Enb что это в сотовой связи
eNodeB (eNB)
eNodeB (eNB) – базовая станция сети стандарта LTE. Она является аналогом NodeB для сети UMTS и BTS для сети GSM. Основной задачей eNodeB является преобразование сигнала пришедшего от SGW в высокочастотный сигнал и передать его через секторные антенны (антенну). Именно eNodeB отвечает за покрытие сети LTE и является шлюзом между абонентским терминалом и сетью LTE.
eNodeB в составе сети LTE
В сети LTE нет аналога контроллеру базовых станций: RNC или BSC. Все функции контроллера возложены на eNodeB. Благодаря отсутствию контроллера базовых станций емкость и покрытие сети доступа становятся легко масштабируемы. Теперь нет промежуточного элемента, на емкость которого необходимо ориентироваться, планируя расширение сети.
В Rel.9 3GPP кроме обычных eNodeB предусмотрены еще Home eNodeB (HeNB). Главное отличие HeNB от eNodeB заключается в простоте конструкции, легкости монтажа и возможности автоконфигурации. HeNB представляет собой небольшое прямоугольное устройство, размером с почтовый ящик, в котором уже имеется панельная антенна, интерфейсный блок и основной функциональный блок обработки и преобразования сигнала. Он легко монтируется на стену или потолок, а подключение его к SGW возможно c помощью Ethernet-кабеля через сеть Интернет. Кроме того, обычно HeNB обладает возможностью автоконфигурации и не требует выезда на место специалиста для проведения долгой процедуры настройки и ввода в эксплуатацию, т.к. процедуру установки необходимых параметров можно провести удаленно после подключения устройства к сети Интернет. Основное назначение HeNB – это установко внутри жилых помещений, офисов, небольших производственных помещений.
При использовании материалов ссылка на сайт обязательна
Портал о современных технологиях мобильной и беспроводной связи
Принципы построения и функционирования сетей LTE
Принципы построения и функционирования сетей LTE
LTE включает в себя сеть радиодоступа (Evolved Universal Terrestrial Radio Access Network, E-UTRAN) и усовершенствованное пакетное ядро (Evolved Packet Core, EPC).
Упрощенная архитектура сети LTE
Сеть LTE построена как совокупность новых базовых станций eNB (Evolved NodeB или eNodeB), где соседние eNB соединены между собой интерфейсом Х2. eNB подключены к EPC посредством интерфейса S1. На рис.1 показано взаимодействие новых элементов в архитектуре сети: S-GW (Serving Gateway) – обслуживающих шлюзов, содержащих ПО управления по протоколу MM (MME – Mobility Management Entity).
Рис. 1. Упрощенная архитектура сети LTE
В сети радиодоступа радиоинтерфейс между UE и eNB осуществлен на основе технологии ортогонального частотного разнесения (Orthogonal Frequency Division Multiplexing, OFDMA). Работа EPC основана на технологии IP. Такую структуру относят к All-IP Network (AIPN).
Структура сети LTE
Структура сети LTE приведена на рис. 2. Ядро сети EPC (Evolved Packet Core) состоит из обслуживающего шлюза S-GW (Serving Gateway), шлюза для выхода на пакетные сети P-GW (Packet Data Network Gateway), структуры управления по протоколу Mobility Management MME (Mobility Management Entity), связанной с S-GW и eNodeB сигнальными интерфейсами.
Рис. 2. Структура сети LTE
Функции eNodeB ( Evolved NodeB )
eNodeB объединяет в себе функции базовых станций и контроллеров сетей 3-го поколения:
— обеспечивает передачу трафика и сигнализации по радиоканалу,
— управляет распределением радиоресурсов,
— обеспечивает сквозной канал трафика к S-GW,
— поддерживает синхронизацию передач и контролирует уровень помех в соте,
— обеспечивает шифрацию и целостность передачи по радиоканалу,
— выбирает MME и организует сигнальный обмен с ним,
— производит сжатие заголовков IP-пакетов,
— поддерживает услуги мультимедийного вещания,
— при использовании структуры с усилителями мощности на антенной мачте организует управление антеннами по специальному интерфейсу Iuant.
Интерфейс S1, как показано на рис.2, поддерживает передачу данных с S-GW и сигнализации через ММЕ. Отметим, что eNB может иметь соединения с несколькими S-GW.
