Допплеровское картирование что это такое
Допплеровское картирование что это такое
В режиме цветового допплеровского картирования (цветовой допплеровской эхографии CDS) надо учитывать особенности получения цветового изображения. Например, если выбранная зона интереса имеет угловой размер более 30-60°, то могут возникнуть потеря сигнальной информации и существенные ошибки. Если ультразвуковой луч перпендикулярен оси сосуда, то получить допплеровскую информацию невозможно. Если частота повторения импульсов (PRF) не превышает по крайней мере вдвое максимальную частоту допплеровского сдвига, может иметь место неоднозначность определения спектра скоростей кровотока (aliasing).
Энергетический допплер (a-CDS) более чувствителен, чем обычный режим цветового картирования (frequency CDS) и менее зависим от допплеровского угла. Однако при исследовании в режиме энергетического допплера могут возникнуть артефакты, связанные с движением датчика. Повышенная чувствительность энергетического допплера является причиной все более широкого применения этого режима в клинической практике, в частности при исследовании венозного кровотока.
Контрастные вещества, применяемые при цветовом допплеровском картировании, включают альбумин (Albunex, Mallincrodkt Inc., St. Louis, МО) и галактозу (Levovist, Schering Inc., Berlin, Germany), в которых содержатся микропузырьки газа. Контрастные вещества заметно усиливают уровень эхо-сигналов от кровотока и повышают возможность количественных оценок параметров кровотока.
Режим тканевой гармоники дает возможность в ряде случаев улучшить отношение сигнал/шум, особенно при цветовом допплеровском картировании (Burns, 1995). В этом режиме прием эхо-сигналов осуществляется на частоте, вдвое превышающей частоту, излучаемую датчиком.
Комбинация режимов тканевой гармоники, трехмерного изображения (3D) и использование контрастных веществ облегчают возможность исследования зон повышенной васкуляризации.
Городская клиническая больница имени Д.Д.Плетнёва
Государственное бюджетное учреждение Департамент здравоохранения г. Москвы
Цветовое доплеровское картирование
Это исследование необходимо для оценки характера кровотока (направление, скорость, сопротивление сосудов, их проходимость, диаметр, степень развития атеросклеротического процесса во внутренней стенке сосуда).
Также диагностика информативна для исключения или подтверждения тромбозов, аневризм и других патологий сосудистого русла.
Доплеровское картирование является важной частью любого современного ультразвукового исследования, поскольку выявляет доброкачественные или злокачественные новообразования на самой ранней стадии в различных органах.
По характеру кровотока специалист определяет склонность к росту объёмных образований (рост, увеличение выявленного образования интенсивный, если кровоток усилен и имеется как внутри, так и по периферии опухолевого процесса).
Скорость кровотока и степень периферического сопротивления сосудов имеют значение во время исследования почечных сосудов при первичной гипертензии неясного происхождения. Доплеровское катрирование также позволяет выявить наличие в желчном пузыре холестериновых конкрементов, полипов.
Доплеровское картирование нередко сочетается с проведением ультразвукового исследования. В сочетании с УЗИ мошонки картирование позволяет оценить степень расширения вен лозовидного сплетения, что очень важно для постановки достоверного диагноза урологом.
При совместном проведении с УЗИ органов брюшной полости есть возможность выявить наличие ишемии кишечника – недосточного притока крови, которое часто вызывает боли в животе и вызывает сложность выявления причины этих болей при проведении других дополнительных способов обследования органов желудочно-кишечного тракта.
При совместном проведении с дуплексным исследованием сосудов брахиоцефальной системы врач имеет возможность оценить патологическую извитость сосудов, степень их проходимости, скорость кровотока на симметричных участках сосудов.
Допплерография ― допплеровское ультразвуковое исследование щитовидной железы
Из истории допплеровского эффекта
В основе допплеровского исследования при УЗИ применяется эффект Допплера. Что это такое? Открытие этого явления Кристианом Допплером относится к 1842 году. В его основе ― возможность определения направления и скорости движущихся волновых сред в зависимости от длины волны и частоты.
Теоретический вывод К.Допплера был подтвержден в 1850 году на природе света. Как всегда, новое достижение в науке подверглось критике. В 1952 году Йозеф Пецваль представил в Академию наук свою работу, которой он пытался опровергнуть выявленный К.Допплером эффект странными суждениями о том, что теория Допплера опубликована всего на 8 страницах и не содержит сложных математических доказательств.
В 21 веке эффект Допплера был успешно применен в ультразвуковой диагностике с целью определения кровотока в органах. В частности ― в щитовидной железе.
Значение допплеровского УЗИ щитовидной железы
Допплерография щитовидной железы является важным способом изучения её ФУНКЦИОНАЛЬНОГО состояния, а именно ― величины напряжения частей щитовидной железы (долей, перешейка, их крупных и средних сегментов, а также узлов). Допплеровское УЗИ ЩЖ проводится в двух режимах ― ЦДК (цветовое допплеровское картирование/кодирование) и ЭДК (энергетическое допплеровское картирование/кодирование), а также двумя взаимно дополняющими способами: 1) определением интенсивности внутреннего кровотока и 2) оценки скорости кровотока (пиковой систолической скорости в системах верхней и нижней щитовидных артерий).
Изучение состояния и изменений только в серой шкале (В-режим) выявляет структурные особенности (т.е. анатомическое и гистологическое устройство) состояния щитовидной железы. Но допплеровское исследование значительно дополняет диагностику, сообщая о функциональном состоянии измененных участков в железе и всего органа в целом.
Рисунок 1. Серая шкала (В-режим) ультразвуковой диагностики.
Общие сведения о допплеровском УЗИ ЩЖ
• Все современные ультразвуковые аппараты оснащены технической возможностью допплеровского УЗИ.
• Любое УЗИ щитовидной железы обязательно должно проводиться с допплеровской диагностикой кровотока железы. Отсутствие этой части исследования при УЗИ указывает на неполноценность диагностики.
• При УЗИ щитовидной железы врач должен выявить интенсивность кровотока и наибольшую пиковую скорость в щитовидных артериях.
Если Вам сообщают, что допплеровское исследование щитовидной железы проводится отдельно от исследования «УЗИ щитовидной железы» и его цена дополнительная, то это ― признак административной хитрости.
Не существует каких-то особых показаний к допплерографии щитовидной железы. Все состояния щитовидной железы подлежат ультразвуковой допплеровской диагностике.
При каждом УЗИ щитовидной железы показана и обязательна Допплерография. ПРЕИМУЩЕСТВА же допплерографии заключаются в:
• Оценке функционального напряжения всей железы и ее частей (в т.ч. узлов),
• Выявлении признака рака узлов щитовидной железы.
Что должно быть в Протоколе УЗИ
Врач-УЗИ (сонолог) должен сообщить в документе «Протокол УЗИ ЩЖ» следующее:
• Интенсивность кровотока отдельно для каждой доли и перешейка ЩЖ,
• Определять интенсивность кровотока тремя признаками: малое, умеренное (среднее) и значительное усиление кровотока,
• Для каждой доли ЩЖ ― максимальную пиковую систолическую скорость кровотока (максПССК) в конкретном числовом значении, применяя величины в см\с,
• Для узла (-ов) щитовидной железы указывать ― интенсивность кровотока (малая, умеренная, значительная), характер распределения сосудов (упорядоченное или неупорядоченное).
Васкуляризация ― что это такое?
В «Протоколах УЗИ ЩЖ» врачи часто применяют слово «васкуляризация». Эта васкуляризация, по их выражению, может быть «не измененной», «увеличенной», «уменьшенной» и пр. Что такое васкуляризация щитовидной железы?
По-латински сосуд (кровеносный) ― vas (вас). Следовательно, «васкуляризация» ― это «сосудистость». Вот врачи и пишут о сосудистости щитовидной железы. Это выражение воспринимается странно. Как-то не по-русски. Но это никто не замечает, поскольку по-латыни не так заметно и, к тому же, «васкуляризацию» используют все врачи УЗИ. Васкуляризация стала привычной… врачам.
Эта «васкуляризация» пришла в профессиональный обиход из англоязычных научных статей. В таком заимствовании не было и нет потребности, но стремление «наших» к загранице так велико, и так хочется ПИСАТЬ НАУЧНО УМНО, что вместо русских слов специалисты в данном случае стали применять эту «васкуляризацию».
Заметьте, что англичане склонны сокращать. Вместо словосочетания «щитовидная железа» (у них ― Thyroid Gland) говорящие и пишущие на английском языке врачи применяют лишь одно слово ― Thyroid. Почти также у них произошло с «васкуляризацией».
В действительности, при УЗИ врачи видят наполнение сосудов кровью, а количество сосудов существенно не меняется. Поэтому правильно писать не о васкуляризации (сосудистости), а о кровотоке.
В научных и научно-популярных изданиях от Клиники щитовидной железы доктора А.В. Ушакова вы, читатель, никогда не увидите слово «васкуляризация» применительно к описанию реальной ультразвуковой картины. Лишь в качестве подобного пояснения значения терминов для пациентов и специалистов. Грамотно писать и говорить о «кровотоке», то есть об интенсивности и скорости «кровотока» железы.
Интенсивность кровотока щитовидной железы
Кровоток в ЩЖ определяется в режиме ЦДК или ЭДК. Многие врачи применяют ЦДК, а не ЭДК, несмотря на меньшее количество искажений при ЭДК. Наша Клиника предлагает всем коллегам выполнять оценку интенсивности кровотока в ЩЖ с помощью ЭДК, а скорость крови в режиме ЦДК, так как ЦДК позволяет цветом различать артерии от вен.
Рисунок 2. Два варианта ультразвукового допплеровского режима ― ЦДК (цветовое допплеровское картирование) и ЭДК (энергетическое допплеровское картирование). Программа УЗ-аппарата показывает сосуды цветом. Красным и синим при ЦДК и алым ― при ЭДК. При ЦДК видны сосуды (артерии и вены), несущие кровь в разных направлениях). При ЭДК не видно направления течения крови, но меньше погрешностей.
Допустим, врач правильно настроил допплеровские параметры своего УЗ-аппарата (в зависимости от настроек интенсивность кровотока может оказаться разной). Врач должен раздвинуть на своем видимом поле допплеровскую карту максимально широко, охватывая всю видимую часть ЩЖ. Попытка определить интенсивность кровотока в маленьком допплеровском окошке усложнит процесс и может способствовать ошибке.
Рисунок 3. Разные настройки режима ЭДК ультразвукового допплеровского исследования. Представлена одна и та же проекция правой доли щитовидной железы. Период между снимками ― 1 минута. Слева ― с нормальными базовыми настройками (смотрите справа значения PRF), справа ― с настройками более высокой чувствительности. Видно, что при изменении настроек определяется не нормальный, а усиленный кровоток.
Специалист должен просмотреть датчиком каждую долю и перешеек ЩЖ, продвигая датчик вдоль и поперек, определяя, таким образом, количество сосудистых элементов, которые программа окрашивает в цвета. При ЭДК ― обычно в алый цвет, при ЦДК ― в два цвета ― красный и синий.
Существуют 6 вариантов интенсивности кровотока в ткани щитовидной железы:
• Ослабленный,
• Нормальный (в составе нормального – оптимальный),
• Малого усиления,
• Умеренного усиленный,
• Значительно усиленный,
• Очень значительно усиленный.
Ослабленная интенсивность кровотока ― сосудистые элементы не видны или имеется 1-2 малого диаметра.
Нормальная интенсивность кровотока ― сосудистые элементы в доле ЩЖ от 3-4 до 10, без расширения магистральных сосудов.
Оптимальная интенсивность кровотока ― сосудистые элементы в доле ЩЖ около 5-7, без расширения магистральных сосудов.
Малое усиление интенсивности кровотока ― сосудистые элементы в доле ЩЖ от 10-12 до 20-25, с расширением некоторых сосудов.
Умеренное усиление интенсивности кровотока ― сосудистые элементы в доле ЩЖ от 20-25 до 35-40, с расширением магистральных сосудов внутри и по периметру доли.
Значительное усиление интенсивности кровотока ― сосудистые элементы в доле ЩЖ более 40, с расширением многих сосудов.
Очень значительное усиление интенсивности кровотока ― почти полное заполнение щитовидной железы сосудистыми элементами.
Рисунок 4. УЗИ ― допплеровское исследование интенсивности кровотока щитовидной железы. Показаны несколько вариантов: Ослабленный кровоток, нормальный кровоток, Малое усиление кровотока, Умеренное усиление кровотока и Значительное усиление кровотока.
О чём сообщает интенсивность кровотока в ЩЖ? Это очень важный вопрос! Наши коллеги думают о том, что на кровоток влияют какие-то активные химические вещества организма и связывают это с аутоиммунным тиреоидитом (АИТ). Нигде и ни в каких изданиях по УЗИ (статьях и руководствах) специалистов разных стран, кроме нашей Клиники, вы не встретите чёткого и конкретного пояснения механизма изменения кровотока в сосудистой сети щитовидной железы. Из текста этих «научных» работ видно, как авторы осторожны в своих выводах (Некоторые из них пишут, что якобы усиление кровотока может быть признаком воспаления). Просто удивительно, как им в голову не приходит, что мышечный тонус сосудов прямо управляется периферической вегетативной НЕРВНОЙ СИСТЕМОЙ (пВНС)! Ведь научной медицине известно, что именно пВНС регулирует тонус сосудов (Причина также проста ― многие десятилетия во всём мире врачей не обучают знаниям о пВНС и влиянии нервной системы на деятельность органов).
Итак, величина интенсивности кровотока в щитовидной железе прямо сообщает о том, с какой интенсивностью нервная система перенапрягает части железы. Ведь часто видно, что количество сосудистых элементов (т.е. интенсивность кровотока) не одинаково в правой и левой долях и может быть разным внутри одной доли (в её крупных частях (сегментах). Эта особенность не может быть контролируема только химически, так как химические вещества одинаково распределены в крови, но именно нервные стимулы могут по-разному влиять на разные части ЩЖ. Всё это было подробно пояснено доктором А.В. Ушаковым в его справочном руководстве для врачей «Клиническая ультразвуковая диагностика доброкачественной патологии щитовидной железы» (2018).
Какой вывод следует, если при допплеровском исследовании выявлено усиление кровотока? О чём думать? Усиление кровотока (или васкуляризации) прямо сообщает об увеличении нервной стимуляции щитовидной железы. То есть свидетельствует об избыточном перенапряжении ткани железы. Такое состояние способствует истощению и затем разрушению (деструкции) клеток щитовидной железы. В ответ на гибель клеток, с током крови в ткань ЩЖ проникают иммунные клетки (лимфоциты), очищают от разрушенных элементов ткани и способствуют регенерации. Это реальность, заметная при УЗИ, известная МЕДИЦИНЕ, как науке, но исключенная и неизвестная врачам, которые, как они думают, занимаются «наукой».
Скорость кровотока
Специальный допплеровский режим позволяет измерить скорость кровотока в верхней и нижней артериях долей щитовидной железы.
Определяется пиковая скорость крови, то есть наибольшая скорость среди разных потоков внутри артерии. Дело в том, что стенки сосудов тормозят движение крови, а центральная область сосуда движется с большей скоростью. Поэтому современные аппараты УЗИ способны определить скорость разных зон в сосуде и показать наибольшую, т.е. ПИКОВУЮ скорость кровотока. При этом определяется пиковая скорость в момент прохождения пульсовой волны, создаваемой сокращением сердца ― Пиковая Систолическая Скорость Кровотока (ПССК).
Но в зависимости от места расположения метки в щитовидной артерии, имеющей изгибы, сужения (с расширениями) и ответвления, пиковая скорость может быть разной. Поэтому важно, чтобы врач не только формально выявил ПССК, но выявил максимальную ПССК. Для этого врачу требуются знания, навык и, конечно, ― время.
Наиболее удобной для измерения ПССК является верхняя щитовидная артерия в связи с более поверхностным её нахождением, а также постоянством расположения самой артерии и её передне-медиальной ветви. Даже если условия предоставляют возможность и требуют оценки ПССК в нижней щитовидной артерии, всегда требуется измерение вместе с тем ПССК верхней артерии. Такая практика сохранит преемственность в диагностике. То есть можно будет сравнить значения с предыдущими, настоящими и последующими данными.
Варианты оценки Пиковой Систолической Скорости Кровотока
(По данным Клиники щитовидной железы доктора А.В. Ушакова, 2018)
• Ослабленная ПССК ― менее 20 см/с.
• Нормальная ПССК ― 20-30 см/с.
• Оптимальная ПССК ― 23-28 см/с.
• Малое усиление ПССК ― 30-50 см/с.
• Умеренное усиление ПССК ― 50-80 см/с.
• Значительное усиление ПССК ― более 80 см/с,
• Очень значительное усиление ПССК ― более 120 см/с.
Рисунок 5. Варианты Пиковой Систолической Скорости Кровотока (ПССК). Спектральная допплеровская диагностика кровотока щитовидной железы. Представлены основные случаи ПССК: Ослабленная, Нормальная, Малого усиления, Умеренного усиления, Значительного и Очень значительного усиления.
Если имеется усиление ПССК, то приходится судить об усиленном влиянии на ткань щитовидной железы и её сосуды со стороны периферической вегетативной нервной системы (пВНС). Увеличение ПССК может определяться при разных состояниях гормонального обмена ― эутиреозе, гипотиреозе и гипертиреозе. Это связано с ведущей ролью пВНС в деятельности щитовидной железы.
Эти значения справедливы для кровотока в сосудах узлов ЩЖ. По ПССК сосудов узлов можно судить о том, насколько активен процесс в ткани узлов щитовидной железы. Такой процесс может быть связан не только с интенсивностью образования гормонов, но и с явлениями размножения клеток (пролиферации) или их разрушения (деструкции). Всё это должен оценивать компетентный специалист и пояснять пациенту.
В Клинике щитовидной железы доктора А.В. Ушакова каждому пациенту определяется интенсивность кровотока и ПССК для долей щитовидной железы. Результаты сообщаются в «Протоколе УЗИ ЩЖ», в т.ч. распечатываются снимки долей в режиме ЭДК и со значениями ПССК.
Интенсивность кровотока узлов щитовидной железы
При описании узлов в Протоколе УЗИ врач должен сообщить об интенсивности узлового кровотока и его особенностях расположения в узле. В режиме ЦДК или ЭДК.
Кровоток узла может быть ослабленным, малым, умеренным и значительным. Эта характеристика важна для оценки скорости и течения процессов в узлах. Определение величины интенсивности кровотока узлов поможет в прогнозе изменений узлов в соответствии с их стадиями.
Рисунок. 6. Интенсивность кровотока узлов щитовидной железы. Показаны несколько вариантов интенсивности кровотока: Малой интенсивности, Умеренной интенсивности, Значительной интенсивности.
Сосуды узла могут определяться по периметру и внутри узла. Информация о том, что кровоток узла «смешанный» (то есть внутри и вокруг узла) не имеет особой клинической ценности, так как может также часто встречаться как в доброкачественных, так и в злокачественных узлах.
Рисунок. 7. Неупорядоченный кровоток узлов щитовидной железы.
Клиника щитовидной железы доктора А.В. Ушакова ввела такой признак оценки кровотока как его «упорядоченность». Под упорядоченностью кровотока узла понимается расположение сосудов в соответствии с естественным сегментарным устройством ткани узла. Упорядоченность кровотока узлов может быть в разной степени выражена. Беспорядочный кровоток (т.е. независимо от сегментов) относится к важному признаку злокачественности ткани узла. Такое беспорядочное расположение сосудов возникает при неравномерном и несегментированном прорастании сосудов вместе с образованием раковой ткани.
В завершении…
Вы ознакомились с обзором допплерографии щитовидной железы для пациентов. Врачебные особенности такой диагностики гораздо шире, имеют свои особенности и правила, которые доктор А.В. Ушаков передаёт врачам УЗИ (сонологам) во время непосредственного обучения и в своих монографиях.
Рисунок 8. Главный врач Клиники щитовидной железы, к.м.н. А.В. Ушаков проводит обучение специалистов УЗИ.
Зачем делают допплерометрию сосудов
Ультразвуковая допплерография — это неинвазивный тест, который можно использовать для оценки кровотока через кровеносные сосуды путем отражения высокочастотных звуковых волн (ультразвука) от циркулирующих эритроцитов. Обычный ультразвук использует звуковые волны для получения изображений, но не может показать кровоток.
Ультразвуковая допплерография может помочь диагностировать многие состояния, в том числе:
Ультразвуковая допплерография может оценить, насколько быстро течет кровь, измеряя скорость отражения волн.
Проведение допплерометрии
Во время ультразвукового допплеровского обследования ставит небольшое устройство (преобразователь) поверх кожи на исследуемой области тела, перемещаясь из одной области в другую по мере необходимости.
Этот тест может быть выполнен в качестве альтернативы более инвазивным процедурам, таким как ангиография с введением красителя в кровеносные сосуды, чтобы они четко отображались на рентгеновских снимках. Ультразвуковое допплеровское обследование выявляет наличие повреждений артерий или контролирует эффективность лечения патологий вен и артерий.
Во время беременности, доплерометрия используется для проверки кровотока у плода, позволяя выявлять пороки развития.
Три основных типа ультразвукового допплера
При оценке кровотока используется три варианта исследования:
Материал размещен в ознакомительных целях, не является медицинским советом и не может служить заменой консультации у врача.
Стаж работы 18 лет.
Редактор справочника лекарственных средств в издательстве ГЭОТАР.
Автор книги: ТЕРАПИЯ ДЛЯ ФЕЛЬДШЕРОВ. ШПАРГАЛКА ДЛЯ ССУЗов. Издательский центр IPR MEDIA.
Диплом о медицинском образовании: ФВ №655463
Допплеровские методы, основы
Допплеровские методы, основы
Ультразвуковые допплеровские методы являются эффективным средством неинвазивного исследования характеристик движения тканей в организме человека и широко применяются в кардиологии и сосудистой диагностике. Рассматриваемые методы бурно развиваются, поэтому терминология в этой области еще не устоялась. Кроме того, конкуренция между фирмами-производителями приводит к тому, что близкие или по сути одинаковые технологии (методики) в разных фирменных руководствах, рекламных проспектах: и даже в научных публикациях имеют разные названия. Для русскоязычного читателя проблема усугубляется тем, что в этой области сформировался определенный англо-американский жаргон, который де-факто приобрел «права гражданства». Например, вместо термина «допплеровская эхография», или «допплерография», обычно употребляется просто «допплер» (‘Doppler’). К сожалению, такой жаргон получил настолько широкое распространение, что сейчас не представляется возможным кардинально улучшить ситуацию. Поэтому и в предыдущих томах данного руководства мы были вынуждены, например, согласиться с использованием термина «энергетический допплер»; по этой же причине мы в дальнейшем будем пользоваться терминами «спектральный допплер» и т.п. При этом читатель, разумеется, должен отдавать себе отчет в том, что «допплер» это не ошибочное написание фамилии Допплер, а сокращенное, точнее жаргонное, обозначение термина «допплеровская эхография».
Можно ввести следующую классификацию допплеровских методов в зависимости от способов получения и отображения информации.
В качестве разновидностей цветовой допплеровской эхографии используются следующие методы:
Приборы, оценивающие скорость кровотока, являются наиболее простыми из допплеровских приборов. В настоящее время они практически не применяются, а метод оценки скорости (средней или максимальной) используется как один из режимов в более совершенных приборах спектральной допплерографии.
Метод допплеровской оценки ЧСС в силу простоты и эффективности находит широкое применение при исследовании ЧСС плода в фетальных мониторах.
Чаще всего в настоящее время применяются методы спектрального допплера и цветового допплеровского картирования.
В ультразвуковых сканерах перечисленные методы, как правило, используются вместе с другими известными методами представления информации, такими как:
Ультразвуковые приборы, в которых используется только режим спектрального допплера и отсутствует В-режим, иногда называют приборами «слепого» допплера.
Ультразвуковые сканеры, в которых наряду с В-режимом применяется спектральный допплер (D-режим), называются дуплексными приборами. Режим отображения на экране сканера одновременно В- и D-эхограмм называется дуплексным режимом В+D.
Если в приборе одновременно применяются режимы В, CFM и D, то такой режим В+CFM+D называется триплексным.
Эффект Допплера
Основой допплеровских методов является эффект Допплера, который состоит в том, что частота колебаний звуковых волн, излучаемых источником (передатчиком) звука, и частота этих же звуковых волн, принимаемых некоторым приемником звука, отличаются если приемник и передатчик движутся друг относительно друга (сближаются или удаляются). Тот же эффект наблюдается, если в приемник поступают сигналы источника звука после отражения движущимся отражателем. Зтот последний случай имеет место при отражении ультразвуковых сигналов от движущихся биологических структур (например, клеточных элементов крови).
Поясним эффект Допплера на примерах, в которых для простоты будем считать, что источник звука излучает колебания одного тона (одной частоты).
Движущийся приемник звука
Рис. 1. Эффект Допплера при движении приемника,
a — приемник 1 движется к источнику со скоростью vnp, приемник 2 движется от источника со скоростью vпр.
б — колебания, излучаемые источником с частотой f0.
в — колебания в приемнике 1— частота f0+F.
г — колебания в приемнике 2 — частота f0–F.
При движении приемника по направлению к источнику со скоростью vпр (приемник 1 на рис. 1.а) взаимная скорость сближения пиков волн и приемника увеличивается по сравнению со скоростью звука и становится равной С + vпр. Очевидно, что и частота колебаний на входе приемника увеличивается пропорционально росту скорости и становится равной: f = f0(C + vnp)/C=f0 + F
На рис. 1.в показан вид колебания с этой частотой, большей частоты источника на величину дополнительного сдвига частоты
При движении приемника по направлению от источника со скоростью (–vnp) (приемник 2 на рис. 1.а) скорость пиков волн относительно приемника уменьшается по сравнению со скоростью звука и становится равной С–vnp. Частота колебаний на входе приемника в этом случае равна
f = f0(C – vnp)/C = f0 – F
На рис. 1.г показан вид колебания с этой частотой, которая отличается от частоты источника на величину того же частотного сдвига, но с отрицательным знаком.
Движущийся источник звука
Рис. 2. Эффект Допплера при движении источника,
На рис. 2.в показан вид колебания на входе приемника с частотой, большей, чем частота источника, на величину частотного сдвига
Если источник движется в противоположном направлении от приемника, тс частота на входе приемника уменьшается:
f = f0C/(C + vист) = f0 – F
где частота сдвига
Движущийся отражатель ультразвука
В медицинских ультразвуковых приборах источник и приемник сигналов объединены в датчике прибора, т.е. излучение и прием сигналов происходит в одном месте. При излучении ультразвука внутрь биологических структур ультразвук отражается и рассеивается на их неоднородностях. Эхо-сигналы, отражаемые в сторону датчика, принимаются находящимся в датчике ультразвуковым преобразователем, который является приемником эхо-сигналов. Если наблюдаемые биологические структуры неподвижны, эхо-сигналы от них не имеют частотного сдвига. В случае же движения биологических структур в эхо-сигналах появляется частотный сдвиг, изменяющий значение частоты эхо-сигнала по сравнению с частотой излучаемого ультразвукового сигнала.
На рис. 3 схематически изображены совмещенные источник и приемник ультразвука и отражатель, движущийся в сторону источника и приемника со скоростью v. Колебания, приходящие от источника на движущийся отражатель, имеют такой же вид, как и в первом рассмотренном нами случае «движущийся приемник звука». Частота колебаний на отражателе
Рис. 3. Эффект Допплера при движении отражателя,
а — источник и приемник совмещены и неподвижны, отражатель движется к ним со скоростью v.
б — колебания источника с частотой f0.
в — колебания, приходящее на отражатель,
г — колебания в приемнике.
Отражая эти колебания в сторону приемника, отражатель выступает в роли источника, поэтому приходящие от него к приемнику колебания имеют частоту
аналогично тому, как это было во втором случае «движущийся источник звука».
В результате частота эхо-сигналов на входе приемника определяется выражением
Очевидно, если отражатель движется в сторону, противоположную от источника и приемника, выражение для частоты на входе приемника изменяется:
Допплеровский сдвиг частоты. Допплеровский угол
В ультразвуковых диагностических приборах определяется не сама частота колебания, поступающего в приемник, а разность этой частоты f и частоты f0 — колебания, излучаемого источником. Эта разность называется допплеровским сдвигом частоты Fд. Для случая движения отражателя в сторону датчика его можно вычислить следующим образом:
Кстати, это требование всегда выполняется в режиме В, где тоже в процессе сканирования периодически излучаются короткие импульсы, правда, в отличие от режима импульсноволнового допплера — в разных направлениях (лучах).
Стремление выполнить требование однозначного измерения глубины в системах импульсноволнового допплера приходит в противоречие с требованием однозначного определения допплеровского сдвига частоты. Об этом подробнее рассказывается ниже.
Сигналы и их спектры
Особенности допплеровских измерений спектра скоростей движения биологических структур довольно трудны для понимания. Вот почему в этом разделе даются некоторые начальные сведения о характеристиках сигналов, использующихся для допплеровских измерений. Эти сведения известны инженерам, участвующим в разработке, производстве и эксплуатации ультразвуковых приборов, но врачи — пользователи аппаратуры с этой информацией знакомы, как правило, недостаточно хорошо.
На рис. 23 (слева) представлены основные виды сигналов, используемых в ультразвуковых диагностических системах.
Рис. 23. Вид сигналов, используемых в ультразвуковой диагностике (слева), и соответствующих им амплитудно-частотных спектров (справа).
Сигналы и их спектры связаны между собой преобразованием Фурье,
а — В-режим,
б — CW-режим,
в — PW-режим — одиночный импульс,
г — PW-режим — пачка из N импульсов.
Эти сигналы излучаются датчиками, а получаемые в результате отражения в тканях эхо-сигналы принимаются теми же датчиками и далее усиливаются и преобразуются в системе. Каждый из сигналов может быть представлен в виде суммы синусоидальных (гармонических) колебаний с различными частотами, амплитудами и фазами. Такое представление называется спектром сигнала. Спектр характеризует распределение интенсивности сигнала по частотам, т.е. определяет, какие частотные составляющие представлены больше или меньше в сигнале. Спектр — очень важная характеристика сигнала и связана с временным видом сигнала взаимно-однозначной зависимостью. Если известен вид сигнала, то спектр сигнала может быть вычислен с помощью так называемого преобразования Фурье. И наоборот — зная амплитудно-фазовый спектр, можно определить вид сигнала на оси времени путем вычисления обратного преобразования Фурье. Естественно, принимаемые эхо-сигналы также характеризуются спектром, который может быть вычислен с помощью преобразования Фурье. В допплеровских ультразвуковых системах, предназначенных для оценки спектра скоростей кровотока, принятые эхо-сигналы подвергаются обработке в специальных процессорах, вычисляющих преобразование Фурье, т.е. оценивающих спектр эхо-сигналов. Для ускорения вычислений применяется специальный алгоритм — быстрое преобразование Фурье (БПФ, или FFT — fast fourier transform).
Если длительность пачки равна длительности сигнала в режиме CW, то ширина каждого пика спектра пачечного сигнала в этом случае равна ширине единственного пика спектра сигнала CW. Расстояние F между отдельными пиками на оси частот равно частоте повторения импульсов (PRF).
Уровень отдельных пиков различен и определяется огибающей (пунктирная линия на рис. 23.г), которая в точности повторяет форму спектра одиночного импульса пачки (рис. 23.в).
Измерение спектра частот допплеровского сдвига. Однозначность измерения
Рассмотрев вид сигналов и их спектров, мы можем теперь пояснить, как влияет вид сигнала (или его спектра) на качество измерения спектра частот допплеровского сдвига.
Вычисленный таким образом спектр частот допплеровского сдвига назовем истинным спектром, так как предполагается, что он измерен без всяких ошибок, которые всегда имеются в реальных условиях измерения.
На рис. 24.а дан пример спектра Gист(f) для прямого кровотока.
Рис. 24. Измерение спектра частот допплеровского сдвига в режиме CW.
а — истинный спектр,
б — спектр излучаемого непрерывного сигнала,
в — вид спектра частот, получаемого на выходе приемного тракта (измеряемый спектр) — форма спектра практически повторяет вид истинного спектра частот допплеровского сдвига.
В режиме CW спектр излучаемого сигнала, как уже говорилось, очень узкий (рис. 24.б), т.е. излучается практически одна частота f0. Поэтому спектр частот эхо-сигналов кровотока на выходе датчика очень близок к истинному спектру частот допплеровского сдвига Gист(f). Некоторые отличия могут быть связаны с тем, что приемно-передающий ультразвуковой луч датчика не бесконечно узкий, поэтому принимаются сигналы в некотором объеме сосуда, а не в одном сечении — что может приводить к расширению спектра по сравнению с истинным. Если это расширение незначительно и уровень эхо-сигналов достаточен, чтобы уверенно наблюдать их на фоне мешающих шумов и помех, то измеренный спектр частот допплеровского сдвига практически повторит по форме истинный спектр (рис. 24.в).
Попытка использовать для измерения спектра частот допплеровского сдвига одиночный короткий импульс обречена на неудачу, так как такому импульсу соответствует широкий спектр частот, существенно превышающий по ширине истинный спектр частот допплеровского сдвига (сравним рис. 25.а и 24.а). Спектр частот на выходе приемного тракта в основном повторяет форму спектра излучаемого сигнала (см. рис. 25.б).
Рис. 25. Измерение спектра частот допплеровского сдвига с помощью одиночного короткого импульса (истинный спектр показан на рис. 24а).
а — спектр излучаемого сигнала,
б — спектр частот на выходе приемного тракта — форма спектра почти повторяет форму спектра сигнала и не имеет ничего общего с истинным спектром кровотока.
Физический смысл результата понятен: каждой из частотных составляющих сигнала, а не только частоте f0, соответствует спектр частот допплеровского сдвига, и если просуммировать все эти спектры, то и получим широкий спектр частот, не имеющий почти ничего общего с оцениваемым истинным спектром.
Можно пояснить полученный результат с помощью простой образной аналогии — полагая, что мы желаем нарисовать известный нам истинный спектр частот допплеровского сдвига на рис. 24.а с помощью фломастеров различной толщины.
В случае непрерывноволнового допплера мы для этого имеем тонкий фломастер с шириной линии, равной ширине спектра непрерывного сигнала на рис. 24.б. Поэтому рисунок спектра на рис. 24.б очень похож на истинный спектр.
В случае одиночного импульса фломастер слишком толст (ширина его линии равна ширине спектра сигнала на рис. 25.а) для того, чтобы изобразить тонкий рисунок истинного спектра.
В режиме PW, когда излучается пачечный сигнал, спектр излученного сигнала имеет многопиковый характер и ширина каждого пика очень узкая. Если истинный спектр частот допплеровского сдвига имеет относительно малую ширину (рис. 26.а), так что ширина его не превышает частоты повторения импульсов F (рис. 26.б) — то измерение спектра частот допплеровского сдвига возможно. Измеренный спектр при этом также получается многопиковым (рис. 26.в), хотя соответствует истинному спектру только та часть полученного в результате спектра, которая ограничена определенным интервалом измерения, в пределах от (f0 – F/2) до (f0 + F/2), где F — частота повторения импульсов. На рис. 26.в правильно измеренный спектр показан сплошной линией, а ложные измерения — пунктиром.
Рис. 26. Измерение спектра частот допплеровского сдвига в режиме PW при малой ширине истинного спектра,
а — истинный спектр частот допплеровского сдвига с положительными и отрицательными составляющими,
б — спектр излучаемой пачки импульсов с малой частотой повторения F.
в — полученный спектр на выходе приемника — форма спектра оценивается однозначно в интервале измерения.
Опять поясним физический смысл полученного результата: в отличие от непрерывноволнового допплера, когда излучается практически одна частота f0, при импульсноволновом допплере излучаются, кроме нее, составляющие с частотами f0 + F, f0 – F, f0 + 2F, f0– 2F и т.д. Каждая из этих частот порождает свой спектр частот допплеровского сдвига в соответствии с вышеприведенными соотношениями.
Возвращаясь к аналогии с рисунком фломастером, можно сказать, что в режиме импульсно-волнового допплера мы имеем несколько тонких фломастеров, жестко связанных между собой (гребенку фломастеров). Рисуя центральным из них истинный спектр, мы вынужденно повторяем другими фломастерами ту же картину, но со сдвигом по оси частот вправо и влево.
Появление в этом случае ложных изображений спектра (aliasing-эффект), т.е. возможная неоднозначность измерения спектра частот допплеровского сдвига, является серьезным недостатком, присущим импульсноволновому допплеру.
Интервал однозначного измерения истинного спектра частот допплеровского сдвига ограничен диапазоном (–F/2, +F/2) относительно несущей частоты f0 излучаемого сигнала. Поэтому в режиме PW очень важен правильный выбор F — частоты повторения импульсов излучаемой пачки.
Действительно в примере, приведенном на рис. 26, при малой ширине измеряемого (истинного) спектра, в интервале измерения (–F/2, +F/2) спектр измеряется правильно. Если же ширина истинного спектра выходит за пределы интервала измерения, можно получить совершенно неправильную оценку истинного спектра. На рис. 27 изображен такой случай. Видно, что при ширине спектра, большей, чем частота повторения F, спектр на выходе приемника сильно искажен, так как на истинный спектр накладываются сдвинутые ложные картины того же спектра, т.е. опять имеет место aliasing-эффект. В результате определить истинный спектр невозможно. Это происходит вследствие малой частоты повторения F по сравнению с шириной оцениваемого спектра частот допплеровского сдвига.
Рис. 27. Измерение спектра частот допплеровского сдвига в режиме PW.
a — истинный спектр с большой шириной полосы,
б — спектр излучаемой пачки импульсов с малой частотой повторения F.
в — спектр на выходе приемника — имеет место искажение формы истинного спектра и неопределенность направления кровотока.
Рис. 28. Измерение спектра частот допплеровского сдвига в режиме FW (истинный спектр показан на рис. 27.а).
а — спектр излучаемой пачки импульсов со средней частотой повторения F.
б — спектр на выходе приемника — форма спектра не искажена, имеет место неопределенность направления кровотока.
Для того чтобы решить задачу однозначной оценки истинного спектра в этом случае, надо еще более увеличить частоту F, т.е. перейти к высокой частоте повторения импульсов (режим HPRF — high pulse repetition frequency). В этом случае возможно практически однозначное измерение истинного спектра частот допплеровского сдвига (рис. 29).
Рис. 29. Измерение спектра частот допплеровского сдвига в режиме PW (истинный спектр показан на рис. 24.а).
а — спектр излучаемой пачки импульсов с высокой частотой повторения F.
б — спектр на выходе приемника — форма спектра не искажена, в интервале измерения спектр и направление кровотока оцениваются однозначно.
Имея в виду, что Т = 1/F, можно переписать последнее неравенство F