Двигатель постоянного тока что это

Электродвигатели постоянного тока

Электродвигатели постоянного тока применяют в тех электроприводах, где требуется большой диапазон регулирования скорости, большая точность поддержания скорости вращения привода, регулирования скорости вверх от номинальной.

Как устроены электродвигатели постоянного тока

Работа электрического двигателя постоянного тока основана на явлении электромагнитной индукции. Из основ электротехники известно, что на проводник с током, помещенный в магнитное поле, действует сила, определяемая по правилу левой руки :

где I — ток, протекающий по проводнику, В — индукция магнитного поля; L — длина проводника.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

При пересечении проводником магнитных силовых линий машины в нем наводится электродвижущая сила, которая по отношению к току в проводнике направлена против него, поэтому он а называется обратной или противодействующей (противо-э. д. с). Электрическая мощность в двигателе преобразуется в механическую и частично тратится на нагревание проводника.

Коммутация в электродвигателях постоянного тока

В момент коммутации в короткозамкнутой секции обмотки под влиянием собственного магнитного поля наводится э. д. с. самоиндукции. Результирующая э. д. с. вызывает в короткозамкнутой секции дополнительный ток, который создает неравномерное распределение плотности тока на контактной поверхности щеток. Это обстоятельство считается основной причиной искрения коллектора под щеткой. Качество коммутации оценивается по степени искрения под сбегающим краем щетки и определяется по шкале степеней искрения.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Способы возбуждения электродвигателей постоянного тока

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

По способу возбуждения электрические двигатели постоянного тока делят на четыре группы :

1. С независимым возбуждением, у которых обмотка возбуждения НОВ питается от постороннего источника постоянного тока.

2. С параллельным возбуждением (шунтовые), у которых обмотка возбуждения ШОВ включается параллельно источнику питания обмотки якоря.

3. С последовательным возбуждением (сериесные), у которых обмотка возбуждения СОВ включена последовательно с якорной обмоткой.

4. Двигатели со смешаным возбуждением (компаундные), у которых имеется последовательная СОВ и параллельная ШОВ обмотки возбуждения.

Типы двигателей постоянного тока

Двигатели постоянного тока прежде всего различаются по характеру возбуждения. Двигатели могут быть независимого, последовательного и смешанного возбуждения. Параллельное возбуждение можно не рассматривать. Даже если обмотка возбуждения подключается к той же сети, от которой питается цепь якоря, то и в этом случае ток возбуждения не зависит от тока якоря, так как питающую сеть можно рассматривать как сеть бесконечной мощности, а ее напряжение постоянным.

Обмотку возбуждения всегда подключают непосредственно к сети, и поэтому введение добавочного сопротивления в цепь якоря не оказывает влияния на режим возбуждения. Той специфики, которая существует при параллельном возбуждении в генераторах, здесь быть не может.

В двигателях постоянного тока малой мощности часто используют магнитоэлектрическое возбуждение от постоянных магнитов. При этом существенно упрощается схема включения двигателя, уменьшается расход меди. Следует однако иметь в виду, что, хотя обмотка возбуждения исключается, габариты и масса магнитной системы не ниже, чем при электромагнитном возбуждении машины.

Свойства двигателей в значительной мере определяются их системой возбуждения.

Следует, однако, иметь в виду, что скорость вращения рабочих органов производственных машин существенно ниже. Поэтому между двигателем и рабочей маши­ной приходится устанавливать редуктор. Чем больше скорость двигателя, тем более сложным и дорогим получается редуктор. В установках большой мощности, где редуктор представляет собой дорогостоящий узел, двигатели проектируются на существенно меньшие скорости.

Следует еще иметь в виду, что механический редуктор всегда вносит значительную погрешность. Поэтому в прецизионных установках желательно использовать тихоходные двигатели, которые можно было бы сочленить с рабочими органами либо напрямую, либо посредством простейшей передачи. В связи с этим появились так называемые высокомоментные двигатели на низкие скорости вращения. Эти двигатели нашли широкое применение в металлорежущих станках, где сочленяются с органами перемещения без каких-либо промежуточных звеньев посредством шарико-винтовых передач.

Электрические двигатели отличаются также по конструктивным при­ знакам, связанным с условиями их работы. Для нормальных условий используются так называемые открытые и защищенные двигатели, охлаждаемые воздухом помещения, в котором они устанавливаются.

Воздух продувается через каналы машины посредством вентилятора, размещенного на валу двигателя. В агрессивных средах используются закрытые двигатели, охлаждение которых осуществляется за счет внешней ребристой поверхности или наружного обдува. Наконец, выпускаются специальные двигатели для взрывоопасной среды.

Для уменьшения индуктивности обмотки ее укладывают не в пазы, а на поверхность гладкого якоря. Крепится обмотка клеющими составами типа эпоксидной смолы. При малой индуктивности обмотки существенно улучшаются условия коммутации на коллекторе, отпадает необходимость в дополнительных полюсах, может быть использован коллектор меньших размеров. Последнее дополнительно уменьшает момент инерции якоря двигателя.

Еще большие возможности для снижения механической инерции дает использование полого якоря, представляющего собой цилиндр из изоляционного материала. На поверхности этого цилиндра располагается обмотка, изготовляемая печатным способом, штамповкой или из про­ волоки по шаблону на специальном станке. Крепление обмотки осуществляется клеющими материалами.

Внутри вращающегося цилиндра располагается стальной сердечник, необходимый для создания путей прохождения магнитного потока. В двигателях с гладким и полым якорями вследствие увеличения зазоров в магнитной цепи, обусловленного внесением в них обмотки и изоляционных материалов, требуемая намагничивающая сила для проведения необходимого магнитного потока существенно возрастает. Соответственно магнитная система полу­чается более развитой.

К числу малоинерционных двигателей относятся также двигатели с дисковыми якорями. Диски, на которые наносятся или наклеиваются обмотки, изготовляются из тонкого изоляционного материала, не подверженного короблению, например из стекла. Магнитная система при двухполюсном исполнении представляет собой две скобы, на одной из которых размещены обмотки возбуждения. В связи с малой индуктивностью обмотки якоря машина, как правило, не имеет коллектора и съем тока осуществляется щетками непосредственно с обмотки.

Следует еще упомянуть о линейном двигателе, обеспечивающем не вращательное движение, а поступательное. Он представляет собой двигатель, магнитная система которого как бы развернута и полюсы устанавливаются на линии движения якоря и соответствующего рабочего органа машины. Якорь обычно выполняется как малоинерционный. Габариты и стоимость двигателя велики, так как необходимо значительное число полюсов для обеспечения перемещения на заданном отрезке пути.

Пуск двигателей постоянного тока

В начальный момент пуска двигателя якорь неподвижен и противо-э. д. с. и напряжение в якоре равна нулю, поэтому Iп = U / Rя.

Двигатели мощностью до 1 кВт допускают прямой пуск.

Величина сопротивления пускового реостата выбирается по допустимому пусковому току двигателя. Реостат выполняют ступенчатым для улучшения плавности пуска электродвигателя.

В начале пуска вводится все сопротивление реостата. По мере увеличения скорости якоря возникает противо-э. д. с, которая ограничивает пусковые токи. Постепенно выводя ступень за ступенью сопротивление реостата из цепи якоря, увеличивают подводимое к якорю напряжение.

Регулирование частоты вращения электродвигателя постоянного тока

Частота вращения двигателя постоянного тока:

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

где U — напряжение питающей сети; Iя — ток якоря; R я — сопротивление цепн якоря; kc — коэффициент, характеризующий магнитную систему; Ф — магнитный поток электродвигателя.

Из формулы видно, что частоту вращения электродвигателя постоянного тока можно регулировать тремя путями: изменением потока возбуждения электродвигателя, изменением подводимого к электродвигателю напряжения и изменением сопротивления в цепи якоря.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Механические характеристики электродвигателя постоянного тока при различных способах регулирования частоты вращения

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Торможение электродвигателей постоянного тока

В электроприводах с электродвигателями постоянного тока применяют три способа торможения: динамическое, рекуперативное и торможение противовключением.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоРекуперативное торможение электродвигателя постоянного тока осуществляется в том случае, когда включенный в сеть электродвигатель вращается исполнительным механизмом со скоростью, превышающей скорость идеального холостого хода. Тогда э. д. с, наведенная в обмотке двигателя, превысит значение напряжения сети, ток в обмотке двигателя изменяет направление на противоположное. Электродвигатель переходит на работу в генераторном режиме, отдавая энергию в сеть. Одновременно на его валу возникает тормозной момент. Такой режим может быть получен в приводах подъемных механизмов при опускании груза, а также при регулировании скорости двигателя и во время тормозных процессов в электроприводах постоянного тока.

Торможение противовключением электродвигателя постоянного тока осуществляется путем изменения полярности напряжения и тока в обмотке якоря. При взаимодействии тока якоря с магнитным полем обмотки возбуждения создается тормозной момент, который уменьшается по мере уменьшения частоты вращения электродвигателя. При уменьшении частоты вращения электродвигателя до нуля электродвигатель должен быть отключен от сети, иначе он начнет разворачиваться в обратную сторону.

Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!

Подписывайтесь на наш канал в Telegram!

Просто пройдите по ссылке и подключитесь к каналу.

Не пропустите обновления, подпишитесь на наши соцсети:

Источник

Двигатели постоянного и переменного тока

Электромеханическое устройство, которое за счет преобразования электрической энергии приводит в движение механизмы, подключенные к нему, называется электродвигателем. В зависимости от вида потребляемой энергии они подразделяются на машины постоянного и переменного тока.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Их преимущества все более вытесняют двигатели на других источниках энергии из большинства конструкций производственных и бытовых механизмов. В автомобилях массовая замена ДВС на электропривод начинается на наших глазах.

Постоянный ток

Электрический ток (направленное движение заряженных частиц), не изменяющийся по направлению и амплитуде, называется постоянным. Источники его изначально были химические процессы, а сейчас возобновляемые (солнце, ветер). Преобразование его технически сложно, поэтому на большие расстояния передавать такой ток довольно дорого.

На малых расстояниях у него есть преимущества: отсутствие реактивной мощности и малые потери в проводах за счет прохождения по всему сечению проводника. Двигатели постоянного тока устанавливаются рядом с источниками и преобразователями, чтобы иметь возможность менять величину и направления тока в соответствии с потребностями в моменте и скорости исполнительного механизма.

Принцип действия

Школьный опыт с демонстрацией вращения рамки в магнитном поле отрытый в 1821 Фарадеем поясняет работу двигателя постоянного тока. Металлическая рамка с проходящим через нее током от батареи повернется под действием магнитного поля так, чтобы его воздействие стало нулевым. Для получения непрерывного вращения необходимо в этот момент поменять направление тока, либо объединить несколько рамок в процессе.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Виды двигателей постоянного тока

К концу 19 века уже началась эксплуатация электрических машин постоянного тока: генераторов и моторов. Причем оба вида не отличаются конструктивно и могли применяться как для выработки электроэнергии, так и для производства работ.

Коллекторный мотор

Принцип вращения рамки с током в поле постоянного магнита наиболее ярко реализован в коллекторных электродвигателях. Такие электродвигатели работают как от постоянного, так и от переменного тока. Впервые судно с двигателем постоянного тока запустил Б.С. Якоби по реке Неве в 1838г.

Такой двигатель состоит из неподвижной части (статор), на которой устанавливаются магниты для маломощных двигателей или катушки из ферримагнитных сталей, и обмотки с медным проводом для мощных электрических машин.

Якорь МПТ собран из пластин электротехнической стали, изолированных от вала и друг от друга для уменьшения вихревых токов. В пазы цилиндра укладывается витки провода из меди разного сечения в зависимости от токов и выбранной схемы (петлевая, волновая). Концы проводов выводятся и ввариваются (впаиваются) в ламели коллектора.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Коллектор состоит из медных изолированных пластин (ламелей) закрепленных по окружности, изолированных друг от друга и корпуса якоря. По ним перемещаются притертые подпружиненные щетки, закрепленные в щеткодержателе, для последовательной подачи тока в обмотки якоря. При подаче напряжения на щетки, якорь начинает вращаться и двигатель постоянного тока выходит в заданный режим.

Универсальный коллекторный мотор

Дальнейшее развитие коллекторных ДПТ позволило использовать их при работе от источников переменного тока. Для этого шихтуется не только якорь, но и цилиндр статора набирается из пластин электротехнической стали, а обмотки возбуждения соединяются последовательно с якорными. Одновременная смена полярности на них при прохождении переменного тока не меняет направление вращения вала двигателей.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Основное отличие — шихтованные статор и якорь делают магнитный поток стабильным и не создают вихревых токов (меньше греются). В остальном универсальный двигатель мало чем отличается от обычного коллекторного.

Вентильно-индукторные двигатели

Такие электромоторы иногда называются бесщёточными или безколлекторными. Суть такой конструкции в том, что ротор имеет зубчатое строение, собранное из постоянных магнитов, а обмотки возбуждения размещаются на зубчатых полюсах статора.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Переключением полюсов (катушек) занимается встроенный контроллер, за обратную связь, контролирующую положение якоря (ротора), отвечает датчик Холла. При включении пары катушек магнит на роторе движется к ней, затем следующая пара получает питание. Скорость вращения определяется частотой переключения катушек — чем выше частота, тем выше скорость.

Недостатком такой конструкции является пульсирующий крутящий момент. Плюсы: нет коллектора и щеток, простая конструкция, хорошее управление скоростью и малые габариты.

Безколлекторный с независимым возбуждением

Конструкция ротора этого двигателя собрана из двух зубчатых пакетов из магнитной стали на общей оси. Вершины зубцов пакета смещены друг относительно друга на 120°. Пакеты отстоят друг от друга на расстоянии, а зубцы одного совпадают с впадинами другого, таким образом, что суммарный магнитный поток ротора равен нулю.

Размещенная на статоре обмотка возбуждения тоже распределена со смещением в 120°. Собранный из электротехнической стали статор имеет размер такой, чтобы его магнитное поле перекрывало оба пакета магнитов ротора.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Поочередное включение катушек ротора создает магнитное поле в обоих магнитных блоках и ротор начинает плавно вращаться. Изменяя частоту и направление переключения секций обмотки возбуждения, а также силу тока в них, можно получить бесконтактный реверс, линейный крутящий момент и плавное изменение скорости.

Кроме этих достоинств есть еще отсутствие магнитов и графитовых щеток с коллектором. К недостаткам можно отнести сложность конструкции двигателей и питание обмоток от электронного преобразователя.

Несомненными достоинствами двигателей постоянного тока можно отнести:

Их недостатков можно отметить обязательное наличие преобразователя переменного тока в постоянный и сложность конструкции некоторых видов двигателей (коллектор со щетками, сложный якорь).

Переменный ток

Основных недостатков переменного тока два: наличие потерь мощности за счет обменных процессов между индуктивностями и емкостями в сетях (реактивной мощности); вытеснение переменного тока в проводнике от центра к поверхности. Чем выше частота, тем меньше используется сечение провода.

Изменение напряжения решается легко при помощи трансформаторов, потери в котором составляют не более 1% передаваемой мощности. Трансформаторы решают легко две задачи: гальванической развязки цепей высокого и низкого напряжения; за счет высокого напряжения при передаче электроэнергии на большие расстояния снижаются потери в проводах.

Создание трехфазных сетей переменного тока, кроме повышения эффективности электроснабжения, привело к появлению двигателей переменного тока, так как они получили вращающееся магнитное поле напрямую из сети без преобразователей.

Виды двигателей переменного тока

Применение трехфазных электросетей привело к доминированию асинхронных двигателей переменного тока во всех отраслях промышленности.

Принцип действия

В статоре асинхронного двигателя укладывается трехфазная обмотка, которая при прохождении синусоидального тока создает вращающееся магнитное поле. При пересечении замкнутых проводников ротора магнитное поле создает электрический ток (возникает ЭДС).

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Переменный ток в проводнике создает свое магнитное поле, которое стремится догнать поле статора. Взаимодействие полей заставляет вращаться ротор, скорость вращения которого отстает от скорости вращения поля статора на величину скольжения. Наличие этой разности главное условия вращения ротора асинхронного мотора.

Асинхронный трехфазный двигатель

Двигатели, использующие трехфазную электрическую сеть для создания статором вращающегося магнитного поля. По конструктивному исполнению ротора они делятся на короткозамкнутые и фазные.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Для короткозамкнутого ротора — в пазы собранного из листов электротехнической стали цилиндра заливается алюминий (реже медь) и по торцам соединяются токопроводящими кольцами. В этой «беличьей» клетке образуется ЭДС, затем ток и магнитное поле для вращения вала. Последние конструкции таких двигателей используют цельно металлический полый алюминиевый ротор.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

В фазных моторах трехфазная обмотка, соединенная «звездой», укладывается в пазы ротора и свободные концы выводятся на контактные кольца для подключения сети или резисторов для снижения пускового тока

Однофазный асинхронный мотор не может создать вращающееся магнитное поле, способное заставить ротор вращаться. Для того чтобы сдвинуть ротор, на статоре укладывается две обмотки: пусковая и рабочая. Во время пуска напряжение подается на рабочую и, на короткое время через конденсатор, на пусковую катушку. Созданный таким образом перекос фаз заставляет вращаться ротор, пусковая обмотка отключается, а двигатель входит в номинальный режим.

Синхронные двигатели переменного тока

У синхронных машин в номинальном режиме скорость вращения ротора равна скорости вращающегося поля статора. Отличающийся от асинхронного наличием коллектора.

На статоре такого электромотора размещается трехфазная обмотка (на больших машинах чаще всего высоковольтная), создающая вращающееся магнитное поле. На роторе укладывается две обмотки: «беличья клетка» и электромагнитные катушки с питанием от источника постоянного тока.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что это

Пуск синхронного двигателя происходит, как и у асинхронного короткозамкнутого. По достижении номинальной скорости асинхронного режима подается питание на электромагниты, а скорости вращения магнитного поля статора и ротора уравниваются.

К положительным качествам синхронных машин можно отнести:

Из недостатков: наличие источника постоянного тока, сложность пуска, трудности в регулировании момента и скорости вращения.

Выбор электродвигателей

На описании принципов работы, устройства и краткого изложения характеристик однозначный выбор в пользу того или иного решения можно сделать только в самых простейших случаях. Современные электрические машины становятся все более универсальными. Какая разница есть между двигателем и генератором, в чем различие машин постоянного и переменного тока на первый взгляд не всегда возможно понять.

Развитие электронной промышленности размывает границы ниш. Теперь и двигатели постоянного тока, и двигатели переменного тока теряют свои позиции. Появление частотного регулирования скорости и момента асинхронных короткозамкнутых и синхронных двигателей все сильнее смещает принятие решения из инженерной сферы в технико-экономическую.

Электрические машины выбирают на основе следующих критериев:

Это только начало. В крупных проектах придется учитывать воздействие на окружающую среду, штрафы на искажение сетевой частоты и так далее. Чтобы принять оптимальное решение в конкретном случае — какой электродвигатель и с каким приводом применять — придется оценить совокупность множества условий.

Видео по теме

Источник

Электрический двигатель постоянного тока

Эра электродвигателей берёт своё начало с 30-х годов XIX века, когда Фарадей на опытах доказал способность вращения проводника, по которому проходит ток, вокруг постоянного магнита. На этом принципе Томасом Девенпортом был сконструирован и испытан первый электродвигатель постоянного тока. Изобретатель установил своё устройство на действующую модель поезда, доказав тем самым работоспособность электромотора.

Практическое применение ДПТ нашёл Б. С. Якоби, установив его на лодке для вращения лопастей. Источником тока учёному послужили 320 гальванических элементов. Несмотря на громоздкость оборудования, лодка могла плыть против течения, транспортируя 12 пассажиров на борту.

Лишь в конце XIX столетия синхронными электродвигателями начали оснащать промышленные машины. Этому способствовало осознание принципа преобразования электродвигателем постоянного тока механической энергии в электричество. То есть, используя электродвигатель в режиме генератора, удалось получать электроэнергию, производство которой оказалось существенно дешевле от затрат на выпуск гальванических элементов. С тех пор электродвигатели совершенствовались и стали завоёвывать прочные позиции во всех сферах нашей жизнедеятельности.

Устройство и описание ДПТ

Конструктивно электродвигатель постоянного тока устроен по принципу взаимодействия магнитных полей.

Самый простой ДПТ состоит из следующих основных узлов:

Рассмотренный выше пример – это скорее рабочая модель коллекторного электродвигателя. На практике такие устройства не применяются. Дело в том, что у такого моторчика слишком маленькая мощность. Он работает рывками, особенно при подключении механической нагрузки.

Статор (индуктор)

В моделях мощных современных двигателях постоянного тока используются статоры, они же индукторы, в виде катушек, намотанных на сердечники. При замыкании электрической цепи происходит образование линий магнитного поля, под действием возникающей электромагнитной индукции.

Для запитывания обмоток индуктора ДПТ могут использоваться различные схемы подключения:

Схемы подключения наглядно видно на рисунке 2.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоРисунок 2. Схемы подключения обмоток статора ДПТ

У каждого способа есть свои преимущества и недостатки. Часто способ подключения диктуется условиями, в которых предстоит эксплуатация электродвигателя постоянного тока. В частности, если требуется уменьшить искрения коллектора, то применяют параллельное соединение. Для увеличения крутящего момента лучше использовать схемы с последовательным подключением обмоток. Наличие высоких пусковых токов создаёт повышенную электрическую мощность в момент запуска мотора. Данный способ подходит для двигателя постоянного тока, интенсивно работающего в кратковременном режиме, например для стартера. В таком режиме работы детали электродвигателя не успевают перегреться, поэтому износ их незначителен.

Ротор (якорь)

В рассмотренном выше примере примитивного электромотора ротор состоит из двухзубцового якоря на одной обмотке, с чётко выраженными полюсами. Конструкция обеспечивает вращение вала электромотора.

В описанном устройстве есть существенный недостаток: при остановке вращения якоря, его обмотки занимают устойчивое. Для повторного запуска электродвигателя требуется сообщить валу некий крутящий момент.

Этого серьёзного недостатка лишён якорь с тремя и большим количеством обмоток. На рисунке 3 показано изображение трёхобмоточного ротора, а на рис. 4 – якорь с большим количеством обмоток.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоРисунок 3. Ротор с тремя обмотками Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоРисунок 4. Якорь со многими обмотками

Подобные роторы довольно часто встречаются в небольших маломощных электродвигателях.

Для построения мощных тяговых электродвигателей и с целью повышения стабильности частоты вращения используют якоря с большим количеством обмоток. Схема такого двигателя показана на рисунке 5.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоРисунок 5. Схема электромотора с многообмоточным якорем

Коллектор

Если на выводы обмоток ротора подключить источник постоянного тока, якорь сделает пол-оборота и остановится. Для продолжения процесса вращения необходимо поменять полярность подводимого тока. Устройство, выполняющее функции переключения тока с целью изменения полярности на выводах обмоток, называется коллектором.

Самый простой коллектор состоит из двух, изолированных полукруглых пластин. Каждая из них в определённый момент контактирует со щёткой, с которой снимается напряжение. Одна ламель всегда подсоединена к плюсу, а вторая – к минусу. При повороте вала на 180º пластины коллектора меняются местами, вследствие чего происходит новая коммутация со сменой полярности.

Такой же принцип коммутации питания обмоток используются во всех коллекторах, в т. ч. и в устройствах с большим количеством ламелей (по паре на каждую обмотку). Таким образом, коллектор обеспечивает коммутацию, необходимую для непрерывного вращения ротора.

В современных конструкциях коллектора ламели расположены по кругу таким образом, что каждая пластина соответствующей пары находится на диаметрально противоположной стороне. Цепь якоря коммутируется в результате изменения положения вала.

Принцип работы

Ещё со школьной скамьи мы помним, что на провод под напряжением, расположенный между полюсами магнита, действует выталкивающая сила. Происходит это потому, что вокруг проволоки образуется магнитное поле по всей его длине. В результате взаимодействия магнитных полей возникает результирующая «Амперова» сила:

F=B×I×L, где B означает величину магнитной индукции поля, I – сила тока, L – длина провода.

Вектор «Амперовой» всегда перпендикулярен до линий магнитных потоков между полюсами. Схематически принцип работы изображён на рис. 6.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоРис. 6. Принцип работы ДПТ

Если вместо прямого проводника возьмём контурную рамку и подсоединим её к источнику тока, то она повернётся на 180º и остановится в в таком положении, в котором результирующая сила окажется равной 0. Попробуем подтолкнуть рамку. Она возвращается в исходное положение.

Поменяем полярность тока и повторим попытку: рамка сделала ещё пол-оборота. Логично припустить, что необходимо менять направление тока каждый раз, когда соответствующие витки обмоток проходят точки смены полюсов магнитов. Именно для этой цели и создан коллектор.

Схематически можно представить себе каждую якорную обмотку в виде отдельной контурной рамки. Если обмоток несколько, то в каждый момент времени одна из них подходит к магниту статора и оказывается под действием выталкивающей силы. Таким образом, поддерживается непрерывное вращение якоря.

Типы ДПТ

Существующие электродвигатели постоянного тока можно классифицировать по двум основным признакам: по наличию или отсутствию в конструкции мотора щеточно-коллекторного узла и по типу магнитной системы статора.

Рассмотрим основные отличия.

По наличию щеточно-коллекторного узла

Двигатели постоянного тока для коммутации обмоток, которых используются щёточно-коллекторные узлы, называются коллекторными. Они охватывают большой спектр линейки моделей электромоторов. Существуют двигатели, в конструкции которых применяется до 8 щёточно-коллекторных узлов.

Функции ротора может выполнять постоянный магнит, а ток от электрической сети подаётся непосредственно на обмотки статора. В таком варианте отпадает надобность в коллекторе, а проблемы, связанные с коммутацией, решаются с помощью электроники.

В таких бесколлекторных двигателях устранён один из недостатков –искрение, приводящее к интенсивному износу пластин коллектора и щёток. Кроме того, они проще в обслуживании и сохраняют все полезные характеристики ДПТ: простота в управлении связанном с регулировкой оборотов, высокие показатели КПД и другие. Бесколлекторные моторы носят название вентильных электродвигателей.

По виду конструкции магнитной системы статора

В конструкциях синхронных двигателей существуют модели с постоянными магнитами и ДПТ с обмотками возбуждения. Электродвигатели серий, в которых применяются статоры с потоком возбуждения от обмоток, довольно распространены. Они обеспечивают стабильную скорость вращения валов, высокую номинальную механическую мощность.

О способах подключения статорных обмоток шла речь выше. Ещё раз подчеркнём, что от выбора схемы подключения зависят электрические и тяговые характеристики двигателей постоянного тока. Они разные в последовательных обмотках и в катушках с параллельным возбуждением.

Управление

Не трудно понять, что если изменить полярность напряжения, то направление вращения якоря также изменится. Это позволяет легко управлять электромотором, манипулируя полярностью щеток.

Механическая характеристика

Рассмотрим график зависимости частоты от момента силы на валу. Мы видим прямую с отрицательным наклоном. Эта прямая выражает механическую характеристику электродвигателя постоянного тока. Для её построения выбирают определённое фиксированное напряжение, подведённое для питания обмоток ротора.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоПримеры механических характеристик ДПТ независимого возбуждения

Регулировочная характеристика

Такая же прямая, но идущая с положительным наклоном, является графиком зависимости частоты вращения якоря от напряжения питания. Это и есть регулировочная характеристика синхронного двигателя.

Построение указанного графика осуществляется при определённом моменте развиваемом ДПТ.

Двигатель постоянного тока что это. Смотреть фото Двигатель постоянного тока что это. Смотреть картинку Двигатель постоянного тока что это. Картинка про Двигатель постоянного тока что это. Фото Двигатель постоянного тока что этоПример регулировочных характеристик двигателя с якорным управлением

Благодаря линейности характеристик упрощается управление электродвигателями постоянного тока. Поскольку сила F пропорциональна току, то изменяя его величину, например переменным сопротивлением, можно регулировать параметры работы электродвигателя.

Регулирование частоты вращения ротора легко осуществляется путём изменения напряжения. В коллекторных двигателях с помощью пусковых реостатов добиваются плавности увеличения оборотов, что особенно важно для тяговых двигателей. Это также один из эффективных способов торможения. Мало того, в режиме торможения синхронный электродвигатель вырабатывает электрическую энергию, которую можно возвращать в энергосеть.

Области применения

Перечислять все области применения электродвигателей можно бесконечно долго. Для примера назовём лишь несколько из них:

Преимущества и недостатки

К достоинствам относится:

У асинхронных электродвигателей, являющихся двигателями переменного тока очень трудно достичь таких характеристик.

Недостатки:

По перечисленным параметрам из недостатков в выигрыше оказываются модели асинхронных двигателей. Однако во многих случаях применение электродвигателя постоянного тока является единственно возможным вариантом, не требующим усложнения электрической схемы.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *