Два провода рельс это что
Рельсовая цепь: определение, виды и основные параметры
Опубликовано 21.06.2021 · Обновлено 06.11.2021
Железнодорожный путь является сложным инженерным сооружением, и не так очевидно, что он еще используется в системах централизации и блокировки, а также, на электрифицированных участках, рельсовые плети являются «второй контактной сетью», доводя низший потенциал для пропуска обратного тягового тока. Рельсы — это токопроводящие элементы электрической цепи, причем, как правило, одновременно нескольких. О том, что же такое рельсовые цепи, как они работают, какие существуют виды и их основные параметры — расскажем в данном материале.
Эта статья предназначена для студентов железнодорожных ВУЗов или профессиональных железнодорожников, а также для технически-продвинутых романтиков. Для обывателей, желающих понять, что же такое рельсовая цепь и для чего она нужна, есть материал здесь.
Что такое Рельсовая цепь?
Рельсовой цепью называется электрическая цепь, включающая источник питания и потребителей (в числе которых может быть путевое реле), в качестве токопроводящих элементов которой выступают рельсовые нити пути.
На базе рельсовых цепей строятся многие системы железнодорожной автоматики и телемеханики: автоблокировка, АЛСН (автоматическая локомотивная сигнализация непрерывного действия), централизация стрелочных переводов и сигналов светофоров, системы диспетчерского контроля, переездная сигнализация и другие.
Таким образом можно выделить основное предназначение рельсовых цепей:
Выше представлена инфографика, с классификацией рельсовых цепей. Далее разберем подробно, что представляет из себя каждая из них.
Для разделения различных рельсовых цепей применяется так называемый изолирующий стык, или изостык, в котором по-сути установлена диэлектрическую прокладку между двумя рельсами.
Рельсовые цепи по принципу действия
Базово рельсовые цепи делятся на две категории: нормально замкнутые (1) и нормально разомкнутые (2). Как известно любая электрическая цепь должна включать источник электродвижущей силы и потребителей электрической энергии. В любых рельсовых цепях всегда присутствует источник питания и приемник, однако в зависимости от принципа действия рельсовой цепи их взаиморасположение может быть различным. В нормально-разомкнутых цепях источник питания и приемник расположены на одном ее конце, в то время как в нормально-замкнутых источник и приемник находятся на противоположных концах цепи.
Нормально-замкнутая рельсовая цепь
В нормально-замкнутых РЦ в тот момент, когда ни одна колесная пара подвижного состава не находится на контролируемом участке, катушка путевого реле находится под током и сигнализирует свободность участка и целостность цепи.
Такие цепи могут работать в четырех режимах:
Катушка реле, расположенная на противоположном конце цепи от источника питания, оказывается под напряжением, таким образом сердечник катушки втягивается, замыкая контакты реле и сигнализируя свободное состояние контролируемого участка. Путевое реле должно надежно удерживать якорь в притянутом состоянии (при непрерывном питании) или надежно срабатывать от каждого импульса (при импульсном питании).
Неблагоприятными условиями в данном режиме работы являются: минимальное напряжение источника, минимальное сопротивление изоляции и максимальное сопротивление рельсов.
В данном режиме одна колесная пара замыкает рельсовую цепь шунтируя ее за счет низкого сопротивления колесной пары. Весь ток начинает протекать через колесную пару, создавая своего рода короткое замыкание, а для исключения высоких токов которого используется дополнительное сопротивление (на схеме R0). Соответственно электрический ток в катушке сигнального реле прекращается, и реле переходит в состояние «Занятость участка».
Неблагоприятными условиями являются: максимальное напряжение источника, минимальное сопротивление рельсов, максимальное сопротивление изоляции.
Шунтовая чувствительность рельсовой цепи должна быть не менее 0,06 Ом.
Неблагоприятными условиями являются: максимальное напряжение источника, минимальное сопротивление рельсов, критическое сопротивление изоляции.
Данный режим соответствует наезду колесной пары поезда на входной конец рельсовой цепи.
Ток в рельсах под приемными катушками локомотива должен быть не менее расчетного, необходимого для надежной работы устройств АЛС на локомотиве.
Минимальный расчетный ток д.б. не менее:
Неблагоприятные условия совпадают с нормальным режимом работы.
Нормально-разомкнутая рельсовая цепь
В таких цепях при отсутствии колесной пары на контролируемом участке, путевое реле обесточено. Источник питания и реле находятся рядом друг с другом на одном конце цепи, при этом к одному полюсу питания подключается одна рельсовая плеть, а противоположная подключается к катушке реле, второй вывод которой подключается к другому полюсу питания.
