Докажите по индукции что для любого натурального n выполняется неравенство
Докажите по индукции что для любого натурального n выполняется неравенство
МЕТОД МАТЕМАТИЧЕСКОЙ ИНДУКЦИИ
Автор работы награжден дипломом победителя II степени
Введение
Данная тема является актуальной, так как каждый день люди решают различные задачи, в которых они применяют разные методы решения, но есть задания, в которых не обойтись без метода математической индукции, и в таких случаях будут очень полезны знания в данной области.
Я выбрал данную тему для исследования, потому что в школьной программе методу математической индукции уделяют мало времени, ученик узнает поверхностнуюинформацию, которая поможетему получить лишь общее представление о данном методе, но чтобы углубленно изучить эту теорию потребуется саморазвитие. Действительно будет полезно поподробнее узнать о данной теме, так как это расширяет кругозор человека и помогает в решении сложных задач.
Цель работы:
Познакомиться с методом математической индукции, систематизировать знания по данной теме и применить её при решении математических задач и доказательстве теорем, обосновать и наглядно показать практическое значение метода математической индукции как необходимого фактора для решения задач.
Задачи работы:
Проанализировать литературу и обобщить знания по данной теме.
Разобраться в принципе метода математической индукции.
Исследовать применение метода математической индукции к решению задач.
Сформулировать выводы и умозаключения по проделанной работе.
Основная часть исследования
История возникновения:
Только к концу XIX века сложился стандарт требований к логической строгости, остающейся и до настоящего времени господствующими в практической работе математиков над развитием отдельных математических теорий.
Осознание метода математической индукции как отдельного важного метода восходит к Блезу Паскалю и Герсониду, хотя отдельные случаи применения встречаются ещё в античные времена у Прокла и Эвклида. Современное название метода было введено де Морганом в 1838 году.
Метод математической индукции можно сравнить с прогрессом: мы начинаем с низшего, в результате логического мышления приходим к высшему. Человек всегда стремился к прогрессу, к умению логически развивать свою мысль, а значит, сама природа предначертала ему размышлять индуктивно.
Индукция и дедукция
Известно, что существуют как частные, так и общие утверждения, и на переходе от одних к другим и основаны два данных термина.
Дедукция (от лат. deductio – выведение) – переход в процессе познания от общего знания к частному и единичному. В дедукции общее знание служит исходным пунктом рассуждения, и это общее знание предполагается «готовым», существующим. Особенность дедукции состоит в том, что истинность ее посылок гарантирует истинность заключения. Поэтому дедукция обладает огромной силой убеждения и широко применяется не только для доказательства теорем в математике, но и всюду, где необходимы достоверные знания.
Индукция (от лат. inductio – наведение) – это переход в процессе познания от частного знания к общему.Другими словами, – это метод исследования, познания, связанный с обобщением результатов наблюдений и экспериментов.Особенностью индукции является ее вероятностный характер, т.е. при истинности исходных посылок заключение индукции только вероятно истинно и в конечном результате может оказаться как истинным, так и ложным.
Полная и неполная индукция
Индуктивное умозаключение – такая форма абстрактного мышления, в которой мысль развивается от знания меньшей степени общности к знанию большей степени общности, а заключение, вытекающее из посылок, носит преимущественно вероятностный характер.
В ходе исследования я выяснил, что индукция делится на два вида: полная и неполная.
Полной индукцией называется умозаключение, в котором общий вывод о классе предметов делается на основании изучения всех предметов этого класса.
Например,пусть требуется установить, что каждое натуральное чётное число n в пределах 6≤ n≤ 18 представимо в виде суммы двух простых чисел. Для этого возьмём все такие числа и выпишем соответствующие разложения:
6=3+3; 8=5+3; 10=7+3; 12=7+5;14=7+7; 16=11+5; 18=13+5;
Данные равенства показывают, что каждое из интересующих нас чисел действительно представляется в виде суммы двух простых слагаемых.
