Докажите что углы при основании равнобедренной трапеции равны
Если у трапеции углы при основании равны
(I признак равнобедренной трапеции).
Если у трапеции углы при основании равны, то она — равнобедренная.
Дано : ABCD — трапеция,
Доказать: ABCD — равнобедренная.
1) Проведем высоты трапеции BF и CK:
2) Рассмотрим треугольники ABF и DCK.
∠AFB=90º, ∠DKC=90º (так как BF и CK — высоты трапеции).
BF=CK (как высоты трапеции).
Следовательно, треугольники ABF и DCK равны (по катету и острому углу).
3) Из равенства треугольников следует равенство соответствующих сторон: AB=CD.
Следовательно, трапеция ABCD — равнобедренная ( по определению).
∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB),
∠D+∠C =180º (как внутренние односторонние при AD ∥ BC и секущей CD).
Таким образом, из равенства углов при меньшем основании следует равенство углов и при большем основании трапеции. Уже доказали, что в этом случае трапеция — равнобедренная.
«Трапеция». 8-й класс
Разделы: Математика
Класс: 8
Ход урока
I. Организационный момент.
II. Актуализация знаний.
Ключевое слово кроссворда – является темой нашего урока.
III. Новый материал.
Трапеция – (от греч. trapezion, букв. – столик).
Трапеция – четырёхугольник, у которого две стороны параллельны, а две другие – непараллельные. Отрезок, соединяющий середины боковых сторон, называется средней линией трапеции.
Равнобедренная – трапеция, у которой равны боковые стороны.
Прямоугольная – трапеция, один из углов которой прямой.
Средняя линия трапеции.
Средняя линия трапеции – отрезок, соединяющий середины боковых сторон.
Группы с четными номерами – исследуют диагонали равнобедренной трапеции. Группы с нечетными номерами – исследуют углы равнобедренной трапеции.
Выслушать и обсудить результаты исследования, на доске и в тетрадях записать решения.
Свойства равнобедренной трапеции.
Теорема. В равнобедренной трапеции углы при каждом основании равны.
Проведем СЕ АВ.
ABCD – параллелограмм (АВ СЕ, ВС
AD).
CD = AB = CE, СDE – равнобедренный,
СDЕ =
СЕD.
АВ СЕ, тогда
СЕD =
ВАЕ,
СDЕ =
СЕD =
ВАЕ.
ABC = 180° –
СDЕ = 180° –
ВАЕ =
BCD.
Теорема. В равнобедренной трапеции диагонали равны.
ABC =
DСВ (АВ = С, ВС – общая сторона,
АВС =
ВСD) тогда АС = ВD.
Сформулируйте утверждения, обратные свойствам, и выясните их справедливость.
Признаки равнобедренной трапеции.
Выслушать и обсудить результаты исследования, на доске и в тетрадях записать решения.
1. Если углы при основании трапеции равны, то она равнобедренная.
Проведем ЕС АВ.
ABCЕ – параллелограмм, тогда АВ СЕ,
А =
СЕD,
СЕD – равнобедренный (
D =
СЕD), тогда СЕ = СD.
АВ = СЕ = СD, тогда АВСD – равнобедренная трапеция.
2. Если диагонали трапеции равны, то она равнобедренная.
Проведем СК ВD.
ВСКD – параллелограмм (т.к. СК ВD, ВС
АК).
АСК – равнобедренный, т.к. АС = ВD = СК,
САD =
СDА.
СК ВD,
ВDА =
СКD, тогда
САD =
СКD.
АВD =
DСА, т.к. АС=ВD, АD – общая сторона,
САD =
СКD, тогда АВ = СD, т.е. АВСD – равнобедренная трапеция.
Свойства равнобедренной (равнобокой) трапеции
В данной публикации мы рассмотрим определение и основные свойства равнобедренной трапеции.
Напомним, трапеция называется равнобедренной (или равнобокой), если ее боковые стороны равны, т.е. AB = CD.
Свойство 1
Углы при любом из оснований равнобедренной трапеции равны.
Свойство 2
Сумма противоположных углов трапеции равняется 180°.
Для рисунка выше: α + β = 180°.
Свойство 3
Диагонали равнобедренной трапеции имеют одинаковую длину.
Свойство 4
Высота равнобедренной трапеции BE, опущенная на основание большей длины AD, делит его на два отрезка: первый равняется половине суммы оснований, второй – половине их разности.
Свойство 5
Отрезок MN, соединяющий середины оснований равнобокой трапеции, перпендикулярен этим основаниям.
Прямая, проходящая через середины оснований равнобедренной трапеции, называется ее осью симметрии.
Свойство 6
Вокруг любой равнобедренной трапеции можно описать окружность.
Свойство 7
Если сумма оснований равнобокой трапеции равно удвоенной длине ее боковой стороны, в нее можно вписать окружность.
Радиус такой окружности равняется половине высоты трапеции, т.е. R = h/2.
Примечание: остальные свойства, которые применимы ко всем видам трапеций, приведены в нашей публикации – “Что такое трапеция: определение, виды, свойства”.