В момент наезда на контрольный участок колесная пара замыкает электрическую цепь, и в катушке реле появляется ток. Есть данные о том, что такие цепи обладают большим быстродействием при определении занятости участка. Это происходит из-за того, что якорь реле быстрее притягивается к катушке, нежели под действием пружины, возвращается в исходное состояние. Но однозначным преимуществом нормально-разомкнутой рельсовой цепи является экономия кабелей, так как в качестве проводов используются непосредственно рельсы. Одновременно с этим такая цепь лишена важного качества — возможности контролировать свою целостность и исправность элементов, и это ограничивает ее использование только сортировочными горками.
Параметры рельсовых цепей
Рельсовые цепи работают на различных схемах питания, с разным характером подачи сигнального тока, от чего зависят их параметры. В качестве сигнального применяется как постоянный, так и переменный ток. В случае с переменным током его частота варьируется от 25, 50 Гц, либо частоты от 420 — 780 Гц и 4,5 — 5,5 кГц, в тональном режиме работы.
При передаче сигнального тока от источника к потребителю на преодоление электрического сопротивления среды приходится тратить часть энергии, помимо сопротивления рельсовых нитей имеют место токи утечки, возникающие через низкое сопротивление изоляции. Рельсовая цепь хоть и изолирована от земли, все же конкретное сопротивление этой изоляции зависит от балласта, на котором лежит путь, от материала шпал, загрязнения пути, температуры и влажности среды (наличия осадков), зазора между балластом и подошвой рельса. Железобетонные шпалы обладают меньшим сопротивлением изоляции и уступают шпалам из дерева, по этому применяются дополнительные резиновые прокладки между рельсом и шпалой. Минимальное сопротивление изоляции в норме должно быть не менее 1 Ом*км, зимой 100 Ом*км. Удельное сопротивление зависит от частоты тока и тем выше, чем выше частота.
Также источник питания может работать в нескольких режимах: непрерывном, импульсном и кодовом. Последний применяется для передачи сигналов автоматической локомотивной сигнализации. Действующие показания светофора кодируются специальным устройством, и передаются по рельсам на приемные катушками, установленные на любом локомотиве или самоходном подвижном составе.
Обратный тяговый ток
Любая рельсовая нить для электродвижущего подвижного состава выполняет роль низшего потенциала по отношении к контактной сети. Токи, протекающие от локомотива к тяговой подстанции, достигают огромных значений, и безусловно могут повлиять на работу рельсовых цепей. Обратный тяговый пропускается по одной нити цепи в случае с однониточными цепями, или по двум нитям, в двухниточных рельсовых цепях. Основной проблемой является разделение разных рельсовых цепей, соединенных для прохождения тягового тока. И если в однониточных цепях тяговый ток попеременно может передаваться по одной из нитей, то в двухниточных цепях приходится устанавливать разделяющие дроссель-трансформаторы. Стоит отметить, что в однониточных цепях невозможна передача сигналов АЛСН, а значит их применение сильно ограничено.
» data-medium-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-300×188.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1000×625.jpg» width=»1000″ height=»625″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1000×625.jpg» alt=»Дроссель-трансформатор обратного тягового тока рельсовой цепи | Дроссель-трансформатор обратного тягового тока рельсовой цепи | Движение24″class=»wp-image-46797″ data-srcset=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-300×188.jpg 300w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1000×625.jpg 1000w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-768×480.jpg 768w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-1536×960.jpg 1536w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-2048×1280.jpg 2048w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-520×325.jpg 520w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-720×450.jpg 720w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2395-320×200.jpg 320w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Дроссель-трансформатор обратного тягового тока рельсовой цепи | Движение24″ /> Дроссель-трансформатор
» data-medium-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-300×188.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1000×625.jpg» width=»1000″ height=»625″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1000×625.jpg» alt=»Дроссель-трансформатор внутри, что внутри коробок вдоль железнодорожных путей | Дроссель-трансформатор внутри, что внутри коробок вдоль железнодорожных путей | Движение24″class=»wp-image-46800″ data-srcset=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-300×188.jpg 300w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1000×625.jpg 1000w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-768×480.jpg 768w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-1536×960.jpg 1536w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-2048×1280.jpg 2048w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-520×325.jpg 520w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-720×450.jpg 720w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2398-320×200.jpg 320w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»Дроссель-трансформатор внутри, что внутри коробок вдоль железнодорожных путей | Движение24″ /> Дроссель-трансформатор с открытой крышкой
Параметры дроссель-трансформаторов
Первые цифры в названии определяют полное сопротивление переменному сигнальному току частотой 50 Гц (0,2 и 0,6), вторые цифры определяют номинальный тягового тока, на который рассчитана основная обмотка (500 и 1000 А на каждый рельс).
Основная обмотка дроссель-трансформатора выполнена из медной шины большого сечения и имеет малое сопротивление постоянному тяговому току (от 0,0008 до 0,0024 Ом).
У дроссель-трансформатора ДТ-0,2 дополнительная обмотка имеет несколько выводов, что позволяет устанавливать различные коэффициенты трансформации (7, 10, 13, 17, 23, 30, 33, 40). Основная обмотка содержит 14 витков из медной шины сечением 100 мм2 для ДТ-0,2-500 и 221 мм2 для ДТ-0,2-1000. Поскольку в рельсовых цепях практически применяют дроссель-трансформаторы ДТ-0,2 с коэффициентом трансформации 17 или 40, с 1985 г. завод выпускает ДТ-0,2, имеющие только один коэффициент трансформации (17 или 40). Дроссель-трансформаторы с коэффициентом 40 имеют на крышке маркировку n=40, а с коэффициентом 17— не имеют маркировки.
У дроссель-трансформатора ДТ-0,6 дополнительная обмотка имеет только два вывода, коэффициент трансформации равен 15. Основная обмотка содержит 16 витков медной шины сечением 100 и 243 мм2 для ДТ-0,6-500 и ДТ-0,6-1000 соответственно.
Основные элементы рельсовой цепи
Рельсовые соединители
Стальной штепсельный рельсовый стыковой соединитель состоит из двух стальных проволок диаметром 5 мм, заваренных по концам в штепселя конической формы. Длина соединителя в развернутом виде 1276 мм.
Стальной приварной рельсовый соединитель состоит из куска стального троса диаметром 6 мм, заваренного по концам в стальные наконечники (манжеты). Длина соединителя в выпрямленном состоянии 200 мм, масса 36 г. Стальные приварные соединители устанавливают на участках без электротяги.
На электрифицированных участках применяют приварные медные рельсовые соединители Такие соединители предназначены для уменьшения сопротивления не только сигнальному, но и тяговому току. Соединитель представляет собой гибкий медный трос длиной 200 мм, заваренный по концам в стальные наконечники (манжеты).
Изолирующие стыки
» data-medium-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-300×188.jpg» data-large-file=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1000×625.jpg» width=»1000″ height=»625″ gif;base64,R0lGODlhAQABAIAAAAAAAP///yH5BAEAAAAALAAAAAABAAEAAAIBRAA7″ data-src=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1000×625.jpg» alt=»изолирующий стык рельсовой цепи, изостык, стык покрашенный краской | изолирующий стык рельсовой цепи, изостык, стык покрашенный краской | Движение24″class=»wp-image-46793″ data-srcset=»https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-300×188.jpg 300w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1000×625.jpg 1000w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-768×480.jpg 768w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-1536×960.jpg 1536w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-2048×1280.jpg 2048w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-520×325.jpg 520w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-720×450.jpg 720w, https://cdn.dvizhenie24.ru/2021/06/dvizhenie24_ru_downloads_2391-1-320×200.jpg 320w» data-sizes=»(max-width: 1000px) 100vw, 1000px» /title=»изолирующий стык рельсовой цепи, изостык, стык покрашенный краской | Движение24″ />
Изолирующие стыки устанавливают для электрического разделения смежных рельсовых цепей. Изолирующий стык состоит из двух металлических накладок фасонной формы, стянутых болтами. Болты изолированы от рельса изолирующими втулками. Между накладками и рельсами установлены изолирующие прокладки, а между торцами смежных рельсов — стыковая изолирующая прокладка. Изолирующий стык крепят навесу без сдвоенных шпал.
На участках бесстыкового пути устраивают высокопрочный стык с пазухами между накладками и рельсом, заполненными изолирующей композицией. При помощи болтов обеспечивается необходимое сжатие склеиваемых поверхностей на период отвердения клеевого шва.
Схемы рельсовых цепей
Рельсовая цепь постоянного тока с импульсным питанием
В импульсных рельсовых цепях постоянного тока путевое реле всегда размещают на выходном конце блок-участка — импульсы для питания реле посылаются по ходу поезда.
Кодовые рельсовые цепи переменного тока 50 Гц без дроссель-трансформаторов
Применяют на перегонах участков без электротяги с учетом последующей электрификации или там, где не предусмотрен переход на электротягу, но имеется надежный источник электроснабжения переменного тока 50 Гц от основной и резервной линий.
Рельсовая цепь постоянного тока с непрерывным питанием
Для контроля замыкания изолирующих стыков предусматривают чередование полярности тока в смежных рельсовых цепях.
Рельсовые цепи постоянного тока с непрерывным питанием используются только на станциях участков, не подверженных влиянию блуждающих токов.
Рельсовые цепи переменного тока
Двухниточная рельсовая цепь с дроссель-трансформаторами и фазочувствительным путевым реле ДСШ-12 или ДСР-12
Двухниточная рельсовая цепь с дроссель-трансформаторами и фазочувствительным путевым реле ДСШ-12 или ДСР-12
Однониточные рельсовые цепи переменного тока 50 Гц
Разветвленные рельсовые цепи
В случае кодирования бокового пути размещение стрелочных соединителей по типовой схеме изоляции не обеспечивает нормальной работы устройств АЛС в маршрутах приема поездов на боковой путь и отправления с бокового пути.
Используемая литература
Автор:
Иван Беляев, ЖД-эксперт
Электроснабжение электрических железных дорог
Содержание
Системы тяги и тягового электроснабжения
На железных дорогах нашей страны две системы электрической тяги: постоянного тока напряжением 3 кВ и переменного тока напряжением 25 кВ промышленной частоты 50 Гц. Система тяги определяется родом тока и значением напряжения в тяговой сети. Для обеих названных систем тяги создан и эксплуатируется разнообразный электроподвижной состав (ЭПС).
Одно и то же напряжение в тяговой сети при заданном роде тока можно получить несколькими способами, поэтому различают системы тяги и системы тягового электроснабжения, реализующие их. Под системой тягового электроснабжения понимают комплекс электротехнических устройств, предназначенных для получения напряжения, подаваемого в тяговую сеть.
В нашей стране используют три вида систем тягового электроснабжения: систему постоянного тока 3,3 кВ, систему однофазного переменного тока 25 кВ и систему однофазного переменного тока 2×25 кВ. Система тяги переменного тока 25 кВ реализуется при применении двух последних систем тягового электроснабжения. За рубежом (Канада, США, ЮАР) в последнее время нашла применение новая система тяги переменного тока 50 кВ промышленной частоты 50 Гц, действующая в системе тягового электроснабжения того же названия. В то же время в странах центральной и северной Европы (Германия, Швейцария, Швеция, Австрия, Норвегия) продолжается использование давно введённой системы тяги переменного тока напряжением 15 кВ пониженной частоты 162/3 Гц. Эта система тяги реализуется в двух системах тягового электроснабжения пониженной частоты 162/3 Гц: с вращающимися генераторами и преобразователями и со статическими преобразователями.
Основным потребителем энергии в любой системе тягового электроснабжения является ЭПС, который может получить энергию, лишь подключившись к тяговой сети при условии, что в тяговую сеть уже подано напряжение. Поэтому следует прежде всего обращать внимание на то, каким образом в тяговую сеть подаётся напряжение и как оно формируется в системе тягового электроснабжения.
Принципиальная схема участка железной дороги, электрифицированной по системе постоянного тока 3 кВ
На схеме приведён участок электрифицированной железной дороги длиной 20—25 км с двумя соседними тяговыми подстанциями I и II, расположенными вблизи станций А и В (Рисунок 1, а).
К линии электропередачи (ЛЭП) трёхфазного переменного тока 110 кВ 12 подключён понижающий трансформатор тяговой подстанции 11. Этим трансформатором первичное напряжение 110 кВ понижается до 10 кВ и подаётся на шины 10 распределительного устройства тяговой подстанции. К этим шинам подключён преобразовательный агрегат, состоящий из преобразовательного трансформатора 9 и выпрямителя 8. Пониженное до 3 кВ напряжение на выходе преобразовательного трансформатора 9 выпрямляется и подаётся на шины «плюс» 6 и «минус» 7 тяговой подстанции.
Тяговая сеть перегона между подстанциями образована контактной сетью 22 и рельсами 26. Контактная сеть 22 питающей линией (фидером контактной сети) 4 через выключатель 5 соединена с шиной «плюс» 6, а рельсы 26 питающей линией (рельсовым фидером) 1 с шиной минус» 7 тяговой подстанции. Таким образом, если будет включён выключатель 5 фидера контактной сети (на схемах, согласно ГОСТ 2.755-87 все выключатели показаны в начальном отключённом положении), то в тяговую сеть перегона, то есть между контактной сетью 22 и рельсами 26, будет подано выпрямленное напряжение 3,3 кВ постоянного тока. Подняв на ЭПС токоприёмник 23 и включив выключатель 24, машинист соберёт цепь тока через тяговые двигатели 25, и ЭПС, потребляя энергию, начнёт двигаться. Через другие фидеры и выключатели тяговой сети с шиной «плюс» 3,3 кВ соединены: контактная сеть 2 станции А и контактная сеть перегона слева от станции. Участки контактной сети перегона 22 и станции 2 отделены друг от друга изолирующим сопряжением — воздушным промежутком 3, который, однако, обеспечивает непрерывный токосъём с контактной сети при проходе по нему токоприёмника ЭПС.
Аналогичным образом на этот же участок тяговой сети 22, 26 подаётся напряжение 3,3 кВ постоянного тока с подстанции //. Тем самым обеспечивается двусторонний подвод электрической энергии к ЭПС или, как говорят, его двустороннее питание. Существуют также другие, вспомогательные, линии электроснабжения участка. Чтобы обеспечить электрической энергией собственные нужды тяговой подстанции, а именно питать цепи управления, сигнализации, освещения, отопления и моторную нагрузку самой тяговой подстанции, на ней устанавливают трансформатор собственных нужд (ТСН) 13. Он понижает напряжение до 380/220 В переменного тока. Этими напряжениями и питаются цепи собственных нужд 14 (на схеме стрелки, отходящие от шин 380/220 В).
Вдоль трассы железной дороги расположено много нетяговых железнодорожных потребителей электрической энергии. К ним относятся установки, ринадлежащие всем службам дороги, механизмы и инструменты, для работы которых необходима электроэнергия, а также освещение станций, переездов и других объектов. Кроме того, электрической энергией снабжаются некоторые промышленные предприятия, колхозы, совхозы и т. д., расположенные по обе стороны железной дороги. Для питания всех перечисленных потребителей вдоль трассы железной дороги проложена трёхфазная воздушная линия (ВЛ) 10 кВ 17, подключённая к шинам 10 кВ 10 двух соседних подстанций I и II. В середине межподстанционной зоны ВЛ секционирована разъединителем 18, который нормально отключён. Благодаря этому каждая из подстанций питает только часть нетяговых потребителей, находящихся в межподстанционной зоне. При отключении любой из подстанций разъединитель 18 включают, и тогда все нетяговые потребители питаются от одной, неотключённой подстанции.
Ответственнейшие потребители электроэнергии — устройства СЦБ (сигнализации, централизации, блокировки) и связи, которые расположены вдоль трассы железной дороги. К таким устройствам относятся светофоры. Они получают питание от путевых ящиков СЦБ 21 через отдельный понижающий трансформатор 20, который в свою очередь получает питание от трёхфазной ВЛ СЦБ 10 кВ, трасса которой проходит вдоль железной дороги. Напряжение в эту линию подаётся от повышающего трансформатора 15, подключённого к шинам 380/220 В собственных нужд 14 тяговой подстанции. ВЛ СЦБ также подключена к обеим подстанциям / и // и в середине межподстанционной зоны секционирована разъединителем 19. Благодаря этому устройства СЦБ могут получать питание сразу от двух подстанций (при разомкнутом разъединителе 19) или от одной из них, когда другая отключена и включён разъединитель 19.
Устройство трёхфазной ЛЭП 110 кВ 12 таково: на опоре 27 (Рисунок 1, б) располагаются две трёхфазные линии (цепи) 110 кВ, одна слева, другая справа. На металлических траверсах 28 укрепляются гирлянды изоляторов 29, к которым подвешиваются провода линии 12.
На рисунке 1, в изображён разрез по двухпутному участку дороги. В нижней части видны четыре рельсовые нити 26 железнодорожного пути двухпутного участка (см. также рис. 1, а). На опорах контактной сети 33 подвешены провода различного назначения: усиливающие провода — алюминиевые тросы 30 — через изоляторы 31 к траверсе 32 с полевой стороны опоры 33; на консоли 34 через изолятор 31 несущий трос 35; фиксатор 36, укреплённый через изолятор 31, удерживает два контактных провода 37, не позволяя им перемещаться поперёк пути. Соединённые между собой во многих точках усиливающий провод 30, несущий трос 35 и контактные провода 37 и образуют собственно контактную сеть перегона 22 (см. рис. 1, а).
С полевой стороны другой опоры 33 контактной сети на специальных кронштейнах и штыревых изоляторах 38 крепится продольная трёхфазная ВЛ 17 напряжением 10 кВ, о назначении которой сказано выше. Все светофоры 39 получают питание через путевой шкаф СЦБ 21 и кабель 42 от однофазного понижающего трансформатора 20, присоединённого к линии передачи СЦБ 10 кВ 16, проходящей вдоль железной дороги на собственных опорах 40. Провода ЛЭП СЦБ укреплены на штыревых изоляторах 41.
По системе постоянного тока напряжением 3 кВ в границах РФ электрифицировано свыше 19 тыс. км железных дорог, и среди них самые грузонапряжённые. В последние годы при электрификации железных дорог предпочтение отдавалось более совершенным системам 25 кВ или 2×25 кВ переменного тока промышленной частоты.
Принципиальная схема участка железной дороги, электрифицированной по системе переменного тока 25 кВ
На схеме приведён участок электрифицированной железной дороги длиной 40—50 км с двумя тяговыми подстанциями / и //, расположенными вблизи станций А и В. К линии электропередачи 12 трёхфазного переменного тока 110 кВ подключён понижающий трёхобмоточный трансформатор 10 тяговой подстанции. Этим трансформатором первичное напряжение 110 кВ понижается до 25 кВ, а также до 35 или 10 кВ. Напряжение 25 кВ подаётся на шины 7, 8 и 9 (соответственно фазы b, а и с) и используется для питания тяговой сети, а напряжение 35 (или 10) кВ — на шины 11 и используется для питания прилегающего к подстанции района (Рисунок 2, а).
Для равномерной загрузки всех трёх фаз системы внешнего электроснабжения (ей принадлежит ЛЭП 110 кВ) в тяговую сеть станции А и перегона слева от неё подаётся напряжение, отличающееся по фазе от напряжения, подаваемого в тяговую сеть перегона справа. Для этого участки контактной сети указанных перегонов и станции, а также рельсы, присоединены к разным фазам шин 27,5 кВ; контактная сеть перегона 26 через фидер контактной сети 4 и выключатель 5 подключена к шине фазы b, контактная сеть станции 1 и перегона слева от неё — к шине фазы а, а рельсы через рельсовый фидер 6 — к шине фазы с. При таком подключении к шинам 27,5 кВ соединение контактной сети слева от станции А с контактной сетью станции токоприёмниками движущегося ЭПС 27 возможно, так как они присоединены к одной и той же фазе а. Соединение же контактной сети 1 станции и контактной сети 26 перегона справа от подстанции недопустимо, так как они присоединены к двум разным фазам а и b. Такое соединение приведёт к короткому замыканию фаз а и b понижающего трансформатора 10. Поэтому участки контактной сети 1 станции и перегона слева от неё разделены воздушным промежутком 2, а станции и перегона справа — двумя воздушными промежутками 2 и нейтральной вставкой между ними 3. Наличие нейтральной вставки 3 исключает даже кратковременное замыкание фаз а и b трансформатора 10 токоприёмниками ЭПС при проходе ими этого участка тяговой сети.
Подача напряжения в тяговую сеть перегона происходит при включении выключателя 5 фидера контактной сети. После этого машинист ЭПС может, подняв токоприёмник 27 и включив выключатель 28, подать переменное напряжение на первичную обмотку понижающего тягового трансформатора 31. Напряжение на вторичной обмотке тягового трансформатора выпрямляется выпрямителем 32 и через сглаживающий реактор 29 подводится к тяговым двигателям 30. Через электродвигатели начинает протекать ток, который приводит их и ЭПС в движение.
В тяговую сеть перегона между подстанциями напряжение подаётся от двух подстанций / и //. При этом обеспечивается двусторонний подвод энергии к ЭПС. Для обеспечения двустороннего питания ЭПС и равномерной загрузки фаз ЛЭП 110 кВ понижающие трансформаторы двух соседних подстанции / и // присоединены к ЛЭП 110 кВ неодинаково, а следуя специально разработанному правилу.
На рисунке также показаны другие вспомогательные линии электроснабжения участка. От шин тягового напряжения 27,5 кВ получают питание также нетяговые потребители. Для этого через выключатель 20 к шинам 7 и 8 подключают два провода, размещаемые на опорах контактной сети с полевой стороны. Понижающие трансформаторы потребителей 22 подключаются к этим проводам и рельсу. Такая система питания получила название ДПР (два провода — рельс). В середине линии ДПР установлен разъединитель 23. Нормально левая половина линии ДПР питается от подстанции /, а правая — от подстанции //, разъединитель 23 разомкнут. В случае необходимости (например, при отключении одной из подстанций) вся линия ДПР может получать питание от одной подстанции. При этом разъединитель 23 включается.
Энергию для собственных нужд тяговой подстанции (питание цепей управления, сигнализации, освещения, отопления, моторной нагрузки) получают от трансформатора собственных нужд (ТСН) 13 через шины собственных нужд 14 (на рисунке 2, а нагрузки собственных нужд обозначены стрелками). От шин собственных нужд 14 через трансформатор 15 напряжение подаётся в линию 16, предназначенную для питания устройств СЦБ и связи. От этой линии через маломощные понижающие трансформаторы 18 и релейные шкафы СЦБ 19 питаются светофоры. В середине линии 16 установлен разъединитель 17. Это даёт возможность питать линию от любой из двух подстанций / или // (при замкнутом разъединителе 17) или же каждую половину линии питать от своей подстанции (при разомкнутом разъединителе). Так как от работы устройств СЦБ непосредственно зависит выполнение графика движения поездов на участке, они должны иметь резервный источник питания. Устройства СЦБ получают резервное питание по линии 24 через понижающие однофазные трансформаторы 25 от линии ДПР 21.
На рисунке 2, б изображён разрез по двухпутному участку дороги.
Трёхфазная комплектная трансформаторная подстанция (КТП) 34, состоящая из трансформатора 22 и сопутствующего оборудования, получает питание от линии ДПР 21 через провода 36. Один провод линии ДПР 21 через изоляторы 37 подвешивается к консоли 38 с полевой стороны опоры контактной сети 39, а другой — с полевой стороны опоры 45 второго пути. Третий вывод КТП присоединяется проводом 35 к рельсам 33. На изолированной консоли 41, закреплённой на опоре через изоляторы 40, подвешен несущий трос 42. Одиночный контактный провод 44, удерживаемый фиксатором 43, занимает заданное положение относительно оси пути. Электрически соединённые во многих точках несущий трос 42 и контактный провод 44 и составляют контактную сеть 26 (см. рис. 2, а). Светофор 46 получает напряжение от маломощного понижающего однофазного трансформатора 18 через кабель 24 и релейный шкаф СЦБ 19. Трансформатор 18 подключён к трёхфазной линии передачи 10 кВ 16. Провода этой линии крепятся на штыревых изоляторах 48 опор 47, которые установлены параллельно железной дороге специально для линии СЦБ.
Проход воздушного промежутка 2 перед нейтральной вставкой 3 поездом, идущим со станции А в сторону станции В, происходит следующим образом. По правилам этот воздушный промежуток, как и нейтральную вставку, поезд должен проходить при отключённых тяговых электродвигателях или, как говорят, без тока. В противном случае возможен пережог ветви контактного провода 1 промежутка 2, принадлежащей ст. А.
Это может произойти так. Воздушный промежуток 2 изображён сбоку на рисунке 2, в. Высота подвеса контактных проводов ветвей 1 и 3 в пределах воздушного промежутка постепнно изменяется. В направлении слева направо контактный провод ветви 1 поднимается, а ветви 3 опускается. В точке а высоты подвеса обоих проводов равны. Поэтому, двигаясь по воздушному промежутку в направлении, указанном стрелкой, токоприёмник ЭПС до точки а скользит по проводу ветви 1 (позиция к), а после точки а — по проводу ветви 3 (позиция к+1). На провод 1 подано напряжение фазы А (см. рис. 2, а), на провод же 3, принадлежащий нейтральной вставке, напряжение не подано. По этой причине, двигаясь по воздушному промежутку, ЭПС может потреблять ток только до точки а. После её прохода контакт между контактным проводом 1 и токоприёмником 27 прекращается, и ток через двигатели ЭПС должен прерваться. Однако при большом токе (несколько сотен ампер) этого сразу не происходит, между контактным проводом и токоприёмником загорается электрическая дуга 49, которая за несколько долей секунды пережигает провод 1. Поэтому машинист и обязан отключать электродвигатели, или, как говорят, отключать ток, подъезжая к нейтральной вставке. Однако преждевременное отключение тока может вызвать остановку поезда на нейтральной вставке, следовательно, проезд нейтральной вставки требует от машиниста большого внимания.
В некоторых странах (Канада, США, ЮАР) появилась новая система тягового электроснабжения — система переменного тока напряжением 50 кВ частоты 50 или 60 Гц. Эта система аналогична системе переменного тока 25 кВ, но более высокое напряжение даёт возможность существенно увеличить передаваемую по тяговой сети электрическую мощность. Однако при этом приходится усиливать изоляцию контактной сети, увеличивать габариты между устройствами, находящимися под напряжением, и заземлёнными частями, и, конечно, требуется новый электроподвижной состав, рассчитанный на напряжение 50 кВ.
Стремление повысить мощность, передаваемую по тяговой сети, путём увеличения напряжения при одновременном желании использовать стандартный электроподвижной состав на напряжение 25 кВ привело к возникновению системы переменного тока 2×25 кВ. При этой системе электрическая энергия от тяговой подстанции к ЭПС передаётся в два этапа: сначала при напряжении 50 кВ, а затем 25 кВ. Для этого на опорах контактной сети с полевой стороны приходится подвешивать ещё один так называемый питающий провод (напряжение между ним и проводами контактной сети и составляет 50 кВ), и устанавливать на перегоне между подстанциями автотрансформаторы 50/25 кВ.
Система 2×25 кВ широко применяется как в нашей стране, так и в других странах (Франция, Япония), имеющих электрифицированные линии напряжением 25 кВ. Она рассматривается как средство усиления этих линий.
Принципиальная схема участка железной дороги, электрифицированной по системе переменного тока 15 кВ пониженной частоты 16⅔ Гц с вращающимися преобразователями
В некоторых странах широкое распространение получила система переменного тока пониженной частоты. По этой системе работают с первых лет электрификации железные дороги стран центральной и северной Европы: Германии, Швейцарии, Швеции, Австрии, Норвегии. Понижение частоты объясняется стремлением использовать на переменном токе тяговый электродвигатель последовательного возбуждения, широко применяемый в электрической тяге на постоянном токе. Вращающий момент на валу электродвигателя пропорционален произведению тока и магнитного потока, поэтому электродвигатель последовательного возбуждения способен работать и на переменном токе, поскольку направления тока и магнитного потока меняются одновременно. Однако переменный магнитный поток электродвигателя приводит к возникновению так называемой трансформаторной э.д.с. в обмотке якоря двигателя. При значительной э.д.с. появляется сильное искрение под щётками, вплоть до кругового огня по коллектору при коммутации. Чтобы избежать этого, необходимо снизить частоту тока. Технически проще всего снизить частоту ровно в 3 раза: с 50 до 16⅔ Гц. Этим и объясняется появление электрифицированных участков 15 кВ частоты 16⅔ Гц. На рисунке 3 показан такой участок длиной 35—40 км с двумя соседними тяговыми подстанциями / и //, расположенными вблизи ст. А и В.
К линии электропередачи (ЛЭП) трёхфазного переменного тока 110 кВ 14 подключён трансформатор тяговой подстанции 13, понижающий напряжение до 6,0 кВ. Это напряжение подаётся на синхронный трёхфазный электродвигатель 12, на валу 11 которого установлен синхронный однофазный генератор 10 с выходным напряжением 5,7 кВ частотой 16⅔ Гц. Полученное напряжение повышается трансформатором 9 до 15 кВ и подаётся на шины 8 и 7 тяговой подстанции. Одна из шин 8 рельсовым фидером 6 соединена с рельсами, а другая через фидерные выключатели 5 и фидер контактной сети 4 — с контактной сетью перегона 3. Таким образом, после включения фидерного выключателя 5 тяговая сеть перегона, образованная контактным проводом 3 и рельсом 18, оказывается под напряжением. После этого машинист ЭПС может, подняв токоприёмник 15 и включив выключатель 16, подать напряжение на двигатели 17. Последние начинают вращаться, и ЭПС приходит в движение.
Контактная сеть 1 ст. А подключена к той же шине 7, что и сеть 3 перегона, поэтому перегон и станция в этой системе отделены простым по конструкции воздушным промежутком 2, а не двумя промежутками с нейтральной вставкой, как при системе 25 кВ.
Недостатки системы 15 кВ пониженной частоты заключаются прежде всего в том, что эта система требует громоздких вращающихся преобразователей. Трансформаторы, работающие на пониженной частоте, массивны из-за большой площади сечения стальных сердечников, так как для создания необходимой э.д.с. при пониженной частоте требуется больший магнитный поток. При некоторой предельной для стали индукции его можно получить только увеличивая площадь сечения сердечника трансформатора.
Однако система пониженной частоты 16⅔ Гц обладает и достоинствами: индуктивное сопротивление тяговой сети (пропорциональное частоте) в 3 раза меньше, чем при частоте 50 Гц (соответственно падения напряжения в сети меньше, и расстояния между тяговыми подстанциями могут быть увеличены), электромагнитное влияние на линии связи из-за более низкой частоты незначительно. Так как электрическая энергия из трёхфазной сети передаётся в однофазную через механическое звено (вал 11 между двигателем и генератором), то снимаются все проблемы несимметрии токов и напряжений, в контактной сети не нужны нейтральные вставки. Страны, уже имеющие у себя сеть электрифицированных линий переменного тока пониженной частоты, продолжают электрификацию по этой же системе. Однако другие страны систему пониженной частоты не применяют.