Рассмотрим следующий пример: последовательность yn= n 2 +n+17; Выпишем первые четыре члена: у1=19; y2=23; y3=29; y4=37; Тогда мы можем предположить, что вся последовательность состоит из простых чисел. Но это не так, возьмем y16= 16 2 +16+17=16(16+1)+17=17*17. Это составное число, значит наше предположение неверно, таким образом, неполная индукция не приводит к вполне надежным выводам, но позволяет сформулировать гипотезу, которая в дальнейшем требует математического доказательства или опровержения.
Метод математической индукции
Полная индукция имеет в математике лишь ограниченное применение. Многие интересные математические утверждения охватывают бесконечное число частных случаев, а провести проверку для всех этих ситуаций мы не в состоянии.Но как осуществить проверку бесконечного числа случаев? Такой способ предложили Б.Паскаль и Я.Бернулли, это метод математической индукции, в основе которого лежит принцип математической индукции.
Если предложение А(n), зависящее от натурального числа n, истинно для n=1 и из того, что оно истинно для n=k (где k-любое натуральное число), следует, что оно истинно и для следующего числа n=k+1, то предположение А(n) истинно для любого натурального числа n.
В ряде случаев бывает нужно доказать справедливость некоторого утверждения не для всех натуральных чисел, а лишь для n>p, где p-фиксированное натуральное число. В этом случае принцип математической индукции формулируется следующим образом:
Если предложение А(n) истинно при n=p и если А(k) А(k+1) для любого k>p, то предложение А(n) истинно для любого n>p.
Алгоритм (он состоит из четырех этапов):
1.база ( показываем, что доказываемое утверждение верно для некоторых простейших частных случаев ( п= 1));
2.предположение (предполагаем, что утверждение доказано для первых к случаев); 3.шаг ( в этом предположении доказываем утверждение для случая п= к + 1); 4.вывод ( утверждение верно для всех случаев, то есть для всех п).
Заметим, что Методом математической индукции можно решать не все задачи, а только задачи, параметризованные некоторой переменной. Эта переменная называется переменной индукции.
Применение метода математической индукции
Применим всю данную теорию на практике и выясним, в каких задачах применяется данный метод.
Задачи на доказательство неравенств.
Пример 1.Доказать неравенство Бернулли(1+х)n≥1+n х, х>-1, n € N.
Докажем с помощью метода математической индукции.
1) При n=1 неравенство справедливо, так как 1+х≥1+х
2) Предположим, что неравенство верно для некоторого n=k, т.е.
Умножив обе части неравенства на положительное число 1+х, получим
(1+x) k+1 ≥(1+kx)(1+ x) =1+(k+1) x + kx 2
Учитывая, что kx 2 ≥0, приходим к неравенству
Таким образом, из допущения, что неравенство Бернулли верно для n=k, следует, что оно верно для n=k+1. На основании метода математической индукции можно утверждать, что неравенство Бернулли справедливо для любого n € N.
Докажем с помощью метода математической индукции.
Обозначим левую часть неравенства через.
1), следовательно, при n=2 неравенство справедливо.
Задачи на доказательство тождеств.
Пример 1. Доказать, что для любого натурального n справедливо равенство:
1 3 +2 3 +3 3 +…+n 3 =n 2 (n+1) 2 /4.
Пусть n=1, тогда Х1=1 3 =1 2 (1+1) 2 /4=1.
Мы видим, что при n=1 утверждение верно.
2) Предположим, что равенство верно при n=kXk=k 2 (k+1) 2 /4.
3) Докажем истинность этого утверждения для n=k+1, т.е.Xk+1=(k+1) 2 (k+2) 2 /4. Xk+1=1 3 +2 3 +…+k 3 +(k+1) 3 =k 2 (k+1) 2 /4+(k+1) 3 =(k 2 (k+1) 2 +4(k+1) 3 )/4=(k+1) 2 (k 2 +4k+4)/4=(k+1) 2 (k+2) 2 /4.
Из приведённого доказательства видно, что утверждение верно при n=k+1, следовательно, равенство верно при любом натуральном n.
