Edrx iot что это
NB-IoT, Narrow Band Internet of Things. Режимы энергосбережения и команды управления
В предыдущей части обсуждалась общая информация и особенности технологии NB-IoT, а здесь предлагаю подробно рассмотреть режимы энергосбережения PSM и eDRX, а также команды, с помощью которых этими режимами можно управлять.
Режимы сохранения энергии в NB-IoT
Устройствам, которые работают от батарейки, важно потреблять как можно меньше энергии. Для этого в NB-IoT предусмотрены два режима энергосбережения: Power Saving Mode, PSM и Extended idle mode DRX, eDRX. Рассмотрим их подробнее.
Режим сохранения энергии PSM, Power Saving Mode
Согласно спецификации 3GPP TS 23.682, Power Saving Mode (PSM) – это режим, аналогичный отключению питания, при котором устройство, тем не менее, остается зарегистрированным в сети. Любопытно, что режим PSM появился в спецификациях 3GPP раньше, чем NB-IoT – в 3GPP Release 12.
Устройство NB-IoT инициирует режим PSM, включая значения двух таймеров в запросы ATTACH REQUEST/TAU REQUEST, посылаемые в процедурах Attach и TAU (TAU, Tracking Area Update — это периодическая процедура, которая используется в LTE для уведомления сети о доступности и местоположении мобильного устройства).
Первый таймер — T3324 Active Timer — определяет время, в течение которого устройство остается доступным со стороны сети после процедуры Attach, TAU или передачи данных.
Второй таймер — T3412 Extended periodic TAU Timer — определяет период процедуры TAU.
Режим PSM и таймеры T3324, T3412 показаны на рис. 1:
Если сеть разрешает использование режима PSM, то значения этих таймеров включаются в ответные сообщения ATTACH ACCEPT/TAU ACCEPT. При определении значений таймеров сеть может принимать во внимание не только значения, запрашиваемые устройством, но и локальную конфигурацию. Другими словами, сеть не обязана подтверждать в точности те значения таймеров, которые запросило устройство. Зато устройство обязано применить значения, полученные от сети.
Длительность нахождения устройства в режиме PSM определяется как разница между Extended periodic TAU Timer и Active Timer (T3412-T3324). Так как значение T3324 Active Timer может быть равно нулю, то максимальное теоретическое время нахождения устройства в режиме PSM равняется максимальному времени T3412 Extended periodic TAU Timer и составляет 413 дней и 8 часов (. ). Максимальное значение T3324 Active Timer составляет 3 часа и 6 минут (186 минут).
Когда устройство находится в режиме PSM, оно недоступно со стороны сети (для так называемых mobile terminating сервисов).
GSMA рекомендует операторам сотовой связи сохранять и передавать устройству (после выхода последнего из режима PSM) как минимум последний пакет данных длительностью 100 бит.
Устройство может выйти из режима PSM в любое время (например, если устройству нужно срочно передать какие-нибудь данные, как на картинке выше).
Режим сохранения энергии eDRX (Extended idle mode DRX)
eDRX (Extended idle mode DRX) можно считать дополнительным режимом энергосбережения устройства, он появился в спецификациях 3GPP Release 13. DRX означает прерывистый приём (Discontinuous Receiving). Метод прерывистого приема известен в сотовой связи давно, и заключается в том, что для сохранения энергии приемный тракт устройства включается периодически в определенные промежутки времени, а большую часть времени отключен. Сеть «знает» об этом и посылает сигналы вызова (paging) только в «правильные» моменты времени. Расширенный режим прерывистого приёма (eDRX) позволяет существенно увеличить период времени, когда приемный тракт устройства выключен. Согласно спецификации 3GPP TS 23.682, период прерывистого приема eDRX в режиме NB-IoT составляет от 20,48 до 10485,76 секунды (10485 секунд — это почти 3 часа).
Сравнение «старого» DRX и «нового» eDRX представлено на рис. 2:
Устройство NB-IoT активирует режим eDRX, передавая значение длительности периода eDRX в запросах ATTACH REQUEST/TAU REQUEST, посылаемых в процедурах Attach и TAU. Если сеть разрешает использование режима eDRX, то значение периода eDRX включается в ответные сообщения ATTACH ACCEPT/TAU ACCEPT. Сеть не обязана подтверждать запрошенное устройством значение периода eDRX, а вот устройство обязано применить значение, переданное сетью.
Как и в случае с PSM, при использовании режима eDRX GSMA рекомендует операторам сохранять и передавать устройству как минимум последний пакет данных длительностью 100 бит. Впрочем, как следует из опроса, проведенного ассоциацией GSM, операторы намерены сохранять намного больше нисходящих данных (от приложения к устройству).
Режим eDRX может применяться одновременно с режимом PSM.
Режимы PSM и eDRX входят в число минимальных требований к сетям NB-IoT, рекомендованных GSMA.
Команды управления устройством NB-IoT (AT-команды)
Стандартные AT-команды описываются в спецификации 3GPP TS 27.007. Всего команд очень много, здесь рассмотрим только те, с помощью которых можно управлять режимами энергосбережения устройства NB-IoT. Кроме того, разные производители могут немного по-своему интерпретировать стандартные или изобретать новые команды. Поэтому для большей определенности посмотрим команды NB-IoT-модуля N21.
Команда управления режимом PSM
Для задания параметров режима PSM используется команда AT+CPSMS:
Параметры команды AT+CPSMS:
Таким образом, для настройки параметров PSM в режиме NB-IoT используются три параметра: mode, Requested_Periodic-TAU и Requested_Active-Time.
Запрашиваемая длительность нахождения устройства в режиме PSM — это разница между значениями Requested_Periodic-TAU и Requested_Active-Time.
Кодирование значения Requested_Active-Time (T3324)
Requested_Active-Time кодируется в виде последовательности, состоящей из 8 бит, где старшие биты 8, 7, 6 представляют собой множитель, биты 5, 4, 3, 2, 1 – значение.
Бит 8 | Бит 7 | Бит 6 | Множитель |
0 | 0 | 0 | 2 секунды |
0 | 0 | 1 | 1 минута |
0 | 1 | 0 | 6 минут (1/10 часа) |
1 | 1 | 1 | Таймер деактивирован |
Другие значения должны быть интерпретированы как 1 минута (в текущей версии протокола) |
Пример кодирования значения Requested_Active-Time (T3324):
00000101 — Requested_Active-Time
000 – множитель, 2 секунды,
00101 – значение, 5,
5 х 2 секунды = 10 секунд — запрашиваемое значение Requested_Active-Time.
Максимальное значение Requested_Active-Time (T3324) составляет 3 часа и 6 минут (186 минут).
Кодирование значения Requested_Periodic-TAU (T3412)
Requested_Periodic-TAU кодируется в виде последовательности, состоящей из 8 бит, где старшие биты 8, 7, 6 представляют собой множитель, младшие биты 5, 4, 3, 2, 1 – значение.
Бит 8 | Бит 7 | Бит 6 | Множитель |
0 | 0 | 0 | 10 минут |
0 | 0 | 1 | 1 час |
0 | 1 | 0 | 10 часов |
0 | 1 | 1 | 2 секунды |
1 | 0 | 0 | 30 секунд |
1 | 0 | 1 | 1 минута |
1 | 1 | 0 | 320 часов. Примечание: данное значение применимо только к таймерам T3312 extended и T3412 extended (см. TS 24.301). Если оно принято в сообщении с включенной проверкой целостности, значение должно быть интерпретировано как 320 часов. В противном случае оно должно быть интерпретировано как 1 час. |
1 | 1 | 1 | Таймер деактивирован |
Пример кодирования значения Requested_Periodic-TAU (T3412):
00100001 — Requested_Periodic-TAU
001 – множитель, 1 час,
00010 – значение, 2,
2 х 1 час = 2 часа — запрашиваемое значение Requested_Periodic-TAU
Максимальное значение таймера Requested_Periodic-TAU T3412 составляет 9920 часов или 413 дней и 8 часов.
Примеры команды AT+CPSMS
Команда управления режимом eDRX
Для задания параметров режима eDRX используется команда AT+CEDRXS:
Параметры команды AT+CEDRXS:
2. AcT-type — технология радиодоступа:
3. Requested_eDRX_value — длительность периода eDRX. Значение кодируется в виде двоичной последовательности, состоящей из 4-х бит. Согласно спецификации 3GPP TS 23.682, период eDRX в режиме NB-IoT находится в диапазоне от 20,48 до 10485,76 секунд. Значения Requested_eDRX_value в режиме NB-IoT приведены в таблице 3.
NB-IoT, Narrow Band Internet of Things. Режимы энергосбережения и команды управления
В предыдущей части обсуждалась общая информация и особенности технологии NB-IoT, а здесь предлагаю подробно рассмотреть режимы энергосбережения PSM и eDRX, а также команды, с помощью которых этими режимами можно управлять.
Режимы сохранения энергии в NB-IoT
Устройствам, которые работают от батарейки, важно потреблять как можно меньше энергии. Для этого в NB-IoT предусмотрены два режима энергосбережения: Power Saving Mode, PSM и Extended idle mode DRX, eDRX. Рассмотрим их подробнее.
Режим сохранения энергии PSM, Power Saving Mode
Согласно спецификации 3GPP TS 23.682, Power Saving Mode (PSM) – это режим, аналогичный отключению питания, при котором устройство, тем не менее, остается зарегистрированным в сети. Любопытно, что режим PSM появился в спецификациях 3GPP раньше, чем NB-IoT – в 3GPP Release 12.
Устройство NB-IoT инициирует режим PSM, включая значения двух таймеров в запросы ATTACH REQUEST/TAU REQUEST, посылаемые в процедурах Attach и TAU (TAU, Tracking Area Update — это периодическая процедура, которая используется в LTE для уведомления сети о доступности и местоположении мобильного устройства).
Первый таймер — T3324 Active Timer — определяет время, в течение которого устройство остается доступным со стороны сети после процедуры Attach, TAU или передачи данных.
Второй таймер — T3412 Extended periodic TAU Timer — определяет период процедуры TAU.
Режим PSM и таймеры T3324, T3412 показаны на рис. 1:
Если сеть разрешает использование режима PSM, то значения этих таймеров включаются в ответные сообщения ATTACH ACCEPT/TAU ACCEPT. При определении значений таймеров сеть может принимать во внимание не только значения, запрашиваемые устройством, но и локальную конфигурацию. Другими словами, сеть не обязана подтверждать в точности те значения таймеров, которые запросило устройство. Зато устройство обязано применить значения, полученные от сети.
Длительность нахождения устройства в режиме PSM определяется как разница между Extended periodic TAU Timer и Active Timer (T3412-T3324). Так как значение T3324 Active Timer может быть равно нулю, то максимальное теоретическое время нахождения устройства в режиме PSM равняется максимальному времени T3412 Extended periodic TAU Timer и составляет 413 дней и 8 часов (. ). Максимальное значение T3324 Active Timer составляет 3 часа и 6 минут (186 минут).
Когда устройство находится в режиме PSM, оно недоступно со стороны сети (для так называемых mobile terminating сервисов).
GSMA рекомендует операторам сотовой связи сохранять и передавать устройству (после выхода последнего из режима PSM) как минимум последний пакет данных длительностью 100 бит.
Устройство может выйти из режима PSM в любое время (например, если устройству нужно срочно передать какие-нибудь данные, как на картинке выше).
Режим сохранения энергии eDRX (Extended idle mode DRX)
eDRX (Extended idle mode DRX) можно считать дополнительным режимом энергосбережения устройства, он появился в спецификациях 3GPP Release 13. DRX означает прерывистый приём (Discontinuous Receiving). Метод прерывистого приема известен в сотовой связи давно, и заключается в том, что для сохранения энергии приемный тракт устройства включается периодически в определенные промежутки времени, а большую часть времени отключен. Сеть «знает» об этом и посылает сигналы вызова (paging) только в «правильные» моменты времени. Расширенный режим прерывистого приёма (eDRX) позволяет существенно увеличить период времени, когда приемный тракт устройства выключен. Согласно спецификации 3GPP TS 23.682, период прерывистого приема eDRX в режиме NB-IoT составляет от 20,48 до 10485,76 секунды (10485 секунд — это почти 3 часа).
Сравнение «старого» DRX и «нового» eDRX представлено на рис. 2:
Устройство NB-IoT активирует режим eDRX, передавая значение длительности периода eDRX в запросах ATTACH REQUEST/TAU REQUEST, посылаемых в процедурах Attach и TAU. Если сеть разрешает использование режима eDRX, то значение периода eDRX включается в ответные сообщения ATTACH ACCEPT/TAU ACCEPT. Сеть не обязана подтверждать запрошенное устройством значение периода eDRX, а вот устройство обязано применить значение, переданное сетью.
Как и в случае с PSM, при использовании режима eDRX GSMA рекомендует операторам сохранять и передавать устройству как минимум последний пакет данных длительностью 100 бит. Впрочем, как следует из опроса, проведенного ассоциацией GSM, операторы намерены сохранять намного больше нисходящих данных (от приложения к устройству).
Режим eDRX может применяться одновременно с режимом PSM.
Режимы PSM и eDRX входят в число минимальных требований к сетям NB-IoT, рекомендованных GSMA.
Команды управления устройством NB-IoT (AT-команды)
Стандартные AT-команды описываются в спецификации 3GPP TS 27.007. Всего команд очень много, здесь рассмотрим только те, с помощью которых можно управлять режимами энергосбережения устройства NB-IoT. Кроме того, разные производители могут немного по-своему интерпретировать стандартные или изобретать новые команды. Поэтому для большей определенности посмотрим команды NB-IoT-модуля N21.
Команда управления режимом PSM
Для задания параметров режима PSM используется команда AT+CPSMS:
Параметры команды AT+CPSMS:
Таким образом, для настройки параметров PSM в режиме NB-IoT используются три параметра: mode, Requested_Periodic-TAU и Requested_Active-Time.
Запрашиваемая длительность нахождения устройства в режиме PSM — это разница между значениями Requested_Periodic-TAU и Requested_Active-Time.
Кодирование значения Requested_Active-Time (T3324)
Requested_Active-Time кодируется в виде последовательности, состоящей из 8 бит, где старшие биты 8, 7, 6 представляют собой множитель, биты 5, 4, 3, 2, 1 – значение.
Бит 8 | Бит 7 | Бит 6 | Множитель |
0 | 0 | 0 | 2 секунды |
0 | 0 | 1 | 1 минута |
0 | 1 | 0 | 6 минут (1/10 часа) |
1 | 1 | 1 | Таймер деактивирован |
Другие значения должны быть интерпретированы как 1 минута (в текущей версии протокола) |
Пример кодирования значения Requested_Active-Time (T3324):
00000101 — Requested_Active-Time
000 – множитель, 2 секунды,
00101 – значение, 5,
5 х 2 секунды = 10 секунд — запрашиваемое значение Requested_Active-Time.
Максимальное значение Requested_Active-Time (T3324) составляет 3 часа и 6 минут (186 минут).
Кодирование значения Requested_Periodic-TAU (T3412)
Requested_Periodic-TAU кодируется в виде последовательности, состоящей из 8 бит, где старшие биты 8, 7, 6 представляют собой множитель, младшие биты 5, 4, 3, 2, 1 – значение.
Бит 8 | Бит 7 | Бит 6 | Множитель |
0 | 0 | 0 | 10 минут |
0 | 0 | 1 | 1 час |
0 | 1 | 0 | 10 часов |
0 | 1 | 1 | 2 секунды |
1 | 0 | 0 | 30 секунд |
1 | 0 | 1 | 1 минута |
1 | 1 | 0 | 320 часов. Примечание: данное значение применимо только к таймерам T3312 extended и T3412 extended (см. TS 24.301). Если оно принято в сообщении с включенной проверкой целостности, значение должно быть интерпретировано как 320 часов. В противном случае оно должно быть интерпретировано как 1 час. |
1 | 1 | 1 | Таймер деактивирован |
Пример кодирования значения Requested_Periodic-TAU (T3412):
00100001 — Requested_Periodic-TAU
001 – множитель, 1 час,
00010 – значение, 2,
2 х 1 час = 2 часа — запрашиваемое значение Requested_Periodic-TAU
Максимальное значение таймера Requested_Periodic-TAU T3412 составляет 9920 часов или 413 дней и 8 часов.
Примеры команды AT+CPSMS
Команда управления режимом eDRX
Для задания параметров режима eDRX используется команда AT+CEDRXS:
Параметры команды AT+CEDRXS:
2. AcT-type — технология радиодоступа:
3. Requested_eDRX_value — длительность периода eDRX. Значение кодируется в виде двоичной последовательности, состоящей из 4-х бит. Согласно спецификации 3GPP TS 23.682, период eDRX в режиме NB-IoT находится в диапазоне от 20,48 до 10485,76 секунд. Значения Requested_eDRX_value в режиме NB-IoT приведены в таблице 3.
NB-IoT, Narrow Band Internet of Things. Общая информация, особенности технологии
Здесь описывается NB-IoT с точки зрения оконечных устройств и простых пользователей. Так как информации много, то разобью её на несколько частей. В этой части обсудим общую информацию, особенности технологии NB-IoT и состояние на начало 2019 г.
NB-IoT (Narrow Band Internet of Things) – технология сотовой связи на основе LTE, предназначенная для стационарных устройств с низкими объемами передаваемых данных и малым потреблением. Ассоциация GSM обещает, что устройства NB-IoT будут дешевыми и (при определенных условиях) смогут работать от обычных батареек до 10 лет. Интересно, что ассоциация также описывает NB-IoT как технологию, созданную в сжатые сроки в ответ на запросы пользователей и конкуренцию со стороны аналогичных проприетарных решений:
https://www.gsma.com/iot/wp-content/uploads/2018/04/NB-IoT_Deployment_Guide_v2_5Apr2018.pdf
NB-IoT относится с так называемому CIoT, Cellular IoT (по терминологии 3GPP) или MIoT, Mobile IoT (по терминологии GSMA) и продвигается операторами сотовой связи и производителями соответствующего оборудования. Узкополосным (Narrow Band) этот вид связи назвали по сравнению с «традиционным» LTE, где используются существенно более широкие полосы частот (3, 5, 10, 15, 20 МГц). Ширина частотного канала NB-IoT составляет 200 кГц.
Несколько слов про CIoT (MIoT)
На данный момент CIoT (MIoT) разветвляется на 2 направления: NB-IoT и LTE-M (также называемый eMTC или LTE Cat.M).
NB-IoT ориентирован скорее на неподвижные (стационарные) устройства, так как в этом режиме не поддерживается автоматическое переключение между сотами (handover). При перемещении в другую соту устройству NB-IoT придется снова регистрироваться в сети. Таким образом, NB-IoT предназначается в первую очередь для таких приложений, как автоматический сбор показаний со счетчиков, датчиков, дистанционное управление уличным освещением и т.п. В отличие от NB-IoT, другая «ветка» CIoT – LTE-M – поддерживает как переключение между сотами, так и обеспечивает в несколько раз большие скорости приема/передачи.
Преимущества и недостатки NB-IoT
Как обычно, преимущества и недостатки напрямую связаны друг с другом: если где-то прибыло, то где-то убыло. Здесь просто перечислю их с небольшими комментариями, а детали обсудим позже.
Преимущества NB-IoT
Недостатки NB-IoT
Развитие NB-IoT в мире и РФ
Интересно, что некоторые страны/регионы отдают предпочтение первоочередному развитию NB-IoT (Европа, Китай, Россия), другие – LTE-M (США, Канада). Но в целом есть мнение, что в недалёком будущем оба стандарта будут развернуты глобально.
Вот карта и коммерческие запуски сетей CIoT по данным GSMA:
Россия на карте GSMA почему-то пока остаётся в серой зоне. Или ждут подтверждений коммерческих запусков?
Когда писалась эта статья, пришла информация, что МТС уже запустил свою сеть NB-IoT в коммерческую эксплуатацию!
Скорости передачи данных в NB-IoT
Если в спецификациях 3GPP Release 13 был определен только один вариант NB-IoT – Category NB1, то в спецификациях 3GPP Release 14 появилось 2 варианта: Category NB1 и NB2. Вариант Category NB2 является более скоростным. Для сравнения возможностей NB1 и NB2 в таблице 1 приведены максимальные размеры транспортных блоков на прием и передачу согласно спецификации 3GPP 36.306 Release 14:
Категория оборудования | Максимальный размер транспортного блока на прием (DL), бит | Максимальный размер транспортного блока на передачу (UL), бит |
Category NB1 | 680 | 1000 |
Category NB2 | 2536 | 2536 |
Qualcomm в спецификации чипа MDM9206 (используется в модуле N20) приводит следующие скорости передачи в режиме Cat. NB1: прием (DL) – 20 кбит/с, передача (UL) – 60 кбит/с:
https://www.qualcomm.com/products/mdm9206-iot-modem
Аналогичные результаты для NB1 приводят коллеги из МТС, упоминая, что для категории NB2 максимальная скорость приема/передачи составит более 100 кбит/с:
https://habr.com/company/ru_mts/blog/430496/
Но, насколько понимаю, речь идет о физической скорости в канале связи, соответственно, реальная скорость передачи данных будет намного меньше. К сожалению, на данный момент экспериментальными данными о максимальной скорости передачи в режиме NB-IoT я не располагаю.
Частотные диапазоны для NB-IoT в РФ
Согласно решению ГКРЧ от 28 декабря 2017 года (протокол №17-44), https://digital.gov.ru/ru/documents/5875/, для NB-IoT могут использоваться следующие полосы частот на территории РФ:
453–457,4 МГц,
463–467,4 МГц,
791–820 МГц,
832–862 МГц,
880–890 МГц,
890–915 МГц,
925–935 МГц,
935–960 МГц,
1710–1785 МГц,
1805–1880 МГц,
1920–1980 МГц,
2110–2170 МГц,
2500–2570 МГц,
2620–2690 МГц.
За небольшим исключением:
… исключение работы РЭС в режиме NB-IoT в полосах радиочастот 453–453,15 МГц и 463–463,15 МГц на территории г. Москвы и Московской области
Похоже, ГКРЧ просто разрешила разворачивать NB-IoT во всех частотных диапазонах, в которых когда-либо было разрешено разворачивание каких-либо сетей сотовой связи…
Но какие из них будут использоваться в первую очередь?
По данным, полученным из разных источников, на начало 2019 г. для NB-IoT (в тестовом режиме) в России используются следующие частотные диапазоны:
Эти данные полностью совпадают с европейскими частотными диапазонами, которые приводятся в NB-IoT Deployment Guide to Basic Feature set Requirements. Version 2.0 от 5 апреля 2018 г.
Таким образом, на начало 2019 г. актуальными диапазонами NB-IoT для РФ можно считать: B20, B8 и B3.
По мнению некоторых участников рынка, NB-IoT будет разворачиваться прежде всего в субгигагерцовых частотных диапазонах (B20, B8), чтобы обеспечить наилучшее покрытие.
Можно ли будет в NB-IoT отправлять/принимать TCP/UDP-пакеты так же, как в GSM, например?
Можно! По крайней мере мы пробовали отправлять и принимать TCP/UDP-пакеты при помощи модулей N21 и N20, и всё получилось.
Можно ли будет в NB-IoT отправлять и принимать SMS?
Согласно упоминавшемуся чуть выше документу ассоциации GSM, на апрель 2018 г. функция SMS не была включена в минимальный набор требований, рекомендованных GSMA для реализации в сетях NB-IoT. По результатам опроса, проведенного GSMA, только некоторые из операторов планируют реализовать SMS в режиме NB-IoT в будущем. Тем не менее, исследование этого вопроса продолжается.
Представители Мегафона и МТС подтвердили, что, вероятно, функция SMS в режиме NB-IoT станет доступна в их сетях в будущем.