, эти треугольники подобны, откуда
Аналогичное задание с тупоугольным треугольником: 340854.
В треугольнике ABC угол ABC тупой, H — точка пересечения продолжений высот, угол AHC равен 60°.
а) Докажите, что угол ABC равен 120°.
б) Найдите BH, если
а) Рассмотрим треугольник AHC. В нем AA1 и CC1 — высоты. Тупой угол между высотами дополняет угол между сторонами, к которым они проведены, до 180°. Поэтому
б) Рассмотрим треугольник AHC, в нем Сторону AC найдём по теореме косинусов:
Тем самым,
Ответ: б)
Докажем утверждение, использованное при решении пункта а).
В четырехугольнике сумма прямых углов и равна 180°, поэтому сумма двух других углов и также равна 180°. Тогда Углы и ABC равны как вертикальные, поэтому Таким образом, тупой угол между высотами дополняет угол между сторонами, к которым они проведены, до 180°.
Сформулируем теорему, которую мы применили для решения пункта б).
Расстояние от вершины треугольника до точки пересечения его высот равно произведению стороны, противолежащей этой вершине, на котангенс угла при этой вершине. Действительно, пусть высоты AA1, BB1, CC1 треугольника ABC пересекаются в точке H. Стороны прямоугольных треугольников АСС1 и ВНС1 взаимно перпендикулярны, а потому их острые углы АСС1 и ВНС1 равны. Следовательно, эти треугольники подобны. Тогда откуда Для остроугольного треугольника доказательство аналогично. Для прямоугольного треугольника доказательство напрямую следует из определения котангенса.
Рекомендуем сравнить эту задачу с заданием 505425 из экзаменационного варианта ЕГЭ 2014 года.
Приведем другое решение пункта б):
Рассмотрим треугольник C1CH, заметим, что угол C1CH равен 30°. Поэтому в прямоугольном треугольнике CBA1 катет BA1 вдвое меньше гипотенузы: BA1 = 4. Значит, АA1 = 11. Из треугольника AA1H находим Теперь по теореме Пифагора вычисляем:
Приведем ещё одно решение пункта б):
Заметим, что в треугольнике АНС точка В — ортоцентр. В силу свойства ортоцентра откуда получаем: (это же следует из подобия треугольников и ).
Из прямоугольного треугольника CBA1 находим катет BA1, противолежащий углу в 30°: BA1 = 4. Из треугольника АВС находим высоту:
Тогда
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта a) и обоснованно получен верный ответ в пункте б)
3
Получен обоснованный ответ в пункте б)
имеется верное доказательство утверждения пункта а) и при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки
2
Имеется верное доказательство утверждения пункта а)
при обоснованном решении пункта б) получен неверный ответ из-за арифметической ошибки,
В остроугольном треугольнике ABC проведены высоты BB1 и CC1. Прямые B1C1 и BC пересекаются в точке P.
а) Докажите, что треугольники PBC1 и PB1C подобны.
б) Найдите расстояние от вершины A до точки пересечения высот треугольника ABC, если BP = BB1, ∠ABC = 80°, а точка B лежит между C и P.
а) Точки B, C, B1, C1 лежат на окружности с диаметром BC, поэтому сумма углов BCB1 и BC1B1 равна 180°. Отсюда следует равенство углов PC1B и PCB1. А тогда треугольники PC1B и PCB1 подобны по двум углам. Что и требовалось доказать.
б) Пусть H — точка пересечения высот треугольника ABC. Заметим, что треугольник PBB1 равнобедренный, поэтому углы BPB1 и BB1P равны. А углы HB1C1 и HAC1 опираются на одну и ту же дугу окружности, построенной на AH как на диаметре, поэтому они тоже равны. Последний же угол, как легко видеть равен Теперь получаем, что угол PBB1 равен Угол ABB1 же тогда равен откуда
Заметим теперь, что
поэтому треугольники AB1C1 и ABC подобны с коэффициентом Диаметр описанной окружности треугольника ABC равен Диаметры описанных окружностей подобных треугольников относятся как коэффициент подобия, поэтому Отсюда AH = 6.
В остроугольном треугольнике ABC проведены высоты AM и CN.
А) Докажите, что углы ACB и MNB равны.
Б) Вычислите длину стороны АС, если известно, что периметр треугольника ABC равен 25 см, периметр треугольника BMN равен 15 см, а радиус окружности, описанной около треугольника BMN равен 3 см.
А) Рассмотрим прямоугольные треугольники AMB и CNB, у которых В — общий острый угол.
В ΔAMB: В ΔCNB: Откуда:
Итак, в треугольниках MNB и ACB: угол В, заключенный между пропорциональными сторонами, общий. Это значит, что ΔMNB
ΔACB, откуда ∠ACB = ∠MNB, что и требовалось доказать.
Б) Известно, что у подобных треугольников периметры относятся как соответствующие стороны. Следовательно,
где k — коэффициент подобия названных треугольников.
Если то непременно По следствию из теоремы синусов:
Критерии оценивания выполнения задания
Баллы
Имеется верное доказательство утверждения пункта а и обоснованно получен верный ответ в пункте б.
3
Получен обоснованный ответ в пункте б.
Имеется верное доказательство утверждения пункта а и при обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.
2
Имеется верное доказательство утверждения пункта а.
При обоснованном решении пункта б получен неверный ответ из-за арифметической ошибки.