Если 0 разделить на число что получится
На ноль делить нельзя? Или можно?
Почему нельзя делить на ноль? Кто запретил? Школа упрямо запрещает нам делить на 0, но стоит переступить порог университета — индульгенция получена. То, что в школе считалось запретом, теперь возможно.
Можно поделить на ноль и получить бесконечность. Высшая математика… Ну почти. Можно объяснить и попроще. Так почему нельзя делить на ноль, а умножать можно?
История и философия ноля
На самом деле история с делением на ноль не давала покоя его изобретателям (а ноль изобрели в Индии). Но индийцы — философы привыкшие к абстрактным задачам. Что значит разделить на ничто? Для европейцев того времени такого вопроса вообще не существовало, так как ни о нуле ни об отрицательных числах (которые левее нуля на шкале) они знать не знали.
В Индии отнять от меньшего большее и получить отрицательное число не составляло проблем. Ведь что значит 3-5=-2 в обычной жизни? Это значит, что кто-то остался должен кому-то 2. Отрицательные числа назывались долгами.
Теперь давайте так же просто разберемся с вопросом деления на нуль. В далеком 598 году нашей эры (только вдумайтесь как давно, более 1400 лет назад!) в Индии родился математик Брахмагупта, который тоже задавался вопросом деления на ноль.
Он предположил, что если взять лимон и начать делить его на части, рано или поздно мы придем к тому, что дольки будут очень маленькими. В воображении мы можем дойти до того, что дольки станут равны нулю.
Итак, вопрос, если разделить лимон не на 2, 4 или 10 частей, а на стремящееся к бесконечности количество частей — какого размера получаться дольки? Получится бесконечное число «нулевых долек». Все довольно просто, нарежем лимон очень мелко, получим лужицу с бесконечным количеством частей — лимонный сок.
Достаточно задать самому себе вопрос:
Если деление на бесконечность дает ноль, то деление на ноль должно давать бесконечность.
Что будет если поделить на ноль?
Но если взяться за математику, то получается как-то нелогично:
а*0=0? А если b*0=0? Значит: а*0=b*0
То есть любое число равно любому числу. Первая неправильность деления на ноль, идем дальше. В математике, деление считается обратным действием умножения. Это значит, что если мы делим 4 на 2, мы должны найти число, которое при умножении на 2 даст 4.
Делим 4 на ноль — нужно найти число, которое при умножении на ноль даст 4. То есть х*0=4? Но х*0=0! Опять незадача. Получается мы спрашиваем: «Сколько нолей нужно взять, чтобы получилось 4?» Бесконечность? Бесконечное количество нолей все равно даст в сумме ноль.
А деление 0 на 0 вообще дает неопределенность, ведь 0*х=0, где х вообще все что угодно. То есть — бесчисленное множество решений. Так что же получится в итоге?
Простое объяснение из жизни
Вот вам задачка из физики и реальной жизни. Допустим, мы хотим вычислит за сколько времени сможем пройти 10 километров. Значит Скорость * время = расстояние (S=Vt). Чтобы узнать время, расстояние делим на скорость (t=S/V). А что будет, если скорость у нас 0? t=10/0. Будет бесконечность!
Стоим на месте, скорость равна нулю, и с такой скоростью мы будем вечно добираться до отметки в 10 км. Значит время будет… t=∞. Вот и получилась у нас бесконечность!
И в этом примере делить на ноль можно, жизненный опыт позволяет. Жаль, что учителя в школе не могут объяснять такие вещи так же просто.
Еще одно объяснение
Давайте определимся, что такое деление? Например, 8/4 – означает вопрос «сколько четверок, может поместится в восьмерке?» Ответ: «две четверки», то есть математически 8/4=2.
А если задать себе вопрос 5/0=? Сколько нолей поместится внутри пятерки? Да сколько угодно. Бесконечное количество. Делим на ноль и получаем… снова бесконечность.
Но если вместо абстрактных цифр взять материальные вещи, например, яблоко. 6/3 — «если разложить 6 яблок по 3 в ящики, то сколько нужно ящиков?» Ответ: «2 ящика». Идем дальше 4/0 — «если разложить 4 яблока по ноль(!) штук в ящики, то сколько…» Получится, что ящики то не нужны, мы ничего никуда не кладем!
Совсем простое объяснение
Совсем просто, «на пальцах»
10/2=5 10/4=2,5 10/8=1,25 ….Чем больше число в знаменателе, тем меньше результат
10/2=5 10/1=10 10/0,5=20 ….Чем меньше число в знаменателе, тем больше результат, а если взять очень маленькое число? Например, 0,0000001 получится 1 00 000 000. И если пойти дальше в своих размышлениях и уменьшить знаменатель до нуля? В итоге получим что настолько огромное, что будет называться «бесконечность».
Так можно ли делить на ноль?
Все зависит от того, зачем вам это нужно и в рамках каких правил вы решили «разделять». Если это алгебра, то все просто — «на ноль делить нельзя» потому, что нет такого понятия как «бесконечность» (это вообще-то и не число вовсе), и неясно что должно получится в итоге.
Деление на ноль и высшая математика
Можно ли делить на ноль в высшей математике — да пожалуйста. Ведь нуль может быть представлен цифрой ноль (цифра означает число со значением «0», то есть вообще ничего), а может и неким бесконечно малым (то есть стремится к нулю, почти ничего, но все таки — не ничто). Тогда ничего не мешает спокойно делить на «бесконечно малое».
Нелогичность и абстрактность операций с нулем не позволяется в узких рамках алгебры, точнее — это неопределенная операция. Для нее нужен аппарат посерьезнее — высшая математика. Так что, в некотором роде, делить на ноль нельзя, но если очень захочется, то делить на ноль можно… Но нужно быть готовым понимать такие вещи как дельта-функция Дирака и прочие трудно осознаваемые вещи.
Делите на здоровье, если не боитесь бесконечности в результате.
Что произойдет, если поделить на ноль на механическом калькуляторе?
Почему деление на ноль запрещено
Каждый школьник знает, что на ноль делить нельзя. Простое (но далеко не идеальное) объяснение этому правилу заключается в том, что при подобном делении результат стремится к бесконечности.
Чтобы понять это – призовём логику. Если умножение числа на ноль всегда даёт ноль, то получается возможным такое равенство:
Однако если мы захотим найти x или y, нам нужно будет делить на ноль. Тогда получится что x=y, что изначально является абсурдом и наглядно показывает ошибку деления на 0. Ведь, если бы неизвестные числа были равны, то и обозначались бы одной буквой.
При этом нет разницы что делить на 0: целые числа, дробные, отрицательные. В таком случае, вместо x и y могут находится совершенно любые числа, что и приводит к тому самому стремлению результата к бесконечности.
Почему значения деления на 0 могут свести с ума людей и машин
Несмотря на то, что при делении на 0 возникает ошибка, причём логическая, некоторые современные электронно-вычислительные программы могут её выдавать.
Так отечественные бухгалтеры, в начале года, получают при расчете начисления зарплаты ошибку «деление на 0» в программе учёта 1С. И хотя решается она простым заполнением графиков работы сотрудников, деление на 0 иногда ставит в тупик даже опытных счетоводов.
Но если в большинстве случаев современные калькуляторы сразу выдают невозможность проведения подобной операции, то в случае с механическим калькулятором, ошибка деления на 0, является отличной иллюстрацией принципов того, как работают подобные машины в целом.
Почему можно делить на ноль
Начиная со второго или третьего класса школы нас учат, что делить на ноль нельзя.
Это очень строгое правило!
А теперь этой ереси еще и роботов учат. Даже простенький калькулятор при выполнении такого действия выдает ответ: «Деление на ноль невозможно». А в exel, если формула набрана так, что получается деление на 0, то капслоком программа пишет в ячейке: «ДЕЛ/0!«. Ну типа это у вас проблема, а не у меня, и таким образом умывает руки (хотя что именно сейчас умывают себе программы, я, честно говоря, не знаю).
К компьютерным программам вообще и к exel в частности я не имею никаких претензий. И даже на простенький калькулятор, учащий меня жизни, я не обижаюсь. Потому как написаны эти программы человеком (группой людей) и для удобства человека (другой группы людей). Но
То есть формально мы можем любое рациональное число r разделить на 0 и в итоге получим:
r/0 = ∞ (687.1)
Всего и делов-то.
Сейчас не будем останавливаться на тонкостях определения рационального числа r, ноля и бесконечности, просто отметим тот факт, что делить на ноль вполне можно.
Из-за чего же так ругаются компьютерные программы и еще не вымершие учители математики при делении на ноль?
Деление на ноль вносит бесконечно большую неопределенность в решение задачи, точнее предполагает бесконечно большое количество правильных ответов.
