Два пи эр квадрат формула чего

Площадь круга

Для того чтобы найти площадь круга, существует формула, которую лучше запомнить:

S=πr 2 – это произведение числа пи на квадрат радиуса.

Поскольку радиус тесно связан отношениями с диаметром и длиной окружности, то путем нехитрых замен можно также вычислить площадь круга через диаметр Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чегоили длину окружности Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего.

Диаметр – это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно разделить его обратно на два.
Длина окружности представляет собой удвоенное произведение радиуса и числа π: P=2πr, обратным методом получаем, что радиус равен длине окружности, разделенной на его множитель.

Данные онлайн калькуляторы предназначены для расчета площади круга. Вычисление происходит по приведенным выше геометрическим формулам, где π считается константой, округленной до 15-го знака после запятой.

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Результат работы калькулятора также округляется до аналогичного разряда. Для использования калькулятора расчета площади круга необходимо ввести только значение радиуса, диаметра или окружности круга. Для калькулятора единицы измерения радиуса не имеют значения – результат вычисляется в абсолютном виде. То есть, если значение радиуса задано, например, в сантиметрах, то и вычисленное калькулятором значение площади круга тоже следует интерпретировать как представленное в квадратных сантиметрах.

Источник

2 Пи р квадрат это формула

Для того чтобы найти площадь круга, существует формула, которую лучше запомнить:

S=πr 2 – это произведение числа пи на квадрат радиуса.

Поскольку радиус тесно связан отношениями с диаметром и длиной окружности, то путем нехитрых замен можно также вычислить площадь круга через диаметр Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чегоили длину окружности Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего.

Диаметр – это удвоенный радиус, следовательно, подставляя его в формулу вместо последнего, нужно разделить его обратно на два.
Длина окружности представляет собой удвоенное произведение радиуса и числа π: P=2πr, обратным методом получаем, что радиус равен длине окружности, разделенной на его множитель.

Данные онлайн калькуляторы предназначены для расчета площади круга. Вычисление происходит по приведенным выше геометрическим формулам, где π считается константой, округленной до 15-го знака после запятой.

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Результат работы калькулятора также округляется до аналогичного разряда. Для использования калькулятора расчета площади круга необходимо ввести только значение радиуса, диаметра или окружности круга. Для калькулятора единицы измерения радиуса не имеют значения – результат вычисляется в абсолютном виде. То есть, если значение радиуса задано, например, в сантиметрах, то и вычисленное калькулятором значение площади круга тоже следует интерпретировать как представленное в квадратных сантиметрах.

Перевод радиан в градусы.
Ad = Ar * 180 / пи
Где Ad — угол в градусах, Ar — угол в радианах.

Перевод градусов в радианы.
Ar = Ad * пи / 180
Где Ad — угол в градусах, Ar — угол в радианах.

Длина окружности.
L = 2 * пи * R
Где L — длина окружности, R — радиус окружности.

Длина дуги окружности.
L = A * R
Где L — длина дуги окружности, R — радиус окружности, A — центральный угол, выраженный в радианах
Для окружности A = 2*пи (360 градусов), получим L = 2*пи*R.

Площадь треугольника.
S = (p * (p-a) * (p-b) * (p-c) ) 1/2
Где S — площадь треугольника, a, b, c — длины сторон,
p=(a+b+c)/2 — полупериметр.

Площадь круга.
S = пи * R 2
Где S — площадь круга, R — радиус круга.

Площадь сектора.
S = Ld * R/2 = (A * R 2 )/2
Где S — площадь сектора, R — радиус круга, Ld — длина дуги.

Площадь поверхности шара.
S = 4 * пи * R 2
Где S — площадь поверхности шара, R — радиус шара.

Площадь боковой поверхности цилиндра.
S = 2 * пи * R * H
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.

Площадь полной поверхности цилиндра.
S = 2 * пи * R * H + 2 * пи * R 2
Где S — площадь боковой поверхности цилиндра, R — радиус основания цилиндра, H — высота цилиндра.

Площадь боковой поверхности конуса.
S = пи * R * L
Где S — площадь боковой поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.

Площадь полной поверхности конуса.
S = пи * R * L + пи * R 2
Где S — площадь полной поверхности конуса, R — радиус основания конуса, L — длина образующей конуса.

Объем шара.
V = 4 / 3 * пи * R 3
Где V — объем шара, R — радиус шара.

Объем цилиндра.
V = пи * R 2 * H
Где V — объем цилиндра, R — радиус основания цилиндра, H — высота цилиндра.

Объем конуса.
V = пи * R * L = пи * R * H/cos (A/2) = пи * R * R/sin (A/2)
Где V — объем конуса, R — радиус основания конуса, L — длина образующей конуса, A — угол при вершине конуса.

Содержание

История [ править | править код ]

Использование многоугольников [ править | править код ]

Площадь правильного многоугольника равна половине периметра, умноженного на апофему (высоту). При увеличении числа сторон многоугольник стремится к окружности, а апофема стремится к радиусу. Это даёт основание считать, что площадь круга равна произведению половины длины окружности на радиус. [3]

Доказательство Архимеда [ править | править код ]

Следуя Архимеду, сравним площадь круга с площадью прямоугольного треугольника, основание которого равно длине окружности, а высота равна радиусу. Если площадь круга не равна площади треугольника, она должна быть меньше или больше. Исключим оба варианта, что оставит только одну возможность — площади равны. Для доказательства будем использовать правильные многоугольники.

Не больше [ править | править код ]

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Предположим, что площадь круга C больше площади треугольника T = 1 ⁄2cr. Пусть E означает превышение площади. Впишем [en] квадрат в окружность, чтобы все его четыре угла лежали на окружности. Между квадратом и окружностью четыре сегмента. Если общая их площадь G4 больше E, делим каждую дугу пополам, что превращает вписанный квадрат в восьмиугольник и образует восемь сегментов с меньшим общим зазором, G8. Продолжаем деление, пока общий зазор Gn не станет меньше E. Теперь площадь вписанного многоугольника Pn = CGn должна быть больше площади треугольника.

G_ \P_ &<>=C-G_ \&<>>C-E\P_ &<>>Tend>>»> E = C − T > G n P n = C − G n > C − E P n > T E&<>=C-T\&<>>G_ \P_ &<>=C-G_ \&<>>C-E\P_ &<>>Tend>> Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чегоG_ \P_ &<>=C-G_ \&<>>C-E\P_ &<>>Tend>»/>

Но это ведёт к противоречию. Для доказательства проведём высоту из центра окружности на середину стороны многоугольника, её длина h меньше радиуса окружности. Пусть каждая сторона многоугольника имеет длину s, сумма всех сторон составит ns, и эта величина меньше длины окружности. Площадь многоугольника состоит из n равных треугольников высоты h с основанием s, что даёт 1 ⁄2nhs. Но h 1 ⁄2cr, получили противоречие.

Не меньше [ править | править код ]

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Предположим, что площадь круга меньше площади треугольника. Пусть D означает разницу площадей. Описываем квадрат вокруг окружности, так что середины сторон лежат на ней. Если суммарный зазор между квадратом и окружностью G4 больше D, срезаем углы касательными, превращая квадрат в восьмиугольник и продолжаем такие отсечения пока площадь зазора не станет меньше D. Площадь многоугольника Pn должна быть меньше T.

G_ \P_ &<>=C+G_ \&<> D = T − C > G n P n = C + G n C + D P n T =T-C\&<>>G_ \P_ &<>=C+G_ \&<> Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чегоG_ \P_ &<>=C+G_ \&<>

Это тоже приводит к противоречию. Каждый перпендикуляр, проведённый от центра круга к середине стороны, является радиусом, т.е. имеет длину r. А поскольку сумма сторон больше длины окружности, многоугольник из n одинаковых треугольников даст площадь, большую T. Снова получили противоречие.

Таким образом, площадь круга в точности равна площади треугольника.

Доказательство перегруппировкой [ править | править код ]

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

многоугольникпараллелограмм
nсторонаоснованиевысотаплощадь
41,41421362,82842710,70710682,0000000
61,00000003,00000000,86602542,5980762
80,76536693,06146750,92387952,8284271
100,61803403,09016990,95105652,9389263
120,51763813,10582850,96592583,0000000
140,44504193,11529310,97492793,0371862
160,39018063,12144520,98078533,0614675
960,06543823,14103200,99946463,1393502
1/∞π1π

Интегрирование [ править | править код ]

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Используя интегралы, мы можем просуммировать площадь круга, разделив его на концентрические окружности подобно луковице. Площадь бесконечно тонкого «слоя» радиуса t будет равна 2 π t dt, то есть произведению длины окружности на толщину слоя. В результате получим элементарный интеграл для круга радиуса r.