Пример 2. Доказать, что при любом натуральном nсправедливо равенство
2) Пусть тождество верно и для n = k, т.е..
3)Докажем, что это тождество верно и для n = k + 1, т.е.;
Т.к. равенство верно при n=kи n=k+1, то оно справедливо при любом натуральном n.
Задачи на суммирование.
2) Докажем, что А(k) A(k+1).
Докажем, что тогда утверждение справедливо и для следующего натурального числа n=k+1, т.е. что
Итак, А(k) А(k+1). На основании принципа математической индукции заключаем, что предположение А(n) истинно для любого n N.
Пример 2. Доказать формулу, n – натуральное число.
Решение: При n=1 обе части равенства обращаются в единицу и, следовательно, первое условие принципа математической индукции выполнено.
Прибавим к обеим частям этого равенства и преобразуем правую часть. Тогда получим
Таким образом, из того, что формула верна при n=k, следует, что она верна и при n=k+1, то это утверждение справедливо при любом натуральном n.
Задачи на делимость.
Пример 1. Доказать, что (11 n+2 +12 2n+1 ) делится на 133 без остатка.
Решение: 1) Пусть n=1, тогда
(23× 133) делится на 133 без остатка, значит при n=1 утверждение верно;
2) Предположим, что (11 k+2 +12 2k+1 ) делится на 133 без остатка.
3) Докажем, что в таком случае
(11 k+3 +12 2k+3 ) делится на 133 без остатка. Действительно, 11 k+3 +12 2л+3 =11×11 k+2 +
Полученная сумма делится на 133 без остатка, так как первое её слагаемое делится на 133 без остатка по предположению, а во втором одним из множителей является 133.
Итак, А(k)→ А(k+1), то опираясь на метод математической индукции, утверждение верно для любых натуральных n.
Пример 2. Доказать, что 3 3n-1 +2 4n-3 при произвольном натуральном n делится на 11.
Решение: 1) Пусть n=1, тогдаХ1=3 3-1 +2 4-3 =3 2 +2 1 =11 делится на 11 без остатка. Значит, при n=1 утверждение верно.
2) Предположим, что при n=k
Xk=3 3k-1 +2 4k-3 делится на 11 без остатка.
3) Докажем, что утверждение верно для n=k+1.
Xk+1=3 3(k+1)-1 +2 4(k+1)-3 =3 3k+2 +2 4k+1 =3 3 *3 3k-1 +2 4 *2 4k-3 =
=27 3 3k-1 +16* 2 4k-3 =(16+11)* 3 3k-1 +16* 2 4k-3 =16* 3 3k-1 +
Первое слагаемое делится на 11 без остатка, поскольку 3 3k-1 +2 4k-3 делится на 11 по предположению, второе делится на 11, потому что одним из его множителей есть число 11. Значит и сумма делится на 11 без остатка при любом натуральном n.
Задачи из реальной жизни.
Пример 1. Доказать, что сумма Sn внутренних углов любого выпуклого многоугольника равна (п— 2)π, где п — число сторон этого многоугольника:Sn = (п— 2)π (1).
Это утверждение имеет смысл не для всех натуральных п, а лишь для п > 3, так как минимальное число углов в треугольнике равно 3.
1) При п = 3 наше утверждение принимает вид: S3 = π. Но сумма внутренних углов любого треугольника действительно равна π. Поэтому при п = 3 формула (1) верна.
Итак, оба условия принципа математической индукции выполняются, и потому формула (1) верна при любом натуральном п > 3.
Пример 2.Имеется лестница, все ступени которой одинаковы. Требуется указать минимальное число положений, которые гарантировали бы возможность «забраться» на любую по номеру ступеньку.
Все согласны с тем, что должно быть условие. Мы должны уметь забраться на первую ступень. Далее должны уметь с 1-ой ступеньки забраться на вторую. Потом во второй – на третью и т.д. на n-ую ступеньку. Конечно, в совокупности же «n» утверждений гарантирует нм то, что мы сможем добраться до n-ой ступеньки.
Посмотрим теперь на 2, 3,…., n положение и сравним их друг с другом. Легко заметить, что все они имеют одну и ту же структуру: если мы добрались до k ступеньки, то можем забраться на (k+1) ступеньку. Отсюда становится естественной такая аксиома для справедливости утверждений, зависящих от «n»: если предложение А(n), в котором n – натуральное число, выполняется при n=1 и из того, что оно выполняется при n=k (где k – любое натуральное число), следует, что оно выполняется и для n=k+1, то предположение А(n) выполняется для любого натурального числа n.
Приложение
Задачи с применением метода математической индукции при поступлении в ВУЗы.
Заметим, что при поступление в высшие учебные заведения также встречаются задачи, которые решаются данным методом. Рассмотрим их на конкретных примерах.
Пример 1.Доказать, что любом натуральном п справедливо равенство
1) При п=1 мы получаем верное равенство Sin.
2) Сделав предположение индукции, что при n=k равенство верно, рассмотрим сумму, стоящую в левой части равенства, при n=k+1;
3) Используя формулы приведения преобразуем выражение:
Тогда, в силу метода математической индукции равенство верно для любого натурального n.
Пример 2.Доказать, что для любого натурального n значение выражения 4n +15n-1 кратно 9.
2) Пусть равенство выполняется для n=k: 4 k +15k-1 кратно 9.
3) Докажем, что равенство выполняется и для следующего числа n=k+1
4 k+1 +15(k+1)-1=4 k+1 +15k+15-1=4•4 k +60k-4-45k+18=4(4 k +15k-1)-9(5k-2)
Следовательно и все выражение 4(4 k +15k-1)-9(5k-2) кратно 9, что и требовалось доказать.
Пример 3. Доказать, что при любом натуральном числе п выполняется условие : 1∙2∙3+2∙3∙4+…+ п(п+1)(п+2)=.
1) Проверим, что данная формула верна при п=1: Левая часть = 1∙2∙3=6.
2) Предположим, что данная формула верна при n=k:
3) Докажем, что данная формула верна при n=k+1:
Итак, данное условие верно в двух случаях и доказали, что верно при n=k+1, следовательно она верно при любом натуральном числе п.
Заключение
Подведем итоги, в процессе исследования я выяснил, в чем заключается индукция, которая бывает полной или неполной, познакомился с методом математической индукции, основанном на принципе математической индукции, рассмотрел множество задач с применением данного метода.
Также я узнал много новой информации, отличной от той, что включена в школьную программу.Изучая метод математической индукции я использовал различную литературу, ресурсы интернета, а также консультировался с педагогом.
Вывод: Обобщив и систематизировав знания по математической индукции, убедился в необходимости знаний по данной теме в реальной действительности. Положительным качеством метода математической индукции является его широкое применение в решении задач: в области алгебры, геометрии и реальной математики. Также эти знания повышают интерес к математике, как к науке.
Я уверен, что навыки, приобретенные в ходе работы, помогут мне в будущем.
Список литературы
Соминский И.С. Метод математической индукции. Популярные лекции по математике, выпуск 3-М.: Наука, 1974г.
Л. И. Головина, И. М. Яглом. Индукция в геометрии. — Физматгиз, 1961. — Т. 21. — 100 с. — (Популярные лекции по математике).
Дорофеев Г.В., Потапов М.К., Розов Н.Х. Пособие по математике для поступающих в вузы (Избранные вопросы элементарной математики) – Изд.5-е, перераб., 1976 – 638с.
А. Шень. Математическая индукция. — МЦНМО, 2004. — 36 с.
M.Л.Галицкий, А.М.Гольдман, Л.И.Звавич Сборник задач по алгебре: учеб.пособие для 8-9 кл. с углубл. изучением математики 7-е изд.— М.: Просвещение, 2001.—271 с
Макарычев Ю.Н., Миндюк Н.Г Дополнительные главы к школьному учебнику алгебры 9 класса. – М.: Просвещение, 2002.
Примеры по теме «Математическая индукция»
Пример 1. Найти сумму S n первых n нечетных чисел:
В таких ситуациях обычно начинают рассматривать частные случаи:
S 4 = 1 + 3 + 5 + 7= 16; S 5 = 1 + 3 + 5 + 7 + 9 = 25.
Какой вывод можно сделать на основе этих частных случаев? В данном случае высказать гипотезу несложно:
сумма первых п нечетных чисел равна квадрату их числа, т. е. квадрату числа складываемых нечетных чисел: S n = п 2 .
Пример 2. Пусть требуется найти
для каждого натурального п.
Рассмотрим частные случаи: S1 = 3, S 2 = 18.
Попробуем доказать справедливость этого утверждения методом математической индукции.
S 1=1 • 3 = 3 • 1 ·(2 • 1-1) — равенство верно.
2. Индуктивное предположение: Пусть формула
верна для некоторого произвольного k > 1.
3. Индуктивный переход. Надо доказать справедливость равенства
S k +1=3 k (2 k –1) + (2 k +1)(2 k + 3) = 10 k 2 + 5 k + 3,
но нам нужно было получить
S k +1 = 3( k + 1)(2 k + 1) = 6 k 2 + 9 k + 3.
Так как у нас получился иной результат, то высказанное предположение неверно; на самом деле справедлива формула
Пример 3. Доказать, что при любых натуральных п число 7 n + 12п+ 17 делится на 18.
1. При n = 1 число 7 1 + 12 • 1 + 17 = 36 кратно 18.
2. Предположим, что для некоторого натурального числа k ≥ 1 число
7 k + 12 k + 17 делится на 18.
3. Рассмотрим число 7 k +1 + 12( k + 1) + 17 и докажем, что оно кратно 18.
Мы видим, что при любом натуральном k число 6 • 12 k + 90 = 18(4 k + 5)
кратно 18. Итак, мы представили число 7 k +1 +12( k + 1) + 17 в виде разности двух чисел, каждое из которых делится на 18. Следовательно, и
само число 7 k +1 + 12( k + 1) + 17 кратно 18.
(32 > 25), значит, утверждение А(5) верно.
3. Индуктивный переход. Докажем справедливость неравенства
Запишем последнее неравенство в виде
т. е. требуемое неравенство.
Итак, согласно принципу математической индукции данное неравенство справедливо при всех натуральных n > 4.
Пример5.Доказать, что при всех натуральных п справедливо
В данном случае проверим наше неравенство для п = 1 и п = 2.
1. При п = 1 неравенство 4 1 > 7 • 1-5 верно. При п = 2 имеем
4 2 > 7 • 2-5 также верное неравенство.
Но при любом k ≥2 число
Следовательно, справедливо неравенство
Из неравенств (1) и (3) следует неравенство
Теперь, пользуясь принципом математической индукции, данное утверждение справедливо для всех натуральных чисел.
Замечание. В данном случае базис индукции — пункт 1 — содержит доказательство данного утверждения для первых двух натуральных чисел n = 1 и n = 2. Это связано с тем, что неравенство (2) не выполняется при k = 1, но справедливо при каждом натуральном k > 1. Поэтому, доказав данное неравенство для n = 1и n = 2, в дальнейшем рассматривались числа k ≥2.
Пример 6. Доказать, что если для n положительных чисел а1, а2. а n ( n > 1) выполнено условие a 1а2. а n =1, то
Предположение индукции. Пусть данное утверждение справедливо для всех
3. Индуктивный переход. Докажем, что если произведение k + 1 положительных чисел равно 1, т. е. а1а2. а k +1= 1, то их сумма не меньше количества слагаемых:
Отметим, что если все данные числа равны между собой, то каждое из них равно 1 и неравенство (6), очевидно, выполняется. Предположим, что хотя бы одно из заданных положительных чисел меньше 1, например, 0 a k +1 k > 1 (если какие-то другие два числа обладают указанными свойствами, то мы просто их перенумеруем).
Рассмотрим произведение k чисел: а1, a 2. а k -1( a k a k +1) = 1. По условию все эти числа положительны:
значит, по предположению индукции имеем
Чтобы доказать неравенство (6), перепишем неравенство (7) следующим образом:
Для доказательства неравенства (6) осталось доказать, что
Левую часть последнего неравенства можно записать так:
Тогда неравенство (8) с учетом (9) примет вид
math4school.ru
Метод математической индукции
Немного теории
Индукция есть метод получения общего утверждения из частных наблюдений. В случае, когда математическое утверждение касается конечного числа объектов, его можно доказать, проверяя для каждого объекта. Например, утверждение: «Каждое двузначное чётное число является суммой двух простых чисел,» – следует из серии равенств, которые вполне реально установить:
Метод доказательства, при котором проверяется утверждение для конечного числа случаев, исчерпывающих все возможности, называют полной индукцией. Этот метод применим сравнительно редко, поскольку математические утверждения касаются, как правило, не конечных, а бесконечных множеств объектов. Например, доказанное выше полной индукцией утверждение о четных двузначных числах является лишь частным случаем теоремы: «Любое четное число является суммой двух простых чисел». Эта теорема до сих пор ни доказана, ни опровергнута.
Математическая индукция – метод доказательства некоторого утверждения для любого натурального n основанный на принципе математической индукции: «Если утверждение верно для n=1 и из справедливости его для n=k вытекает справедливость этого утверждения для n=k+1, то оно верно для всех n». Способ доказательства методом математической индукции заключается в следующем:
1) база индукции: доказывают или непосредственно проверяют справедливость утверждения для n=1 (иногда n=0 или n=n0);
2) индукционный шаг (переход): предполагают справедливость утверждения для некоторого натурального n=k и, исходя из этого предположения, доказывают справедливость утверждения для n=k+1.
Задачи с решениями
Проведём доказательство методом математической индукции.
База индукции. Если n=1, то А(1)=3 3 +2 3 =35 и, очевидно, делится на 7.
Предположение индукции. Пусть А(k) делится на 7.
Индукционный переход. Докажем, что А(k+1) делится на 7, то есть справедливость утверждения задачи при n=k.
А(k+1)=3 2(k+1)+1 +2 (k+1)+2 =3 2k+1 ·3 2 +2 k+2 ·2 1 =3 2k+1 ·9+2 k+2 ·2=
Последнее число делится на 7, так как представляет собой разность двух целых чисел, делящихся на 7. Следовательно, 3 2n+1 +2 n+2 делится на 7 при любом натуральном n.
Введём обозначение: аi=2 3 i +1.
аk+1=2 3 k+1 +1=(2 3 k ) 3 +1=(2 3 k +1)( 2 3 k ·2 –2 3 k +1)=3 k+1 ·m·((2 3 k +1) 2 –3·2 3 k )=3 k+1 ·m·((3 k+1 ·m) 2 –3·2 3 k )=
=3 k+2 ·m·(3 2k+1 ·m 2 –2 3 k ).
Следовательно, утверждение доказано для любого натурального n.
3. Известно, что х+1/x – целое число. Доказать, что х n +1/х n – так же целое число при любом целом n.
Введём обозначение: аi=х i +1/х i и сразу отметим, что аi=а–i, поэтому дальше будем вести речь о натуральных индексах.
Заметим: а1 – целое число по условию; а2 – целое, так как а2=(а1) 2 –2; а0=2.
Предположим, что аk целое при любом натуральном k не превосходящем n. Тогда а1·аn – целое число, но а1·аn=аn+1+аn–1 и аn+1=а1·аn–аn–1. Однако, аn–1, согласно индукционному предположению, – целое. Значит, целым является и аn+1. Следовательно, х n +1/х n – целое число при любом целом n, что и требовалось доказать.
4. Доказать, что при любом натуральном n большем 1 справедливо двойное неравенство
Воспользуемся методом математической индукции.
При n=2 неравенство верно. Действительно,
Если неравенство верно при n=k, то при n=k+1 имеем
Неравенство доказано для любого натурального n > 1.
6. На плоскости дано n окружностей. Доказать, что при любом расположении этих окружностей образуемую ими карту можно правильно раскрасить двумя красками.
Воспользуемся методом математической индукции.
При n=1 утверждение очевидно.
Предположим, что утверждение справедливо для любой карты, образованной n окружностями, и пусть на плоскости задано n+1 окружностей. Удалив одну из этих окружностей, мы получим карту, которую в силу сделанного предположения можно правильно раскрасить двумя красками (смотрите первый рисунок из приведённых ниже).
Восстановим затем отброшенную окружность и по одну сторону от нее, например внутри, изменим цвет каждой области на противоположный (смотрите второй рисунок). Легко видеть, что при этом мы получим карту, правильную раскрашенную двумя красками, но только теперь уже при n+1 окружностях, что и требовалось доказать.
7. Выпуклый многоугольник будем называть «красивым», если выполняются следующие условия:
1) каждая его вершина окрашена в один из трёх цветов;
2) любые две соседние вершины окрашены в разные цвета;
3) в каждый из трёх цветов окрашена, по крайней мере, одна вершина многоугольника.
Доказать, что любой красивый n-угольник можно разрезать не пересекающимися диагоналями на «красивые» треугольники.
Воспользуемся методом математической индукции.
База индукции. При наименьшем из возможных n=3 утверждение задачи очевидно: вершины «красивого» треугольника окрашены в три разных цвета и никакие разрезы не нужны.
Предположение индукции. Допустим, что утверждение задачи верно для любого «красивого» n-угольника.
Индукционный шаг. Рассмотрим произвольный «красивый» (n+1)-угольник и докажем, используя предположение индукции, что его можно разрезать некоторыми диагоналями на «красивые» треугольники. Обозначим через А1, А2, А3, … Аn, Аn+1 – последовательные вершины (n+1)-угольника. Если в какой-либо из трёх цветов окрашена лишь одна вершина (n+1)-угольника, то, соединив эту вершину диагоналями со всеми не соседними с ней вершинами, получим необходимое разбиение (n+1)-угольника на «красивые» треугольники.
Если в каждый из трёх цветов окрашены не менее двух вершин (n+1)-угольника, то обозначим цифрой 1 цвет вершины А1, а цифрой 2 цвет вершины А2. Пусть k – такой наименьший номер, что вершина Аk окрашена в третий цвет. Понятно, что k > 2. Отсечём от (n+1)-угольника диагональю Аk–2Аk треугольник Аk–2 Аk–1Аk. В соответствии с выбором числа k все вершины этого треугольника окрашены в три разных цвета, то есть этот треугольник «красивый». Выпуклый n-угольник А1А2 … Аk–2АkАk+1 … Аn+1, который остался, также, в силу индуктивного предположения, будет «красивым», а значит разбивается на «красивые» треугольники, что и требовалось доказать.
8. Доказать, что в выпуклом n-угольнике нельзя выбрать больше n диагоналей так, чтобы любые две из них имели общую точку.
Проведём доказательство методом математической индукции.
Докажем более общее утверждение: в выпуклом n-угольнике нельзя выбрать больше n сторон и диагоналей так, чтобы любые две из них имели общую точку. При n = 3 утверждение очевидно. Допустим, что это утверждение верно для произвольного n-угольника и, используя это, докажем его справедливость для произвольного (n+1)-угольника.
Допустим, что для (n+1)-угольника это утверждение неверно. Если из каждой вершины (n+1)-угольника выходит не больше двух выбранных сторон или диагоналей, то всего их выбрано не больше чем n+1. Поэтому из некоторой вершины А выходит хотя бы три выбранных стороны или диагонали AB, AC, AD. Пусть АС лежит между АВ и AD. Поскольку любая сторона или диагональ, которая выходит из точки С и отличная от СА, не может одновременно пересекать АВ и AD, то из точки С выходит только одна выбранная диагональ СА.
Отбросив точку С вместе с диагональю СА, получим выпуклый n-угольник, в котором выбрано больше n сторон и диагоналей, любые две из которых имеют общую точку. Таким образом, приходим к противоречию с предположением, что утверждение верно для произвольного выпуклого n-угольника.
Итак, для (n+1)-угольника утверждение верно. В соответствии с принципом математической индукции утверждение верно для любого выпуклого n-угольника.
9. В плоскости проведено n прямых, из которых никакие две не параллельны и никакие три не проходят через одну точку. На сколько частей разбивают плоскость эти прямые.
С помощью элементарных рисунков легко убедится в том, что одна прямая разбивает плоскость на 2 части, две прямые – на 4 части, три прямые – на 7 частей, четыре прямые – на 11 частей.
Обозначим через N(n) число частей, на которые n прямых разбивают плоскость. Можно заметить, что
Естественно предположить, что
или, как легко установить, воспользовавшись формулой суммы n первых членов арифметической прогрессии,
Докажем справедливость этой формулы методом математической индукции.
Для n=1 формула уже проверена.
Сделав предположение индукции, рассмотрим k+1 прямых, удовлетворяющих условию задачи. Выделим из них произвольным образом k прямых. По предположению индукции они разобьют плоскость на 1+ k(k+1)/2 частей. Оставшаяся (k+1)-я прямая разобьётся выделенными k прямыми на k+1 частей и, следовательно, пройдёт по (k+1)-й части, на которые плоскость уже была разбита, и каждую из этих частей разделит на 2 части, то есть добавится ещё k+1 часть. Итак,
что и требовалось доказать.
10. В выражении х1:х2: … :хn для указания порядка действий расставляются скобки и результат записывается в виде дроби:
Прежде всего ясно, что в полученной дроби х1 будет стоять в числителе. Почти столь же очевидно, что х2 окажется в знаменателе при любой расстановке скобок (знак деления, стоящий перед х2, относится либо к самому х2, либо к какому-либо выражению, содержащему х2 в числителе).
Докажем это утверждение по индукции.
При n=3 можно получить 2 дроби:
так что утверждение справедливо.
Предположим, что оно справедливо при n=k и докажем его для n=k+1.
Пусть выражение х1:х2: … :хk после некоторой расстановки скобок записывается в виде некоторой дроби Q. Если в это выражение вместо хk подставить хk:хk+1, то хk окажется там же, где и было в дроби Q, а хk+1 будет стоять не там, где стояло хk (если хk было в знаменателе, то хk+1 окажется в числителе и наоборот).
Теперь докажем, что можно добавить хk+1 туда же, где стоит хk. В дроби Q после расстановки скобок обязательно будет выражение вида q:хk, где q – буква хk–1 или некоторое выражение в скобках. Заменив q:хk выражением (q:хk):хk+1=q:(хk·хk+1), мы получим, очевидно, ту же самую дробь Q, где вместо хk стоит хk·хk+1.
Задачи без решений
1. Доказать, что при любом натуральном n:
а) число 5 n –3 n +2n делится на 4;
б) число n 3 +11n делится на 6;
в) число 7 n +3n–1 делится на 9;
г) число 6 2n +19 n –2 n+1 делится на 17;
д) число 7 n+1 +8 2n–1 делится на 19;
е) число 2 2n–1 –9n 2 +21n–14 делится на 27.
2. Докажите, что (n+1)·(n+2)· … ·(n+n) = 2 n ·1·3·5·…·(2n–1).
3. Доказать неравенство |sin nx| n|sin x| для любого натурального n.
4. Найдите натуральные числа a, b, c, которые не делятся на 10 и такие, что при любом натуральном n числа a n + b n и c n имеют одинаковые две последние цифры.
5. Доказать, что если n точек не лежат на одной прямой, то среди прямых, которые их соединяют, не менее чем n различных.