1. Когда число r отрицательное и мы его делим на 0 то в итоге:
2. Когда мы делим 0/0, то все еще сложнее
2.1. Если просто сократить одинаковые числитель и знаменателль, то:
0/0 = 1 (687.3.1)
2.2. Если вспомнить правило, что при делении ноля будет ноль, то:
0/0 = 0 (687.3.2)
2.3. А если напирать на бесконечность, то:
0/0 = ∞ (687.3.3)
Но проблема даже не в этом. Ладно бы было только три варианта ответа. Вон в квадратных уравнениях 2 корня, т.е. два варианта ответа и ничего, никого это не напрягает.
2.4. А тут дело в том, что при делении 0/0 теоретически возможен любой вариант ответа и любой из них будет правильным!
Ну и что, скажете вы, вон в тригонометрии тоже возможно бесконечно большое количество вариантов ответа, потому как угол теоретически может иметь любое значение?
Формально все так, только в данном случае мы имеем дело с разными бесконечностями. В тригонометрии количество вариантов решений на один круг (360 градусов) ограничено, т.е. четко детерминировано и является положительным натуральным числом n и как правило n 1 > 1/50 (687.4.3.3)
На приведенных выше примерах мы наглядно увидели, что при столь легкомысленном отношении к умножению на ноль и к делению ноля и возникает проблема деления на ноль.
Ну типа, сначала мы от всех этих бесконечно малых величин вроде 50·0 или 0/50 избавились, чтобы упростить расчет. А когда приходит время делить на 0, то никто уже и не помнит, чего там было в самом начале, в итоге, когда мы любое рациональное число делим на ноль (уравнение (687.1)), то:
r/0 = 0; r/0 = r; r/0 = k; r/0 = ∞ (687.5)
На мой взгляд, решить эту проблему достаточно просто, нужно только более четко определить понятия 0 и ∞.
0 = 0.(0)1 (687.6)
Ну то есть в этой дроби получается бесконечное количество нолей после запятой, а потому значение последней цифры уже вроде как и не имеет принципиального значения, ноль это или единица, для стороннего наблюдателя. А вот для расчетов имеет очень большое значение. Потому что вот эта последняя единичка и не позволяет так вольно обращаться с нулем при расчетах.
С бесконечностью примерно такая же ситуация, ее можно выразить как:
∞ = 1/0.(0)1 (687.7)
И если бы разного рода калькуляторы и расчетные программы вместо менторского утверджения типа: «Деление на ноль невозможно» просто выдавали результат: 1/0.(0)1, то это было бы намного лучше. Ну вот хотя бы с чисто психологической точки зрения.
А то детский сад получается, честное слово! «Нельзя!, Невозможно!» Да вы дайте человеку результат, а уж он пусть делает с этим результатом, что захочет.
Ну и один пример расчета из реальной жизни. Так сказать, прикладная математика.
При расчете стержней ферм часто используется метод вырезания узлов. И если у фермы нет консолей, она опирается концами на опоры, то при рассмотрении приопорных стержней фермы и отсутствии распределенной нагрузки на верхний и нижний пояса фермы возникает следующая ситуация:
Nв.с. = А/sina
а затем определяются растягивающие напряжения в горизонтальном стержне нижнего пояса:
Когда нейтральные оси стержней параллельны, более того совпадают в горизонтальной плоскости, то sina = 0, а cosa = 1. А значит и напряжения в этих стержнях равны бесконечности. С одной стороны это очень странно, ну вот как может вполне определенная сила А, приложенная вертикально, вызвать такой беспредел в горизонтальных стержнях?
А оказывается может. Вот просто потому, что она не может одновременно растягивать один стержень и сжимать другой при нулевом угле наклона между стержнями. Тут не только компьютер, тут и человек надолго зависнет, не говоря уже о простой силе.
Но это уже проблема человека, а не компьютера.
Доступ к полной версии этой статьи и всех остальных статей на данном сайте стоит всего 30 рублей. После успешного завершения перевода откроется страница с благодарностью, адресом электронной почты и продолжением статьи. Если вы хотите задать вопрос по расчету конструкций, пожалуйста, воспользуйтесь этим адресом. Зараннее большое спасибо.)). Если страница не открылась, то скорее всего вы осуществили перевод с другого Яндекс-кошелька, но в любом случае волноваться не надо. Главное, при оформлении перевода точно указать свой e-mail и я обязательно с вами свяжусь. К тому же вы всегда можете добавить свой комментарий. Больше подробностей в статье «Записаться на прием к доктору»
Для терминалов номер Яндекс Кошелька 410012390761783
Номер карты Ymoney 4048 4150 0452 9638 SERGEI GUTOV
Примечание: Возможно ваш вопрос, особенно если он касается расчета конструкций, так и не появится в общем списке или останется без ответа, даже если вы задатите его 20 раз подряд. Почему, достаточно подробно объясняется в статье «Записаться на прием к доктору» (ссылка в шапке сайта).
Деление на ноль: почему нельзя
Строгий запрет на деление на ноль налагается ещё в младших классах школы. Дети обычно и не задумываются о его причинах, но на самом деле знать, почему что-нибудь запрещается, и интересно, и полезно.
Арифметические действия
Арифметические действия, которые изучаются в школе, неравноценны с точки зрения математиков. Они признают полноправными только две из этих операций — сложение и умножение. Они входят в само понятие числа, и все остальные действия с числами так или иначе строятся на этих двух. То есть невозможно не только деление на ноль, но и деление вообще.
Вычитание и деление
Чего же не хватает остальным действиям? Опять же, из школы известно, что, например, вычесть из семи четыре — значит, взять семь конфет, четыре из них съесть и посчитать те, что останутся. Но математики поеданием конфет и вообще воспринимают их совершенно иначе. Для них есть только сложение, то есть запись 7 — 4 означает число, которое в сумме с числом 4 будет равно 7. То есть для математиков 7 — 4 — это краткая запись уравнения: х + 4 = 7. Это не вычитание, а задача — найти такое число, которое нужно поставить вместо х.
То же самое относится к делению и умножению. Деля десять на два, младшеклассник раскладывает десять конфет на две одинаковые кучки. Математик же и здесь видит уравнение: 2 · х = 10.
Так и выясняется, почему запрещено деление на ноль: оно просто невозможно. Запись 6: 0 должна превращаться в уравнение 0 · х = 6. То есть требуется найти число, которое можно умножить на ноль и получить 6. Но известно, что умножение на ноль всегда даёт ноль. Это сущностное свойство ноля.
Таким образом, нет такого числа, которое, умножаясь на ноль, давало бы какое-то число, отличное от ноля. Значит, у этого уравнения нет решения, нет такого числа, которое соотносилось бы с записью 6: 0, то есть она не имеет смысла. О её бессмысленности и говорят, когда запрещают деление на ноль.
Делится ли ноль на ноль?
А можно ли ноль разделить на ноль? Уравнение 0 · х = 0 не вызывает затруднений, и можно взять за х этот самый ноль и получить 0 · 0 = 0. Тогда 0: 0 = 0? Но, если, например, принять за х единицу, тоже получится 0 · 1 = 0. Можно принять за х вообще какое угодно число и делить на ноль, и результат останется прежним: 0: 0 = 9, 0: 0 = 51 и так далее.
Таким образом, в это уравнение можно вставить совершенно любое число, и невозможно выбрать какое-то конкретное, невозможно определить, какое число обозначается записью 0: 0. То есть и эта запись тоже не имеет смысла, и деление на ноль всё равно невозможно: он не делится даже сам на себя.
Такова важная особенность операции деления, то есть умножения и связанного с ним числа ноль.
Остаётся вопрос: но вычитать его можно? Можно сказать, что настоящая математика начинается с этого интересного вопроса. Чтобы найти ответ на него, необходимо узнать формальные математические определения числовых множеств и познакомиться с операциями над ними. Например, существуют не только простые, но и делениекоторых отличается от деления обычных. Это не входит в школьную программу, но университетские лекции по математике начинаются именно с этого.
В обычной арифметике (с вещественными числами) данное выражение не имеет смысла, так как:
Исторически одна из первых ссылок на математическую невозможность присвоения значения ⁄ 0 содержится в критике Джорджа Берклиисчисления бесконечно малых.
Логические ошибки
В информатике
В программировании, в зависимости от языка программирования, типа данных и значения делимого, попытка деления на ноль может приводить к различным последствиям. Принципиально различны последствия деления на ноль в целой и вещественной арифметике:
Примечания
Если на обычном калькуляторе поделить какое-либо число на ноль, то он вам выдаст букву Е или слово Error, то есть «ошибка».
Калькулятор компьютера в аналогичном случае пишет (в Windows XP) : «Деление на нуль запрещено».
Всё согласуется с известным со школы правилом, что на ноль делить нельзя.
Деление — это математическая операция, обратная умножению. Деление определяется через умножение.
Поделить число a
(делимое, например 8) на число b
(делитель, например число 2) — значит найти такое число x
(частное), при умножении которого на делитель b
получается делимое a
(4 · 2 = 8), то есть a
разделить на b
значит решить уравнение x · b = a.
Уравнение a: b = x равносильно уравнению x · b = a.
Мы заменяем деление умножением: вместо 8: 2 = x пишем x · 2 = 8.
8: 2 = 4 равносильно 4 · 2 = 8
18: 3 = 6 равносильно 6 · 3 = 18
20: 2 = 10 равносильно 10 · 2 = 20
Результат деления всегда можно проверить умножением. Результатом умножения делителя на частное должно быть делимое.
Аналогично попробуем поделить на ноль.
Например, 6: 0 = … Нужно найти такое число, которое при умножении на 0 даст 6. Но мы знаем, что при умножении на ноль всегда получается ноль. Не существует числа, которое при умножении на ноль дало бы что-то другое кроме нуля.
Когда говорят, что на ноль делить нельзя или запрещено, то имеется в виду, что не существует числа, соответствующего результату такого деления (делить-то на ноль можно, разделить — нельзя:)).
Зачем в школе говорят, что на ноль делить нельзя?
Поэтому в определении
операции деления a на b сразу подчёркивается, что b ≠ 0.
Если всё выше написанное вам показалось слишком сложным, то совсем на пальцах: Разделить 8 на 2 означает узнать, сколько нужно взять двоек, чтобы получилось 8 (ответ: 4). Поделить 18 на 3 означает узнать, сколько нужно взять троек, чтобы получить 18 (ответ: 6).
Поделить 6 на ноль означает узнать, сколько нужно взять нулей, чтобы получить 6. Сколько ни бери нулей, всё равно получится ноль, но никогда не получится 6, т. е. деление на ноль не определено.
Интересный результат получается, если попробовать поделить число на ноль на калькуляторе андроида. На экране отобразится ∞ (бесконечность) (или — ∞, если делите отрицательное число). Данный результат является неверным, т. к. не существует числа ∞. По-видимому, программисты спутали совершенно разные операции — деление чисел и нахождение предела числовой последовательности n/x, где x → 0. При делении же нуля на нуль будет написано NaN (Not a Number — Не число).
«Делить на ноль нельзя!» — большинство школьников заучивает это правило наизусть, не задаваясь вопросами. Все дети знают, что такое «нельзя» и что будет, если в ответ на него спросить: «Почему?» А ведь на самом деле очень интересно и важно знать, почему же нельзя.
Всё дело в том, что четыре действия арифметики — сложение, вычитание, умножение и деление — на самом деле неравноправны. Математики признают полноценными только два из них — сложение и умножение. Эти операции и их свойства включаются в само определение понятия числа. Все остальные действия строятся тем или иным образом из этих двух.
Рассмотрим, например, вычитание. Что значит 5 — 3? Школьник ответит на это просто: надо взять пять предметов, отнять (убрать) три из них и посмотреть, сколько останется. Но вот математики смотрят на эту задачу совсем по-другому. Нет никакого вычитания, есть только сложение. Поэтому запись 5 — 3 означает такое число, которое при сложении с числом 3 даст число 5. То есть 5 — 3 — это просто сокращенная запись уравнения: x + 3 = 5. В этом уравнении нет никакого вычитания.
Деление на ноль
Есть только задача — найти подходящее число.
Точно так же обстоит дело с умножением и делением. Запись 8: 4 можно понимать как результат разделения восьми предметов по четырем равным кучкам. Но в действительности это просто сокращенная форма записи уравнения 4 · x = 8.
Вот тут-то и становится ясно, почему нельзя (а точнее невозможно) делить на ноль. Запись 5: 0 — это сокращение от 0 · x = 5. То есть это задание найти такое число, которое при умножении на 0 даст 5. Но мы знаем, что при умножении на 0 всегда получается 0. Это неотъемлемое свойство нуля, строго говоря, часть его определения.
Такого числа, которое при умножении на 0 даст что-то кроме нуля, просто не существует. То есть наша задача не имеет решения. (Да, такое бывает, не у всякой задачи есть решение.) А значит, записи 5: 0 не соответствует никакого конкретного числа, и она просто ничего не обозначает и потому не имеет смысла. Бессмысленность этой записи кратко выражают, говоря, что на ноль делить нельзя.
Самые внимательные читатели в этом месте непременно спросят: а можно ли ноль делить на ноль?
В самом деле, ведь уравнение 0 · x = 0 благополучно решается. Например, можно взять x = 0, и тогда получаем 0 · 0 = 0. Выходит, 0: 0=0? Но не будем спешить. Попробуем взять x = 1. Получим 0 · 1 = 0. Правильно? Значит, 0: 0 = 1? Но ведь так можно взять любое число и получить 0: 0 = 5, 0: 0 = 317 и т. д.
Но если подходит любое число, то у нас нет никаких оснований остановить свой выбор на каком-то одном из них. То есть мы не можем сказать, какому числу соответствует запись 0: 0. А раз так, то мы вынуждены признать, что эта запись тоже не имеет смысла. Выходит, что на ноль нельзя делить даже ноль. (В математическом анализе бывают случаи, когда благодаря дополнительным условиям задачи можно отдать предпочтение одному из возможных вариантов решения уравнения 0 · x = 0; в таких случаях математики говорят о «раскрытии неопределенности», но в арифметике таких случаев не встречается.)
Вот такая особенность есть у операции деления. А точнее — у операции умножения и связанного с ней числа ноль.
Ну, а самые дотошные, дочитав до этого места, могут спросить: почему так получается, что делить на ноль нельзя, а вычитать ноль можно? В некотором смысле, именно с этого вопроса и начинается настоящая математика. Ответить на него можно только познакомившись с формальными математическими определениями числовых множеств и операций над ними. Это не так уж сложно, но почему-то не изучается в школе. Зато на лекциях по математике в университете вас в первую очередь будут учить именно этому.
Функция «деление» не определена для области значений, в которой делитель равен нулю. Делить можно, но результат — не определён
Дельть на ноль нельзя. Математика 2 класса средней школы.
Войдите, чтобы написать ответ
Деление на ноль
Частное от деления на ноль
какого-либо числа, отличного от нуля, не существует.
Рассуждения здесь следующие: так как в этом случае никакое число не может удовлетворить определению частного.
какое бы число ни взять на пробу (скажем, 2, 3, 7), оно не годится потому что:
Что будет если поделить на 0?
д., а нужно получить в произведении 2,3,7.
Можно сказать, что задача о делении на нуль числа, отличного от нуля, не имеет решения. Однако число, отличное от нуля, можно разделить, на число, как угодно близкое к нулю, и чем ближе делитель к нулю, тем больше будет частное. Так, если будем делить 7 на
то получим частные 70, 700, 7000, 70 000 и т. д., которые неограниченно возрастают.
Поэтому часто говорят, что частное от деления 7 на 0 «бесконечно велико», или «равно бесконечности», и пишут
Смысл этого выражения состоит в том, что если делитель приближается к нулю, а делимое остается равным 7 (или приближается к 7), то частное неограниченно увеличивается.
Учебник:
«Математика» М.И.Моро
Цели урока:
создать условия для формирования умения делить 0 на число.
Для достижения цели урок был разработан с учётом деятельностного подхода.
Структура урока включала в себя:
В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.
Ход урока
Цель этапа | Содержание этапа | Деятельность ученика |
1. Орг. момент | ||
Подготовка уч-ся к работе, позитивный настрой на учебную деятельность. | Стимулирование на учебную деятельность . Проверьте свою готовность к уроку, сядьте ровно, облокотитесь на спинку стула. Потрите свои ушки, чтобы кровь активнее поступала в мозг. Сегодня у вас будет много интересной работы, с которой, я уверена, вы справитесь на отлично. | Организация рабочего места, проверка посадки. |
2. Мотивация. | ||
Стимулирование познавательной активности, активизация мыслительного процесса | Актуализация знаний, достаточных для приобретения нового знания. Устный счёт. Проверка знания табличного умножения: | Решение заданий, основанных на знании табличного умножения. |
А) найди лишнее число: 2 4 6 7 10 12 14 6 18 24 29 36 42 Объясните, почему оно лишнее и каким числом его надо заменить. | Нахождение лишнего числа. | |
Б) вставьте пропущенные числа: … 16 24 32 … 48 … | Добавление недостающего числа. | |
Создание проблемной ситуации Задания в парах: В) расставьте примеры в 2 группы: Почему так распределили? (с ответом 4 и 5). | Классификация примеров по группам. | |
Карточки: 8·7-6+30:6= 28:(16:4)·6= 30-(20-10:2):5= 30-(20-10·2):5= | Сильные ученики работают по индивидуальным карточкам. | |
Что вы заметили? Есть ли здесь лишний пример? Все ли примеры вы смогли решить? У кого возникли затруднения? Чем этот пример отличается от остальных? Если кто-то решил, то молодец. Но почему не все смогли справиться с этим примером? | Нахождение затруднения. Выявление недостающего знания, причины затруднения. | |
Постановка учебной задачи. Здесь есть пример с 0. А от 0 можно ожидать разные фокусы. Это необычное число. Вспомните, что вы знаете про 0? (а·0=0, 0·а=0, 0+а=а)· Приведите примеры. Посмотрите, какой он коварный: когда его прибавляют, он не изменяет число, а когда умножают, превращают его в 0. Подходят ли эти правила к нашему примеру? Как же он поведёт себя при елении? | Наблюдение над известными приёмами действий с 0 и соотношение с исходным примером. | |
Итак, какова наша цель? Решить этот пример верно. Таблица на доске. Что для этого надо? Узнать правило деления 0 на число. | Выдвижение гипотезы, | |
Как же найти верное решение? С каким действием связано умножение? (с делением) Приведите пример 2 · 3 = 6 6: 2 = 3 Можем ли мы теперь 0:5? Это значит, надо найти число, при умножении которого на 5 получится 0. х·5=0 Это число 0. Значит, 0:5=0. |
Приведите свои примеры.
Какое же правило теперь можно сформулировать?
При делении 0 на число получается 0.
0: а = 0.
Работа по схеме (0:а=0)
Работа в группах.
Вспомните, как узнать неизвестный множитель.
Решите уравнения.
Какое решение в 1 уравнении? (0)
Во 2? (нет решения, на 0 делить нельзя)
№6
Сильные ученики проверяют и помогают более слабым.
(Нет, не часто, т.к. 0 – это ничего, а в задачах должно какое-то количество чего-либо.)
Тогда будем решать задачи, где есть другие числа.
Прочитайте задачу. Что поможет решить задачу? (таблица)
Какие столбики в таблице надо записать?
Заполните таблицу. Составьте план решения: что надо узнать в 1, во 2 действии?
Планирование решения задачи.
Самостоятельная запись решения.
Самоконтроль по образцу.
Какую цель ставили перед собой?
Достигли вы её? С каким правилом познакомились?
Оцените свою работу, выставив соответствующий значок:
солнышко | – я доволен собой, у меня всё получилось |
белое облако | – всё хорошо, но я мог работать лучше; |
серое облако | – урок обычный, ничего интересного; |
капелька | – ничего не получилось |
Евгений Ширяев, преподаватель и руководитель Лаборатории математики Политехнического музея, рассказал АиФ.ru о делении на ноль:
1. Юрисдикция вопроса
Согласитесь, особенную провокационность правилу придает запрет. Как это нельзя? Кто запретил? А как же наши гражданские права?
Ни конституция РФ, ни Уголовный кодекс, ни даже устав вашей школы не возражают против интересующего нас интеллектуального действия. А значит, запрет не имеет юридической силы, и ничто не мешает прямо тут, на страницах АиФ.ru, попробовать что-нибудь разделить на ноль. Например, тысячу.
2. Разделим, как учили
Вспомните, когда вы только узнали, как делить, первые примеры решали с проверкой умножением: результат, умноженный на делитель должен был совпасть с делимым. Не совпал — не решили.
Забудем на минуту про запретное правило и сделаем несколько попыток угадать ответ.
Неправильные отсечёт проверка. Перебирайте варианты: 100, 1, −23, 17, 0, 10 000. Для каждого из них проверка даст один и тот же результат:
100 · 0 = 1 · 0 = − 23 · 0 = 17 · 0 = 0 · 0 = 10 000 · 0 = 0
Ноль умножением все превращает в себя и никогда в тысячу. Вывод сформулировать несложно: никакое число не пройдет проверку. Т. е. ни одно число не может быть результатом деления ненулевого числа на ноль. Такое деление не запрещено, а просто не имеет результата.
3. Нюанс
Чуть не упустили одну возможность опровергнуть запрет. Да, мы признаем, что ненулевое число не разделится на 0. Но может быть, сам 0 сможет?
Ваши предложения для частного? 100? Пожалуйста: частное 100, умноженное на делитель 0, равно делимому 0.
Еще варианты! 1? Тоже подходит. И −23, и 17, и все-все-все. В этом примере проверка на результат будет положительной для любого числа. И по-честному, решением в этом примере надо называть не число, а множество чисел. Всех. А так недолго договориться и до того, что Алиса это не Алиса, а Мэри-Энн, а обе они — сон кролика.
4. Что там про высшую математику?
Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось — ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать — дело безнадежное и невозможное. А значит… интересное! Дубль два.
Пример 3.
Придумать, как разделить 1000 на 0.
А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:
Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:
1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.
Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:
Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.
В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:
При этом подразумевается аналогичная замена и для делимого: 1000 ↔
Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.
Посмотрим на последовательность частных:
Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:
Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:
При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.
5. И здесь нюанс с двумя нулями
Что будет результатом деления двух последовательностей положительных чисел, сходящихся к нулю? Если они одинаковые, то тождественная единица. Если к нулю быстрее сходится последовательность-делимое, то в частном последовательность с нулевым пределом. А когда элементы делителя убывают гораздо быстрее, чем у делимого, последовательность частного будет сильно расти:
Неопределенная ситуация. И так и называется: неопределенность вида 0/0. Когда математики видят последовательности, подходящие под такую неопределенность, они не бросаются делить два одинаковых числа друг на друга, а разбираются, какая из последовательностей быстрее бежит к нулю и как именно. И в каждом примере будет свой конкретный ответ!
6. В жизни
Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:
Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.
А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.
Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R =0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!
Каждый из нас со школы вынес как минимум два незыблемых правила: «жи и ши — пиши с буквой И» и на ноль делить нельзя. И если первое правило можно объяснить особенностью Русского языка, то второе вызывает вполне логичный вопрос: «А почему?»
Почему нельзя делить на ноль?
Не совсем понятно, почему об этом не говорят в школе, но с точки зрения арифметики ответ очень даже прост.
Теперь, на секунду представим, что на ноль делить можно, и попробуем 10 делить на 0.
Получится следующее: 10: 0 = х, следовательно х * 0 = 10. Но наши расчеты не могут быть верны, так как при умножении любого числа на 0 всегда получается 0. В математике не существует такого числа, которое при умножении на 0 давало бы, что-то кроме 0. Следовательно, уравнения 10: 0 = х и х * 0 = 10 не имеют решения. Ввиду этого и говорят, что на ноль делить нельзя.
Когда можно делить на ноль?
Есть вариант, при котором деление на ноль все же имеет некоторый смысл. Если мы делим сам ноль то получаем следующее 0: 0 = х, а значит х * 0 = 0.
Предположим, что х=0, тогда уравнение не вызывает никаких вопросов, все идеально сходится 0: 0 = 0, а значит и 0 * 0 = 0.
Но что если х ≠ 0? Предположим, что х = 9? Тогда 9 * 0 = 0 и 0: 0 = 9? А если х=45, то 0: 0 = 45.
Мы действительно можем делить 0 на 0. Но это уравнение будет иметь бесконечное множество решений, так как 0: 0 = чему угодно.
Почему 0: 0 = NaN
Пробовали ли Вы когда-нибудь поделить 0 на 0 на смартфоне? Так как ноль деленный на ноль дает абсолютно любое число, программистам пришлось искать выход из данной ситуации, ведь не может же калькулятор игнорировать ваши запросы. И они нашли своеобразный выход: при делении ноль на ноль вы получите NaN (not a number — не число).
Почему x: 0 = ∞ а x:-0 = — ∞
Если Вы попробуете на смартфоне разделить какое-либо число на ноль,то ответ будет равен бесконечности. Все дело в том, что в математике 0
иногда рассматривается не как «ничего», а как «бесконечно малая величина». Следовательно, если любое число поделить на бесконечно малую величину, получится бесконечно большая величина (∞).
Так можно ли делить на ноль?
Ответ, как это часто бывает, неоднозначен. В школе, лучше всего, зарубить себе на носу, что на ноль делить нельзя
— это избавит Вас от ненужных сложностей. А вот если будете поступать на математический факультет в университете, на ноль все-таки делить придется.