Интерфейсы X2 используют для организации хэндоверов между соседними базовыми станциями, в том числе и при балансировке нагрузки между ними. При этом интерфейсы Х2 могут быть логическими, т.е. для их организации не обязательно реальное физическое соединение между eNB.
Функции обслуживающего шлюза S—GW:
— маршрутизация передаваемых пакетов данных,
— установка качественных показателей ( Quality of Service, QoS) предоставляемых услуг,
— буферизация пакетов для UE, пребывающих в состоянии Idle Mode,
— предоставление учетных данных для тарификации и оплаты выполненных услуг.
S-GW является якорной структурой, обеспечивающей мобильность абонентов. Каждую работающую UE обслуживает определенный S-GW. Теоретически UE может быть связана с несколькими пакетными сетями; тогда ее будут обслуживать несколько серверов S-GW.
Функции P-GW ( Packet Data Network Gateway )
Шлюз для выхода на пакетные сети P—GW организует точку доступа к внешним IP-сетям. Соответственно P-GW является якорным шлюзом для обеспечения трафика. Если абонент имеет статический IP-адрес, то P-GW его активизирует. В случае, если абонент должен получить на время сеанса связи динамический IP-адрес, P-GW запрашивает его с сервера DHCP (Dynamic Host Configuration Protocol) или сам выполняет необходимые функции DHCP, после чего обеспечивает доставку IP-адреса абоненту. В состав P-GW входит PCEF (Policy and Charging Enforcement Function), который входит обеспечивает качественные характеристики услуг на внешнем соединении через интерфейс Sgi и фильтрацию пакетов данных. При обслуживании абонента в домашней сети функции P-GW и S-GW могут выполнять как два разных, так и одно устройство. Интерфейс S5 представляет собой туннельное соединение GPRS или Proxy Mobile Ipv6. Если P-GW и S-GW находятся в разных сетях (например, при обслуживании абонента в роуминге), то интерфейс S5 заменяют интерфейсом S8.
Функции MME ( Mobility Management Entity )
Управляющий блок ММЕ прежде всего поддерживает выполнение процедур протокола Mobility Management: обеспечение безопасности работы в сети при подключении UE и выбор S-GW, P-GW. ММЕ связан с HSS своей сети посредством интерфейса S6a. Интерфейс S10, соединяющий различные ММЕ, позволяет обслуживать UE при перемещениях абонента, а также при его нахождении в роуминге.
Функции PCRF
Policy and Charging Resource Function (PCRF) по сути представляет собой управляющий сервер, обеспечивающий централизованное управление ресурсами сети, учет и тарификацию предоставляемых услуг. Как только появляется запрос на новое активное соединение, эта информация поступает на PCRF. Он оценивает имеющиеся в его распоряжении ресурсы сети и направляет в PCEF шлюза P-GW команды, устанавливающие требования к качеству услуг и к их тарификации.
Читайте также:
Видео о 5G простым языком. Лекции по мобильной связи пятого поколения (5G)
Интервью первого генерального директора Северо-Западного GSM (Мегафон)
Портал о современных технологиях мобильной и беспроводной связи
LTE включает в себя сеть радиодоступа (Evolved Universal Terrestrial Radio Access Network, E-UTRAN) и усовершенствованное пакетное ядро (Evolved Packet Core, EPC).
Упрощенная архитектура сети LTE
Сеть LTE построена как совокупность новых базовых станций eNB (Evolved NodeB или eNodeB), где соседние eNB соединены между собой интерфейсом Х2. eNB подключены к EPC посредством интерфейса S1. На рис.1 показано взаимодействие новых элементов в архитектуре сети: S-GW (Serving Gateway) – обслуживающих шлюзов, содержащих ПО управления по протоколу MM (MME – Mobility Management Entity).
Рис. 1. Упрощенная архитектура сети LTE
В сети радиодоступа радиоинтерфейс между UE и eNB осуществлен на основе технологии ортогонального частотного разнесения (Orthogonal Frequency Division Multiplexing, OFDMA). Работа EPC основана на технологии IP. Такую структуру относят к All-IP Network (AIPN).
Структура сети LTE
Структура сети LTE приведена на рис. 2. Ядро сети EPC (Evolved Packet Core) состоит из обслуживающего шлюза S-GW (Serving Gateway), шлюза для выхода на пакетные сети P-GW (Packet Data Network Gateway), структуры управления по протоколу Mobility Management MME (Mobility Management Entity), связанной с S-GW и eNodeB сигнальными интерфейсами.
Рис. 2. Структура сети LTE
Функции eNodeB ( Evolved NodeB )
eNodeB объединяет в себе функции базовых станций и контроллеров сетей 3-го поколения:
— обеспечивает передачу трафика и сигнализации по радиоканалу,
— управляет распределением радиоресурсов,
— обеспечивает сквозной канал трафика к S-GW,
— поддерживает синхронизацию передач и контролирует уровень помех в соте,
— обеспечивает шифрацию и целостность передачи по радиоканалу,
— выбирает MME и организует сигнальный обмен с ним,
— производит сжатие заголовков IP-пакетов,
— поддерживает услуги мультимедийного вещания,
— при использовании структуры с усилителями мощности на антенной мачте организует управление антеннами по специальному интерфейсу Iuant.
Интерфейс S1, как показано на рис.2, поддерживает передачу данных с S-GW и сигнализации через ММЕ. Отметим, что eNB может иметь соединения с несколькими S-GW.
Интерфейсы X2 используют для организации хэндоверов между соседними базовыми станциями, в том числе и при балансировке нагрузки между ними. При этом интерфейсы Х2 могут быть логическими, т.е. для их организации не обязательно реальное физическое соединение между eNB.
Функции обслуживающего шлюза S—GW:
— маршрутизация передаваемых пакетов данных,
— установка качественных показателей ( Quality of Service, QoS) предоставляемых услуг,
— буферизация пакетов для UE, пребывающих в состоянии Idle Mode,
— предоставление учетных данных для тарификации и оплаты выполненных услуг.
S-GW является якорной структурой, обеспечивающей мобильность абонентов. Каждую работающую UE обслуживает определенный S-GW. Теоретически UE может быть связана с несколькими пакетными сетями; тогда ее будут обслуживать несколько серверов S-GW.
Функции P-GW ( Packet Data Network Gateway )
Шлюз для выхода на пакетные сети P—GW организует точку доступа к внешним IP-сетям. Соответственно P-GW является якорным шлюзом для обеспечения трафика. Если абонент имеет статический IP-адрес, то P-GW его активизирует. В случае, если абонент должен получить на время сеанса связи динамический IP-адрес, P-GW запрашивает его с сервера DHCP (Dynamic Host Configuration Protocol) или сам выполняет необходимые функции DHCP, после чего обеспечивает доставку IP-адреса абоненту. В состав P-GW входит PCEF (Policy and Charging Enforcement Function), который входит обеспечивает качественные характеристики услуг на внешнем соединении через интерфейс Sgi и фильтрацию пакетов данных. При обслуживании абонента в домашней сети функции P-GW и S-GW могут выполнять как два разных, так и одно устройство. Интерфейс S5 представляет собой туннельное соединение GPRS или Proxy Mobile Ipv6. Если P-GW и S-GW находятся в разных сетях (например, при обслуживании абонента в роуминге), то интерфейс S5 заменяют интерфейсом S8.
Функции MME ( Mobility Management Entity )
Управляющий блок ММЕ прежде всего поддерживает выполнение процедур протокола Mobility Management: обеспечение безопасности работы в сети при подключении UE и выбор S-GW, P-GW. ММЕ связан с HSS своей сети посредством интерфейса S6a. Интерфейс S10, соединяющий различные ММЕ, позволяет обслуживать UE при перемещениях абонента, а также при его нахождении в роуминге.
Функции PCRF
Policy and Charging Resource Function (PCRF) по сути представляет собой управляющий сервер, обеспечивающий централизованное управление ресурсами сети, учет и тарификацию предоставляемых услуг. Как только появляется запрос на новое активное соединение, эта информация поступает на PCRF. Он оценивает имеющиеся в его распоряжении ресурсы сети и направляет в PCEF шлюза P-GW команды, устанавливающие требования к качеству услуг и к их тарификации.
Читайте также:
Видео о 5G простым языком. Лекции по мобильной связи пятого поколения (5G)
Интервью первого генерального директора Северо-Западного GSM (Мегафон)
Как это работает: координаты базовых станций. Часть 2
В первой части мы уже рассмотрели, откуда сервис местонахождения базовых станций берет данные и что именно показывает вам. Во второй части мы рассмотрим практическое использование сервиса, посмотрим, какие параметры он использует и где их брать.
Базовая станция сотовой сети
Параметры базовой станции
Зайдя на страницу сервиса, вы видите форму, предлагающую указать параметры базовой станции: MCC, MNC, LAC/TAC, CID/SAC/ECI. Все эти параметры обязательны для того, чтобы найти, где расположена базовая станция.
Форма ввода параметров базовой станции
MCC — это код страны, Mobile Country Code. Номер, состоящий из трех цифр, уникальный для каждой из стран мира.
Вы можете ввести этот код самостоятельно (ручной ввод) или воспользоваться встроенным справочником, в котором есть коды абсолютно всех стран.
MNC — код сотовой сети, Mobile Network Code. Номер, состоящий из двух цифр, присваивается каждой сотовой сети. Является уникальным кодом сотового оператора внутри страны. То есть в разных странах коды сотовых сетей могут повторяться.
Встроенный справочник содержит коды всех сотовых сетей России. Коды операторов «большой тройки» также применимы к Белоруссии и Украине.
Если объединить MCC и MNC, то получится номер мобильной сети PLMN — Public Land Mobile Network. Например, для сети Билайн (MNC — 99) в России (MCC — 250) номер PLMN — 25099.
CID / SAC / ECI — идентификатор соты (Cell ID) в GSM, код зоны обслуживания (Service Area Code) в UMTS и идентификатор соты E-UTRAN (E-UTRAN Cell Identifier) в LTE-сетях. Для GSM и UMTS представляет собой число размером 16 бит (от 0 до 65535), для LTE — число размером в 28 бит, т.е. от 0 до 268435455. Этот номер однозначно указывает на базовую станцию, он уникален внутри каждой зоны обслуживания (LAC или TAC) каждого оператора в стране.
Строго говоря, ECI уникален в пределах сети оператора даже без учета зоны обслуживания, так что некоторые геолокационные сервисы найдут базовую станцию сети LTE, даже если вы введете неверный TAC, например, 0.
Собирая все эти параметры вместе, мы получаем комбинацию чисел, однозначно определяющую базовую станцию по всему миру:
MCC—MNC—LAC—CID.
Например, базовая станция оператора МТС (код оператора — 01) с идентификатором соты 1384, расположенная в регионе с кодом местности 114 республики Беларусь (код страны — 257) будет кодироваться такой последовательностью чисел: 257-01-114-1384.
Мониторинг сотовых сетей
Теперь немного о том, где мы можем достать все эти параметры, чтобы посмотреть, где находится базовая станция (вернее, как мы знаем из предыдущей части статьи, где может находиться абонент, зарегистрированный на базовой станции).
Если вы являетесь счастливым обладателем смартфона на базе ОС Android, то лучшими приложениями, которые покажут всю необходимую информацию являются бесплатные G-MoN и G-MoN Pro. Можно также использовать комбинацию *#*#4636#*#* для запуска инженерного меню, в котором также будет вся необходимая информация.
G-MoN (слева) и G-MoN Pro (справа)
Лично мне больше нравится именно версия Pro, т.к. позволяет видеть информацию сразу о двух сетях сотовой связи в двухсимочном смартфоне.
Для владельцев iPhone-ов таких приложений, насколько мне известно, нет. Но вы можете посмотреть нужные параметры в инженерном меню, попасть в которое можно, набрав комбинацию *3001#12345#*
Так вот, если посмотреть на экран любого из приложений (или на экран инженерного меню), то для начала мы увидим параметры сети оператора связи — NET в G-MoN или PLMN в G-MoN Pro. Как вы уже знаете, PLMN представляет собой два параметра — 3 цифры MCC и и 2 цифры MNC, записанные вместе.
Например, на скриншоте G-MoN выше мы видим сеть 26203, т.е. MCC здесь будет — 262, а MNC — 03. Вводим эти данные на сайте и видим, что разработчик приложения, скорее всего, живет в Германии, а воспользовавшись этим списком, понимаем, что он использует оператора связи E-Plus.
Дальше нам нужны параметры LAC (825 на скриншоте) и CID (23395 на скриншоте). Вводим все это на сайте и получаем примерное местонахождение разработчика, когда он сделал этот скриншот.
Местонахождение базовой станции 262-03-825-23395
Чтобы определить место еще точнее, можно последовательно ввести данные всех соседних вышек, которые показаны в разделе Neighbour cells detected программы G-MoN: 40055, 7655, 34105, 39075. Но не забывайте обращать внимание на параметр RXL в крайнем правом столбце, чем он меньше (больше в абсолютном значении), тем хуже уровень приема базовой станции, а значит, тем дальше она находится от абонента.
Соседние базовые станции
На скриншоте выше мы отобразили все базовые станции (вернее, усредненные местоположения абонентов в секторе), которые видит телефон разработчика программы G-MoN. Как видим, базовая станция, на которой абонент зарегистрирован в данный момент (в момент снятия скрина), находится посередине между соседними базовыми станциями, причем, чем хуже сигнал (меньше RXL), тем дальше базовая станция находится от абонента.
Вместо заключения
Я думаю, не надо объяснять, что таким образом вы можете узнать параметры только своего телефона, так что следить за другими людьми у вас не выйдет. Если, конечно, у вас нет доступа к сети SS7 (подробнее об этом можно узнать в исследовании Positive Technologies), но это уже совсем другая история.
А пока пользуйтесь сервисом и не забывайте, что сайт живет на ваши донаты.
Сеть радиодоступа 5G, часть 1
Базовые станции gNB, о которых пойдет речь в настоящем разделе, формируют сеть радиодоступа мобильной связи 5-го поколения (NR Radio Access). Если вернуться на 20 лет назад, в эпоху бурного строительства сетей 2-го поколения (2G-GSM), то мы увидим, что конструктивно каждая БС представляла собой большой железный шкаф, высотой 1,5-2 метра, установленный в кондиционированном помещении «на земле» (выгородке технического этажа, либо металлическом контейнере). От базовой станции к антеннам, размещенным башнях, столбах и т.д. прокладывались радиочастотные фидеры (сечением 7/8 дюйма или больше – в зависимости от протяженности трассы).
Около 10 лет назад производители начали выпуск так называемых распределенных базовых станций, на основе которых в настоящее время построены сети мобильной связи 2G-GSM, 3G-UMTS и 4G-LTE большинства операторов связи. Такая базовая станция включает в себя базовый блок (или BBU – Baseband Unit), по-прежнему размещаемый «на земле», и несколько радиомодулей (или RRU), размещаемых вблизи антенн сотовой связи. BBU и RRU связаны между собой оптическим кабелем, поверх которого реализуется интерфейс CPRI (Common Public Radio Interface). Радиомодуль осуществляет аналого-цифровое / цифро-аналоговое преобразование, усиление и фильтрацию сигнала, формирование радиочастотного тракта. Весь стек протоколов взаимодействия базовой станции с пользовательским терминалом и базовой станции с ядром сети, а также алгоритмы обработки сигналов реализуются базовым блоком (BBU). BBU по сути представляет собой небольшой сервер, высотой 2-3 юнита, который может быть установлен либо в телекоммуникационной стойке (если существует какое-либо выделенное помещение), либо в климатическом шкафу на крыше здания, либо непосредственно на столбе/радиомачте для BBU внешнего (outdoor) исполнения.
Следующим шагом развития архитектуры построения базовых станций стала концепция облачных BBU или «Cloud BBU», которая заключалась в отказе от локальных BBU, размещаемых непосредственно на объектах БС, и перенос их функциональности на виртуализированные ресурсы мощных серверов, размещаемых в центрах обработки данных (ЦОД). Данная концепция за счет централизации ресурсов и эффекта «масштаба» позволяет повысить надежность и емкость базовых станций, одновременно снизив затраты на их эксплуатацию. Однако она не нашла существенного применения из-за высоких требований к характеристикам CPRI каналов:
Архитектура базовых станций gNB сети мобильной связи 5-го поколения, предлагаемая 3GPP, представляет собой дальнейшее развитие идеологии распределенных базовых станций и «Cloud BBU». gNB включает в себя центральный модуль gNB-CU (gNB Central Unit) и один или несколько распределенных модулей gNB-DUs (gNB Distributed Unit). 3GPP (рекомендация TR 38.801 V14.0.0) определяет 8 возможных опций разделения функций между CU и DU – см. Рис. 1. При этом опция 8 соответствует классической (существующей) схеме построения распределенной базовой станции.
Основные функции, реализуемые на тех или иных уровнях, описаны ниже.
Рекомендация 3GPP TS 38.401 V15.0.0 определяет архитектуру построения базовой станции, основанную на 2-ой опции разделения функций. В этом случае RRC и PDCP реализуются в центральном модуле (gNB-CU), а RLC, MAC и физический уровень – в распределенном (gNB-DU). Взаимодействие между gNB-CU и gNB-DU осуществляться по интерфейсу F1.
Предположу, что производители будут проектировать базовые станции, вводя дополнительные плоскости разделения, выделяя радиоблок из распределенного модуля посредством интерфейса F2 (в соответствии с опцией 7), а также разнося PDCP уровня пользовательского трафика и уровня управления – см. Рис. 2.
Ожидается, что интерфейсы F1 и F2 будут стандартизованы 3GPP, что позволит использовать gNB-CU и gNB-DU от разных вендоров.
Интерфейсы базовых станций gNB
3GPP определяет следующие интерфейсы gNB:
Стек протоколов сети радиодоступа
Структуры стека протоколов сети радиодоступа плоскости пользовательского трафика (User Plane) и плоскости управления (Control Plane) показаны на Рис. 3 и Рис. 4 соответственно.
Рис. 4 (control plane)
Кратко перечислим основные функции, реализуемые на различных уровнях:
1. RRC (Radio Resource Control) – протокол управления радиоресурсами.
Основные функции, реализуемые на уровне RRC:
Ключевые изменения по сравнению с уровнем RRC интерфейса S1 сетей LTE связаны с введением нового RRC состояния (RRC INACTIVE), призванного минимизировать сигнальный обмен для отдельных классов постоянно подключенных к сети устройств, а также с реализацией механизма передачи части системной информации (SIB3..n) не в широковещательных, а в выделенных каналах конкретным устройствам.
2. SDAP (Service Data Adaptation Protocol) – является новым уровнем, впервые введенном в 15-ом релизе 3GPP. Реализуется в рамках интерфейса NG-U сетей, построенных на базе ядра NGCN при взаимодействии с базовыми станциями не только сетей радиодоступа NR (gNb), но и E-UTRAN (ng-eNb).
Обеспечивает реализацию фреймворка архитектуры управления качеством (QoS), включая:
При этом на стороне пользовательского терминала (UE) в UL канале возможны две схемы маппинга – явная, при которой пакеты маршрутизируются в тот или иной виртуальный канал (DRB) на основании QFI, либо зеркальная, при которой UE осуществляет маппинг UL пакетов по результатам анализа параметров соответствующих пакетов DK канала.
3. PDCP (Packet Data Convergence Protocol)
Основные функции, реализуемые на уровне PDCP:
Ключевые изменения по сравнению с уровнем PDCP интерфейса S1 сетей LTE заключаются в следующем:
4. RLC (Radio Link Control)
RLC может функционировать в одном из трех режимов:
Основные функции, реализуемые на уровне RLC:
При этом функцию сегментации / де-сегментации условно относят к подуровню Low-RLC, остальные – к High-RLC.
5. MAC (Medium Access Control)
Основные функции, реализуемые на уровне MAC:
При этом функцию, реализующую метод HARQ, условно относят к подуровню Low-MAC, остальные – к High-MAC.
6. Физический уровень
На физическом уровне выполняются функции, перечисленные в таблице ниже. При этом часть функций (в зависимости от опции разделения) условно относят к подуровню Low-PHY, остальные – к High-PHY.
Сценарии миграции от LTE к 5G
С целью реализации данной стратегии 3GPP предложил несколько возможных сценариев (или опций) внедрения 4G (LTE) и 5G (NR). Все опции разделены на две группы:
Для развертывания 5G по сценарию Non-Standalone необходима модернизация базовых станций сети 4G-LTE до уровня eLTE (или enhanced LTE) с целью поддержки расширенного функционала взаимодействия с базовыми станциями 5G (gNb). Стандартизация данного сценария (в рамках релиза 15 3GPP) была завершена в январе 2018г.
Важным аспектом для реализации Non-Standalone опций является концепция двойного подключения (Dual Connectivity), специфицированная 3GPP в релизе 12, и подразумевающая подключение пользовательских терминалов (UE) в состоянии RRC_CONNECTED одновременно к двум базовым станциям (Master eNb и Secondary eNb). Ключевое отличие Dual Connectivity от агрегации частот заключается именно в подключении к двум различным базовым станциям, связанным посредством X2 интерфейса, и находящимся в общем случае на различных сайтах.
При этом возможны две схемы реализации:
Реализация Non-Standalone накладывает дополнительные требования к сложности пользовательских терминалов (UE), включая обеспечение одновременной работы двух модемов, увеличенный размер буфера приема и дополнительная нагрузка на процессорные ресурсы уровня PDCP для восстановления порядка следования пакетов (в случае режима MCG split bearer). Также нужно отметить, что для опций 3, 4, 7, 8 вносится дополнительная задержка в передачу пакетов пользовательского трафика за счет использования интерфейса Xx.
Кратко рассмотрим все определенные 3GPP опции.
Option 1 – представляет собой реализацию классической выделенной сети LTE на базе ядра EPC и базовых станций eNb (в соответствии с 14-м или более ранними релизами 3GPP). Используется в географических зонах, где 5G сервисы не востребованы.
Option 5 – актуальна при новом строительстве выделенной сети LTE (greenfield) с возможностью последующей модернизации до комбинированной сети 5G/LTE (Option 4/4a). Используется ядро NGCN и модернизированные базовые станции сети радиодоступа E-UTRAN ng-eNb.
Option 2 – представляет собой целевую финальную архитектуру выделенной сети 5G сети на базе ядра сети NGCN и базовых станций gNb. Используется в географических зонах, где сети LTE отсутствуют и их строительство нецелесообразно.
Option 6 – может использоваться при строительстве выделенной сети 5G, но на базе существующего ядра сети LTE (EPC), например, при разворачивании тестовых зон, либо как промежуточный этап на пути к целевой архитектуре 5G в географических зонах, где сети LTE отсутствуют и их строительство нецелесообразно (Option 2).
Option 3/3a – актуальна на ранних этапах строительства 5G (в виде точечного радиопокрытия) в географических зонах, где уже развернуты сети 4G-LTE. Не требует внедрения ядра NGCN (используется ядро сети LTE – EPC). Базируется на технологии двойного подключения. В качестве интерфейса, связывающего сети радиодоступа E-UTRA/NR и EPC, и переносящего пользовательский (User Plane) и сигнальный (Control Plane) трафик используется S1. Якорной точкой для терминации S1-MME являются базовые станции сети радиодоступа E-UTRAN (eNb).
Option 8/8a – может использоваться как промежуточный этап на пути к целевой архитектуре 5G/LTE от Option 3/3a к Option 4/4a. В отличии от Option 3/3a якорной точкой для терминации S1-MME являются базовые станции сети радиодоступа NR (gNb).
Option 4/4a – представляет собой целевую финальную архитектуру комбинированной сети 5G/LTE. Используется технология двойного подключения. Требует внедрение ядра NGCN и модернизации базовых станций сети LTE до ng-eNb. Базируется на технологии двойного подключения. В качестве интерфейса, связывающего сети радиодоступа E-UTRA/NR и NGCN, и переносящего пользовательский (User Plane) и сигнальный (Control Plane) трафик используется NG. Якорной точкой для терминации NG-C являются базовые станции сети радиодоступа NR (gNb).
Option 7/7a – может использоваться как промежуточный этап на пути к целевой архитектуре 5G/LTE Option 4/4a, в отличии от которой якорной точкой для терминации NG-C являются базовые станции сети радиодоступа E-UTRAN (eNb).
Возможные сценарии внедрения сетей 5G показаны на Рис. 5.
Option 1
Option 2
Option 3
Option 3a
Option 4
Option 4a
Option 5
Option 6
Option 7
Option 7a
Option 8
Option 8a