Можно разбивать круг не на кольца, а на треугольники с бесконечно малым основанием. Площадь каждого такого треугольника равна 1/2 * r * dt. Суммируя (интегрируя) все площади этих треугольников, получим формулу круга:

Быстрая аппроксимация [ править | править код ]

Метод удвоения Архимеда [ править | править код ]

Если задан круг, пусть un будет периметром вписанного правильного n-угольника, а Un — периметром описанного правильного n-угольника. Тогда un и Un являются нижней и верхней границей длины окружности, которые становятся точнее с ростом n, а их среднее значение (un + Un)/2 становится особенно хорошей аппроксимацией длины окружности. Чтобы вычислить un и Un для больших n, Архимед вывел следующие формулы:

u 2 n = U 2 n u n = u_ >>> Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего(среднее геометрическое) U 2 n = 2 U n u n U n + u n = u_ > +u_ >>> Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего(среднее гармоническое).

Начав с шестиугольника, Архимед удваивал n четыре раза, дойдя до 96-угольника, который дал ему хорошую аппроксимацию длины окружности круга.

В современных обозначениях можно воспроизвести эти вычисления (и пойти дальше). Для единичной окружности вписанный шестиугольник имеет периметр u6 = 6, а описанный шестиугольник имеет периметр U6 = 4√3. Удваиваем семь раз, получаем

knunUn(un + Un)/466,00000006,92820323,23205081126,21165716,43078063,16060942246,26525726,31931993,14614433486,27870046,29217243,14271824966,28206396,28542923,141873351926,28290496,28374613,141662863846,28311526,28332553,141610277686,28316786,28322043,1415970

Улучшение Снелла-Гюйгенса [ править | править код ]

Снелл предложил (а Гюйгенс доказал) более тесные границы, чем у Архимеда:

Для n = 48 формула даёт приближение лучше (около 3,14159292), чем метод Архимеда для n = 768.

Развитие формулы удваивания Архимеда [ править | править код ]

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

В первом равенстве отрезок C′P равен сумме C′O+OP, что равно r+ 1 ⁄2cn, а отрезок C′C является диаметром и его длина равна 2r. Для единичного круга получаем знаменитую формулу удвоения Людольфа Ван Цейлена

Если мы теперь построим правильный описанный n-угольник со стороной ″B″, параллельной AB, то OAB и OA″B″ являются подобными с отношением подобия A″B″ : AB = OC : OP. Обозначим описанную сторону Sn, тогда отношение превращается в Sn : sn = 1 : 1 ⁄2cn. (Мы снова используем факт, что OP равен половине A′B.) Получаем

Обозначим периметр вписанного многоугольника через un = nsn, а описанного через Un = nSn. Комбинируя равенства, получим

Можно также вывести

Аппроксимация случайными бросаниями [ править | править код ]

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Конечная перегруппировка [ править | править код ]

Обобщения [ править | править код ]

Мы можем растянуть круг до формы эллипса. Поскольку это растяжение является линейным преобразованием плокости, оно изменяет площадь, но сохраняет отношения площадей. Этот факт можно использовать для вычисления площади произвольного эллипса, отталкиваясь от площади круга.

Пусть единичный эллипс описан квадратом со стороной 2. Преобразование переводит круг в эллипс путём сжатия или растяжения горизонтального и вертикального диаметров до малой и большой оси эллипса. Квадрат становится прямоугольником, описанным вокруг эллипса. Отношение площади круга к площади квадрата равно π /4, и отношение площади эллипса к площади прямоугольника будет тоже π /4. Если a и b — длины малой и большой осей эллипса. Площадь прямоугольника будет равна ab, а тогда площадь эллипса — π ab/4.

Мы можем распространить аналогичные техники и на большие размерности. Например, если мы хотим вычислить объём внутри сферы, и мы знаем формулу для площади сферы, мы можем использовать приём, аналогичный «луковичному» подходу для круга.

Источник

Площадь круга: как найти, формулы

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

площадь, 6 класс, 9 класс, ЕГЭ/ОГЭ

Определение основных понятий

Прежде чем погрузиться в последовательность расчетов и узнать, чему равна площадь круга, важно выяснить разницу между понятиями окружности и круга.

Окружность — замкнутая плоская кривая, все точки которой равноудалены от центра.

Круг — множество точек на плоскости, которые удалены от центра на расстоянии равном радиусу.

Если говорить простым языком, окружность — это замкнутая линия, как, например, кольцо и шина. Круг — плоская фигура, ограниченная окружностью, как глобус и мяч.

Формула вычисления площади круга

Давайте разберем несколько формул расчета площади круга. Поехали!

Площадь круга через радиус

Площадь круга через диаметр

S = π × d 2 : 4, где d — это диаметр.

Площадь круга через длину окружности

S = L 2 ​ : (4 × π), где L — это длина окружности.

Популярные единицы измерения площади:

Задачи. Определить площадь круга

Мы разобрали три формулы для вычисления площади круга. А теперь тренироваться — поехали!

Задание 1. Как найти площадь круга по диаметру, если значение радиуса равно 6 см.

Диаметр окружности равен двум радиусам.

Используем формулу: S = π × d 2 : 4.

Подставим известные значения: S = 3,14 × 12 2 : 4.

Задание 2. Найти площадь круга, если известен диаметр, равный 90 мм.

Используем формулу: S = π × d 2 : 4.

Подставим известные значения: S = 3,14 × 90 2 : 4.

Задание 3. Найти длину окружности при радиусе 3 см.

Отношение длины окружности к диаметру является постоянным числом.

Получается: L = d × π.

Так как диаметр равен двум радиусам, то формула длины окружности примет вид: L = 2 × π × r.

Подставим значение радиуса: L = 2 × 3,14 × 3.

Источник

Два пи эр квадрат формула чего

1)длина окружности пропорциональна ее диаметру;
2)площадь круга пропорциональная квадрату радиуса;
3)коэффициенты пропорциональности в двух последних случаях совпадают.

Десятичная дробь, выражающая число π, бесконечна, хотя можно вычислить различные конечные дроби – десятичные приближения для π. Наиболее популярное приближение – с точностью до сотых: π ≈ 3,14.

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

У древнегреческих математиков с их превалирующим интересом к геометрическим построениям и доказательствам, а не к вычислениям, вопрос о численном значении π был не столь важным, нежели проблема квадратуры круга, т. е. построения квадрата, равновеликого данному кругу, если удастся, то с помощью циркуля и линейки, а в противном случае – с помощью каких-то других инструментов. Задача о квадратуре круга имела широкую известность не только среди математиков: например, о ней говорится в комедии Аристофана «Птицы».

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Древнейшие известные попытки собственно квадратуры круга принадлежат Антифонту и Бризону (V в. до н. э.). Антифонт последовательно вписывал в круг правильные многоугольники, каждый раз удваивая количество сторон, и полагал, что в конце концов многоугольник совпадет с окружностью. Бризон строил два квадрата – вписанный в окружность и описанный вокруг нее – и считал, что площадь квадрата, лежащего между ними, равна площади круга. Разумеется, в буквальном понимании и Антифонт, и Бризон заблуждались. Однако их идеи оказались весьма плодотворными: действительно, вписывая в окружность правильные многоугольники со все большим числом сторон, можно сколь угодно близко подойти к площади круга и длине окружности; смысл есть и в том, чтобы рассматривать не только вписанные, но и описанные многоугольники: при этом площадь круга будет лежать между площадями вписанных и описанных многоугольников, а длина окружности – между периметрами тех и других.

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

В дальнейшем именно вписанные и описанные правильные многоугольники стали активно применяться как для теоретических исследований, так и для конкретного вычисления числа π. Именно с помощью таких многоугольников было сформулировано строгое доказательство того, что площади кругов относятся как квадраты их диаметров, найденное, по-видимому, Евдоксом и приведенное в «Началах» Евклида. Архимед доказал, что площадь круга равна половине произведения длины окружности на ее радиус. Кроме того, с помощью вычисленных им периметров вписанных и описанных правильных многоугольников (от 6-угольника до 96-угольника) Архимед нашел, что:

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего
Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

или, в десятичных дробях, (подлинное значение ).

Как и для удвоения куба, и для трисекции угла, для квадратуры круга были изобретены методы, использующие свойства различных кривых. Общим свойством этих кривых было их образование путем сочетания двух типов движений – равномерного поступательного (вдоль некоторой прямой) и равномерного вращательного (вокруг некоторой точки или оси). При этом имеет место пропорциональность между углом, на который повернулся вращающийся элемент, и длиной отрезка, пройденной при поступательном движении.

Кроме квадратрисы, для квадратуры круга использовались связанные с ней винтовая линия и спираль Архимеда. Винтовая линия получается при движении точки по поверхности цилиндра, складывающемся из двух движений: во-первых, движения с постоянной скоростью вдоль оси цилиндра, а во-вторых, равномерного вращения по окружности основания цилиндра.

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего
Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего
Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего
Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

В более поздние времена в Индии использовались приближения для π, равные Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего(т. е. ≈ 3,162 – ошибка менее 1 %); 22/7 и даже 3,1416. Интересно наглядное доказательство предложения «площадь круга равна площади прямоугольника, стороны которого равны полуокружности и радиусу» у математика Ганеши (XVI в.). Как и в доказательстве теоремы Пифагора у Бхаскары, здесь все доказательство состоит из чертежа и слова «смотри». Ганеша делит круг на 12 секторов, а затем разворачивает каждый полукруг, состоящий из 6 секторов, в пилообразную фигуру, основание которой равно полуокружности, а высота – радиусу. Прямоугольник, о котором говорится в условии, получится при вставлении зубьев одной «пилы» в зазоры между зубьями другой. По-видимому, читатель должен был представлять себе, что круг разделен не на 12, а на столь большое число секторов, что эти секторы неотличимы от треугольников, составляющих «пилы».

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Самаркандский математик ал-Каши в «Трактате об окружности» (1424 г.) поставил себе задачу выразить окружность через диаметр с такой точностью, чтобы погрешность в длине окружности, равной 600 000 диаметров Земли, не превосходила толщины волоса. Рассмотрев правильные многоугольники вплоть до фигуры с 805 306 368 (3 ∙ 2 28 ) вершинами, ал-Каши нашел 16 верных знаков (после запятой) числа π, а именно, приближение (в реальности 17-й знак после запятой – 3 или 4, потому что 18-й – 8). Европейские математики достигли такой точности и превзошли ее лишь в конце XVI в.: в 1597 г. голландец вычислил 17-й знак, для чего применил многоугольник с 1 073 741 824 (2 30 ) вершинами.

В начале XVII в. профессор математических и военных наук Лейденского университета Лудольф ван Цейлен довел количество точных знаков (после запятой) числа π до 35. Современники называли найденное им приближение π «числом Лудольфа». Эти знаки он завещал выбить на надгробном камне. Интересно, что, поскольку в то время привычная нам позиционная запись десятичных дробей еще не вполне прижилась, на надгробии было написано не 3,14159265358979323846264338327960288, а

Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего
Два пи эр квадрат формула чего. Смотреть фото Два пи эр квадрат формула чего. Смотреть картинку Два пи эр квадрат формула чего. Картинка про Два пи эр квадрат формула чего. Фото Два пи эр квадрат формула чего

Еще два голландца XVII в. – В. Снеллиус и Х. Гюйгенс – с помощью некоторых тонких геометрических рассуждений смогли достичь большей точности при меньшем числе сторон рассматриваемых многоугольников. Снеллиус воспроизвел результат Архимеда – три верных знака после запятой – рассматривая не более чем а с помощью получил целых 7 верных знаков. Гюйгенс, доказав некоторые геометрические теоремы, смог вычислить 10 верных знаков с помощью 60-угольника.

Далее метод вписанных и описанных многоугольников уступил место новым методам, разработанным с помощью математического анализа – использованию бесконечных сумм, которые дают приближенные значения числа π нужной точности, если оставить в них достаточно большое, но лишь конечное число членов. В результате число верных знаков быстро возросло: вычислители подбирали формулы поудобнее и соревновались друг с другом в том, кто больше получит этих знаков.

ГОДВЫЧИСЛИТЕЛЬЧИСЛО ТОЧНЫХ ЗНАКОВ
1699А. Шарп71
1706Дж. Мечин100
1717Т. де Ланьи112
1794Г. Вега136
1844И. М. З. Дазе200
1847Т. Клаузен248
1853У. Резерфорд440

Рекорд для XIX в. поставил Уильям Шенкс, нашедший в результате 707 знаков после запятой; в 1-ой половине XX в. эти знаки часто воспроизводили в популярной литературе, а архитекторы даже украшали ими свои сооружения (Дом занимательной науки в Ленинграде, ныне Санкт-Петербург, 1934; Дворец открытий в Париже, 1937). В 1945 г. результаты Шенкса были проверены на компьютере, и оказалось, что из его знаков верны только первые 527. Компьютеры позволили существенно увеличить количество точных цифр в десятичном разложении π, причем, если раньше вычислители тратили на них многие годы, то теперь компьютеры справлялись с этим менее чем за день работы. Этому также способствовало применение более эффективных алгоритмов на основание новых математических формул.

ГОДВЫЧИСЛИТЕЛЬКОМПЬЮТЕРЧИСЛО ТОЧНЫХ ЗНАКОВ
1949Дж. фон НейманENIAC2 037
1958Ф. ЖенюиIBM 70410 000
1961Д. Шенкс, Дж. РенчIBM 7090100 625
1973Ж. Гийу, М. БуйеCDC-76001 000 000
1976Д. Х. БейлиCray-229 360 000
1987Я. КанадаNEC SX-2134 217 000
1989Д. и Г. ЧудновскиCray-2, IBM 30901 011 196 691
1999Я. Канада, Д. ТакахасиHITACHI SR 8000206 158 430 000

Само обозначение π для отношения окружности к диаметру было введено в 1706 году У. Джонсом.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *