Ethernet 10 100 что это
ИТ База знаний
Полезно
— Онлайн генератор устойчивых паролей
— Онлайн калькулятор подсетей
— Руководство администратора FreePBX на русском языке
— Руководство администратора Cisco UCM/CME на русском языке
— Руководство администратора по Linux/Unix
Навигация
Серверные решения
Телефония
FreePBX и Asterisk
Настройка программных телефонов
Корпоративные сети
Протоколы и стандарты
Не путать с «интернет»!
Полный курс по Сетевым Технологиям
В курсе тебя ждет концентрат ТОП 15 навыков, которые обязан знать ведущий инженер или senior Network Operation Engineer
Видео: Ethernet на пальцах
Обобщенно про Ethernet
В терминах семиуровневой модели OSI (если не знаете про нее, почитайте, это интересно!), стандарт Ethernet живет на первом и на втором уровнях. На первом уровне описаны способы передачи электрических, оптических и беспроводных (радио, например) сигналов, а на втором формирование кадров (фреймов). И тут мы делаем вывод:
Ethernet “по полочкам”
Скорость
В 1999 году, благодаря технологическому “рывку”, на свет появился Gigabit Ethernet, который уже поддерживает подключения скоростью 1000 Мбит/с или 1 Гбит/с. Отметим, что “гигабитными” линками зачастую в корпоративных сетях подключает даже сервера.
Линком в профессиональной среде называют канал подключения того или иного узла. Фраза “подключил к свичу сервер гигабитным линком” означает, что коллега подключил кабелем UTP сервер к коммутатору по стандарту Gigabit Ethernet.
И пожалуй финалочку по скорость: впервые в 2002 году IEEE опубликовал стандарт 802.3ae, в котором описал 10 Gigabit Ethernet, или как его еще называют 10GE, 10GbE и 10 GigE. Догадаетесь, на какой скорости он работает? 😉
Кабели
Для работы с более высокоскоростными стандартами, такими как Gigabit Ethernet и 10 Gigabit Ethernet понадобится кабель категории 5e или 6 категории
Ethernet vs. Wi-Fi: преимущества
Стабильность сигнала
На самом деле развертывание локальной сети на базе проводного подключения дороже и сложнее. Но конечно есть преимущества, а особенно для организаций. В первую очередь, вспомним: Wi-FI передается по радиочастотам. Если вы живете в Москве и слушаю радио на машине въезжали в Лефортовский туннель вы точно знаете, что происходит с радиосигналом по мере погружения в туннель. Тоже самое происходит и с Wi-Fi.
Безопасность
Отметим, что как правило, Ethernet работает на удаленности 100 метров от от роутера. При большем расстоянии нужен некий репитер сигнала.
Ethernet vs. Wi-Fi: недостатки
Стоимость
С одной стороны, в домашней сети, достаточно просто подключить 1 кабель к порту вашего ПК и все работает. Здесь стоимость отличия от домашней Wi-Fi сети складывается только из стоимости кабеля. А что если вы организация? Кабелей нужно больше, к тому же, 1 кабель = 1 порт на коммутаторе. Соответственно, нужно закупать коммутаторы, фаерволы (безопасность, а как же?), маршрутизаторы. Именно поэтому, инвестиции в проводные Ethernet сети выше, чем в беспроводные.
Порты
Мобильность
Самое важное, пожалуй. С Ethernet вы жестко завязаны на одном месте (особенно это характерно в офисе, где у вас скоммутирована Ethernet розетка). Дома, если у вас “красивый” ремонт, кабели спрятаны под плинтус. Поэтому, мобильностью и гибкостью здесь и не пахнет.
С Wi-Fi можно легко подключать ноутбуки, планшенты и мобильные телефоны. Представьте забавный кейс: по пути в туалетную комнату, вы берете с собой ноутбук с кабелем, вместо мобильного телефона, в котором привычно листаете любимую ленту. Пожалуй, это тот самый случай, когда лучше почитать надписи на освежителе воздуха.
Итоги
Онлайн курс по Кибербезопасности
Изучи хакерский майндсет и научись защищать свою инфраструктуру! Самые важные и актуальные знания, которые помогут не только войти в ИБ, но и понять реальное положение дел в индустрии
Что такое технология Ethernet – история сетевого кабеля
Для многих это просто кабель, который позволяет подключить компьютер – настольный компьютер или ноутбук – без разницы – игровые приставки, жесткие диски и медиацентры к маршрутизатору с целью создания локальной сети (Local Area Network), т.е. домашней сети. Однако, понятие Ethernet объединяет целое семейство технологий, необходимых для создания и эксплуатации локальных сетей (в частности, LAN), технические характеристики которых были установлены в соответствии со стандартом IEEE 802.3.
Экспериментально задуманный в середине 70-х годов в лабораториях Xerox PARC Робертом Меткалфом и его помощником Дэвидом Боггсом, Ethernet в настоящее время является наиболее используемой технологией в домашних условиях для создания сетей, которые включают в себя и соединяют небольшое количество узлов.
По этой причине создаются всё более эффективные коммутаторы Ethernet, необходимые для быстрой и надёжной связи между двумя узлами одной сети.
Что такое Ethernet
С технической точки зрения, Ethernet – это набор протоколов и сетевых инструментов, которые позволяют создавать локально разнородные локальные сети (от нескольких узлов до нескольких десятков).
Теоретически длина кабеля Ethernet может достигать 100 метров: устройства, которые повторяют или перенаправляют сигнал, используются для соединения узлов на большем расстоянии. Для этой цели используют Ethernet-мосты и Ethernet-коммутаторы – периферийные устройства, способные соединять различные сегменты одной и той же локальной сети.
Общим элементом любой сети Ethernet является структура пакета, называемая кадром. Кадр, состоящий из 7 различных элементов, отвечает за передачу данных между двумя узлами одной и той же локальной сети.
Как сделан кабель Ethernet
Внешне кабель Ethernet выглядит как длинный провод, покрытый пластиковой оболочкой с двумя разъемами RJ45 (также изготовленными из пластика). Внутри оболочки между различными защитными и экранирующими слоями мы обнаруживаем четыре витые пары, отвечающие за передачу данных от одного сетевого устройства к другому. Витые пары отличаются друг от друга благодаря цветовой идентификации: синий, оранжевый, зеленый и коричневый. Таким образом, у нас будет синяя витая пара (полноцветный кабель и полосатый кабель), оранжевая витая пара (полноцветный кабель и полосатый кабель), зеленая витая пара (полноцветный кабель и полосатый кабель) и коричневая витая пара (полноцветный кабель и полосатый кабель).
Кабели Ethernet могут быть прямыми или скрещенными. В прямых кабелях Ethernet схема витой пары одинакова как в одном разъеме RJ45, так и в другом: это означает, что порядок, в котором расположены 8 медных кабелей, поддерживается на двух концах провода Ethernet.
В скрещенных кабелях Ethernet положение восьми кабелей «меняется», как если бы они были отражены в зеркале: если в одном разъеме RJ45 вы начинаете с коричневой витой пары и заканчиваете оранжевой, на другом конце начинайте с оранжевой, а заканчивайте коричневой.
Семь элементов кадра Ethernet
История кабеля Ethernet
Все физические и протокольные элементы, служащие для технического определения Ethernet, были экспериментально спроектированы Робертом Меткалфом в период с 1973 по 1974 годы в Xerox PARC (исследовательский центр Пало-Альто). Последний был вдохновлен ALOHAnet, сетевым протоколом, целью которого было гарантировать доступ и функции передачи данных в небольших сетях.
Название Ethernet впервые было использовано в мае 1973 года самим Меткалфом, который пытался убедить руководителей Xerox в важности е своей работы. Название было выбрано, чтобы «воздать должное» светоносному эфиру, газообразному и неощутимому веществу, которое в середине XIX века считалось инертной средой, через которую распространялись электромагнитные волны. В 1975 году Xerox подал патент от имени Меткалфа и его команды (в дополнение к Дэвиду Боггсу патент носит имена Чака Такера и Батлера Лэмпсона).
Технологии, описанные в патенте, были успешно использованы в Xerox PARC, и в 1976 году Меткалф и Боггс опубликовали научную статью «Ethernet: распределенная коммутация пакетов для локальных компьютерных сетей», в которой они описали фундаментальные части и работу сети, основанную на технологии Ethernet.
В 1979 году Меткалф покинул Xerox, но всё же смог убедить тогдашнего американского ИТ-гиганта вступить в партнерство с Digital Equipment Corporation и Intel, чтобы начать работу над уникальным стандартом Ethernet. Так родилась команда DIX (из инициалов трёх компаний, участвующих в проекте), которая в следующем году представила Институту инженеров по электронике и электронике (IEEE) первое предложение по стандартизации Ethernet в области LAN. Это первое предложение касалось стандарта со скоростью 10 Мбит/с и 48-битными адресами: то была 10BASE-T – «базовая модель» подключения Ethernet.
Модели Ethernet
Среди множества способов, которыми можно «каталогизировать» различные типы Ethernet, разработанные за последние 30 лет использования этой технологии, наиболее распространенным является метод, основанный на максимальной теоретической скорости, которая может быть достигнута во время передачи файла.
10BASE-T
Спецификация базового уровня протокола IEEE 802.3 характеризуется скоростью передачи 10 мегабит (10 миллионов бит) в секунду. Кабели состоят из двух витых пар телефонных линий, скрученных вместе, в то время как разъемы RJ-45 также были взяты с телефонной линии.
Fast Ethernet
Стандарты передачи данных для сетей LAN, теоретическая максимальная скорость которых составляет 100 мегабит в секунду. Также в этом случае 100BASE-T является преобладающим стандартом, который характеризуется двумя витыми парами и разъемами RJ-45.
Гигабитный Ethernet
Эволюция Fast Ethernet, приведшая к 10-кратному увеличению скорости. Как следует из названия, Gigabit Ethernet характеризуется скоростью передачи 1 гигабит (1 миллиард бит) в секунду, используя конфигурацию 1000BASE-T, медные пары телефонных проводов и разъёмы RJ-45.
2.5GBASE-T, 5GBASE-T и 10GBASE-T с кабелями категории Cat5e, Cat6 и Cat7
Однако, развитие кабелей Ethernet позволило техническим специалистам и инженерам выйти за пределы порога в 1 гигабит. Сегодня на рынке уже есть кабели, которые могут достигать 10 гигабит в секунду: это относится к Ethernet-кабелям Cat 7 (также называемым 10GBASE-T), способным передавать пакеты данных со скоростью 1,25 гигабайта в секунду (1 байт = 8 бит).
Однако, они не единственные, которые могут выйти за пределы гигабитного уровня скорости: с введением стандарта IEEE 802.3bz, по сути, были достигнуты значительные улучшения производительности также для кабелей Ethernet Cat 5e и Cat 6. Первый также называется 2.5GBASE-T, имеет максимальную скорость передачи данных 2,5 гигабит в секунду; второй, называемый 5GBASE-T, может развивать скорость до 5 гигабит в секунду.
Сети Ethernet
История Ethernet
Ethernet 10Base5
В трансивере находится активный приемо-передатчик с детектором коллизий и высоковольтным (1-5 кВ) разделительным трансформатором, питание обеспечивается от AUI-порта адаптера.
Основные преимущества 10Base5: большая длина сегмента, хорошая помехозащищенность кабеля и высокое напряжение изоляции трансивера. Благодаря этим качествам «толстый» Ethernet чаще всего применялся для прокладки базовых сегментов (Backbone). Сейчас этот стандарт практически полностью вытеснен более дешевыми и производительными реализациями Ethernet.
10Base2
Правила построения сетей, использующих физическую топологию «общая шина».
10Base-T
10Base-F
В стандарте 10Base-FL, предназначенном для соединения станций с концентратором, длина сегмента оптоволокна до 2 км при общей длине сети не более 2,5 км. Максимальное число повторителей также 4. Ограничения длин кабелей даны для многомодового кабеля. Применение одномодового кабеля позволяет прокладывать сегменты длиной до 20 км (!).
Стандарты 10Base-FL и 10Base-FB не совместимы между собой. Дешевизна оборудования 10Base-FL позволила ему обогнать по распространенности волоконно-оптические сети других стандартов.
Правила построения сетей, использующих физическую топологию «звезда»
Экзотика
Спецификации Gigabit Ethernet:
1000Base-SX: трансиверы на коротковолновом лазере и многомодовый оптический кабель. Ограничения длины сегмента 300 м для кабеля с диаметром оптического проводника 62.5 мкм и 550 м для кабеля с диаметром проводника 50 мкм.
1) Физический уровень определяет электротехнические, механические, процедурные и функциональные характеристики активации, поддержания и дезактивации физического канала между конечными системами. Спецификации физического уровня определяют уровни напряжений, синхронизацию изменения напряжений, скорость передачи физической информации, максимальные расстояния передачи информации, требования к среде передачи, физические соединители и другие аналогичные характеристики.
2) Канальный уровень (Data Link) обеспечивает надежный транзит данных через физический канал. Выполняя эту задачу, канальный уровень решает вопросы физической адресации, топологии сети, линейной дисциплины (каким образом конечной системе использовать сетевой канал), уведомления о неисправностях, упорядоченной доставки блоков данных и управления потоком информации. Обычно этот уровень разбивается на два подуровня: LLC (Logical Link Control) в верхней половине, осуществляющего проверку на ошибки, и MAC (Media Access Control) в нижней половине, отвечающего за физическую адресацию и прием/передачу пакетов на физическом уровне.
3) Сетевой уровень обеспечивает соединение и выбор маршрута между двумя конечными системами, подключенными к разным «подсетям», которые могут находиться в разных географических пунктах. Сетевой уровень отвечает за выбор оптимального маршрута между станциями, которые в могут быть разделены множеством соединенных между собой подсетей.
5) Сеансовый уровень устанавливает, управляет и завершает сеансы взаимодействия между прикладными задачами. Сеансы состоят из диалога между двумя или более объектами представления. Сеансовый уровень синхронизирует диалог между объектами представительного уровня и управляет обменом информации между ними. В дополнение к управлением сеансами этот уровень предоставляет средства для отправки информации, класса услуг и уведомления в исключительных ситуациях о проблемах сеансового и более высоких уровней.
6) Уровень представления отвечает за то, чтобы информация, посылаемая из прикладного уровня одной системы, была читаемой для прикладного уровня другой системы. При необходимости представительный уровень осуществляет трансляцию между множеством форматов представления информации путем использования общего формата представления информации. При необходимости трансформации подвергаются не только фактические данные, но и структуры данных, используемые программами. Типичным примером является преобразование окончаний строк UNIX (CR) в MS-DOS формат (CRLF).
7) Прикладной уровень отвечает за выполнение пользовательских задач. Он идентифицирует и устанавливает наличие предполагаемых партнеров для связи, синхронизирует совместно работающие прикладные программы, устанавливает соглашение по процедурам устранения ошибок и управления целостностью информации, а также определяет, достаточно ли ресурсов для предполагаемой связи.
Детские болезни Ethernet и борьба с ними
Сегментация сети
Основной способ борьбы с перегрузкой сегментов во времена преобладания сетей стандарта 10Base2. Весь сегмент разбивался на части. При этом вопрос передачи информации между сегментами при необходимости решался с помощью маршрутизации. Аппаратные средства особой популярностью не пользовались. Обычно сервер с несколькими сетевыми адаптерами устанавливался приблизительно в центре сети и на нем настраивался программный маршрутизатор. Таким образом, кроме изоляции коллизий в отдельных сегментах, можно было увеличить общий размер сети до 185 + 185 = 370 м.
Поскольку ограничения диаметра сети в классической технологии Ethernet связаны с необходимостью своевременного обнаружения коллизий, применение коммутаторов позволяет преодолеть эти ограничения, разбивая сеть на несколько доменов коллизий.
Во многих коммутаторах применяется адаптивная технология: режимы буферизации и передачи «на лету» применяются в зависимости от величины нагрузки сети.
Долгое время стандарт на ВЛС отсутствовал, вместе с тем существовало множество несовместимых друг с другом фирменных реализаций. Сейчас принят стандарт на ВЛС IEEE 802.1Q.
Для построения ВЛС до принятия стандарта IEEE 802.1Q обычно применялась группировка портов, либо группировка MAC-адресов. Решения на основе группировки портов проще в применении, но в случае соединения нескольких коммутаторов каждая ВЛС требует отдельного соединения между ними, что приводит к расточительному использованию портов и кабелей. Группировка на основе MAC адресов рациональнее использует порты и соединения, но трудоемка при эксплуатации. В качестве достоинства этих способов можно отметить использования стандартных кадров Ethernet. Стандарт IEEE 802.1Q предусматривает изменение структуры кадра Ethernet с введением в него дополнительных полей, в которые помещаются сведения о принадлежности узла к определенной ВЛС. Кроме того, добавляются поля, где храниться информация о приоритете кадра, используемая в стандарте IEEE 802.1p.
Для передачи информации между разными ВЛС необходимо привлечение сетевого уровня. Соответствующие средства могут представлять собой либо отдельный маршрутизатор, либо входить в состав аппаратно-программного обеспечения коммутатора. Коммутаторы, имеющие средства для работы на уровне сетевых протоколов, называются «маршрутизирующими коммутаторами», «коммутаторами третьего уровня». Для управления потоками информации в них применяется либо последовательная, либо потоковая маршрутизация пакетов. В первом случае реализуются классические функции маршрутизатора, и каждый пакет обрабатывается отдельно. Во втором случае используется нестандартный метод, применяемый для сокращения числа операций для определения маршрута пакетов. Первый пакет обрабатывается на третьем уровне и определяет порт назначения для остальных пакетов для того же адресата. Дальнейшая пересылка пакетов происходит на втором уровне, что ускоряет процесс передачи по сравнению с классической маршрутизацией. Для упрощения реализации в коммутаторах третьего уровня применяется маршрутизация только протоколов IP и IPX, как наиболее распространенных в локальных сетях.
Приоритезация трафика
Положение изменилось с принятием стандарта IEEE 802.1p: появилась возможность определения восьми уровней приоритета кадра на основе использовании новых полей, определенных в стандарте IEEE 802.1Q. Таким образом, управление приоритетами организуется более гибко, без привязки к определенным портам.
Кроме приоритезации трафика, чувствительного к задержкам времени, существует необходимость повышения приоритета портов коммутатора по отношению к портам конечных станций для предотвращения потери пакетов. Для этого производители используют нестандартные параметры доступа к среде для портов коммутатора. «Агрессивное поведение» порта при захвате среды проявляется после окончания передачи очередного пакета или после обнаружения коллизии. В первом случае после окончания передачи коммутатор выдерживает паузу меньше положенной по стандарту и начинает передачу нового пакета. Станция, выдержав положенную паузу, при попытке передачи обнаруживает, что среда уже занята. Во втором случае после обнаружения коллизии порт коммутатора также делает паузу меньшую стандартной, захватывает среду и станции также не удается начать передачу. Коммутатор адаптивно изменяет степень агрессивности по мере необходимости.
Еще один прием, применяемый в коммутаторах, основан на передаче станции фиктивных пакетов станции в то время, когда в буфере коммутатора нет пакетов для передачи на порт станции. При этом среда передачи равновероятно захватывается попеременно портом коммутатора и станцией, и интенсивность передачи пакетов в коммутатор снижается в среднем вдвое. Такой метод называется методом обратного давления (backpressure). Он комбинируется с методом агрессивного захвата среды для большего подавления активности конечных станций.
Ethernet
Из Википедии — свободной энциклопедии
Ethernet (англ. Ethernet [ˈiːθəˌnɛt] от ether [ˈiːθə] «эфир» + network «сеть, цепь») — семейство технологий пакетной передачи данных между устройствами для компьютерных и промышленных сетей.
Стандарты Ethernet определяют проводные соединения и электрические сигналы на физическом уровне, формат кадров и протоколы управления доступом к среде — на канальном уровне модели OSI. Ethernet в основном описывается стандартами IEEE группы 802.3. Ethernet стал одной из самых распространённых технологий ЛВС в середине 1990-х годов, вытеснив такие устаревшие технологии, как Token Ring, FDDI и ARCNET.
Название «Ethernet» (буквально «эфирная сеть» или «среда сети») отражает первоначальный принцип работы этой технологии: всё, передаваемое одним узлом, одновременно принимается всеми остальными (то есть имеется некое сходство с радиовещанием). В настоящее время практически всегда подключение происходит через коммутаторы (switch), так что кадры, отправляемые одним узлом, доходят лишь до адресата (исключение составляют передачи на широковещательный адрес) — это повышает скорость работы и безопасность сети.
Технология Ethernet. Обзор, описание, формат кадра.
Приветствую всех снова на нашем сайте!
Вынужденная пауза в выходе новых статей подошла к концу и, собственно, этой статьей мы положим начало активнейшему периоду наполнения сайта новым контентом. С выбором темы для статьи было в этот раз все максимально просто — в далекие-далекие времена была обещана статья про работу с Ethernet, наконец-то настало время исполнить обещанное… Но начнем мы для начала с общего обзора и описания технологии и некоторых нюансов, связанных с работой. А уже в следующих статьях будет практическое использование.
Семейство технологий Ethernet.
Как в самом начале не привести максимально «стандартное» и распространенное определение… Вот оно: Ethernet — семейство технологий пакетной передачи данных между устройствами для компьютерных и промышленных сетей. А теперь уже переходим непосредственно к сути.
В сетевой модели OSI (про нее скоро тоже будет статья, а здесь появится ссылка на нее) Ethernet отвечает за 2 самых низких уровня — физический и канальный. Собственно, физический уровень определяет метод, который используется для непосредственной передачи двоичных данных. Канальный же, в свою очередь, обеспечивает упаковку полученных с физического уровня данных в структурированные кадры, а также контролирует их целостность и безошибочность.
Модификации Ethernet.
Классификация модификаций Ethernet в основном заключается в различиях двух факторов — используемого типа кабеля, а также возможной скорости передачи данных. Различают:
Варианты соединения | Скорость | |
---|---|---|
Ethernet | Коаксиальный кабель, оптика, витая пара | 10 Мб/с |
Fast Ethernet | Оптика, витая пара | 100 Мб/с |
Gigabit Ethernet | Оптика, витая пара | 1 Гб/с |
10G Ethernet | Оптика, витая пара | 10 Гб/с |
Как мы и отметили сразу, различаются, в первую очередь, скорость передачи данных и тип используемого кабеля. На заре развития Ethernet использовались исключительно коаксиальные кабели, и лишь затем появились варианты с витой парой и оптикой, что привело к значительному расширению возможностей. К примеру, использование витой пары дает одновременно:
Внутри указанных четырех модификаций (Ethernet, Fast Ethernet, Gigabit Ethernet, 10G Ethernet) присутствует дополнительное «внутреннее» разделение. Например, возьмем 10 Мбит/с Ethernet. Вот некоторые из стандартов, которые включает этот тип:
Ethernet (10 Мб/с) |
---|
10Base-2 |
10Base-5 |
10Base-T |
10Base-F |
10Base-FL |
При этом различная физическая реализация подключения (разные кабели) приводят к возможности использования разных топологий сети. Для 10Base-5 максимально топорно:
А вот 10Base-T уже может использовать полнодуплексную передачу данных:
Здесь, как видите присутствует устройство под названием сетевой концентратор. Поэтому небольшое лирическое отступление на эту тему.
Зачастую термины сетевой концентратор, сетевой коммутатор и маршрутизатор перемешиваются и могут использоваться для описания одного и того же. Но строго говоря, все эти три термина относятся к абсолютно разному типу устройств:
Возвращаемся к схеме для стандарта 10Base-T… Поскольку для передачи и приема используются физически разные линии, то нет и препятствий для одновременного протекания данных процессов. Принцип же формирования данных остается неизменным практически для всех модификаций Ethernet, к обсуждению чего мы и переходим.
Кадр Ethernet.
Вся передаваемая информация поделена на пакеты/кадры, имеющие следующий формат:
Рассмотрим блоки подробнее:
Все поля, кроме поля данных, являются служебными.
Методика анализа контрольной суммы абсолютно стандартна: отправитель рассчитывает контрольную сумму на основе остальных данных кадра и добавляет рассчитанное значение к этому же отправляемому кадру. Получатель также рассчитывает контрольную сумму на основе принятых данных и сравнивает ее с принятой (которую рассчитывал отправитель). Несовпадение рассчитанного и принятого значений CRC — явный сигнал к тому, что данные повреждены и некорректны.
При этом контрольная сумма в данном случае никоим образом не может помочь в устранении ошибки, она только сигнализирует о ее наличии. В результате принятый кадр целиком считается некорректным. Это, в свою очередь, приводит к необходимости передать ошибочный кадр еще раз.
Кроме этого, возможна еще одна неприятная ситуация, так называемая коллизия — когда несколько узлов начинают передавать данные одновременно. Для предотвращения этого в Ethernet используется технология CSMA/CD — Carrier Sense Multiple Access with Collision Detection — множественный доступ с прослушиванием несущей и обнаружением коллизий. Эта тема тоже довольно-таки интересная, в связи с чем, принято волевое решение посвятить ей отдельную статью 🙂 Поэтому здесь и сейчас на этом не останавливаемся.
В первых по очередности двух полях кадра Ethernet содержатся MAC-адреса узлов сети — передатчика и приемника. Изначально при разработке первых версий технологии было предусмотрено, что любая сетевая карта должна иметь свой уникальный идентификатор. Роль этого идентификатора и играет MAC-адрес, состоящий из 6 байт.
При работе он позволяет идентифицировать все устройства в сети и определить, какому именно из них предназначен тот или иной кадр данных. Распределением MAC-адресов занимается регулирующий комитет IEEE Registration Authority, именно сюда производитель сетевого устройства должен обращаться для выделения ему некоего диапазона адресов, которые он сможет использовать для своей продукции.
И на этой ноте заканчиваем вводную теоретическую часть по Ethernet, в дальнейшем приступим к практическому использованию в своих устройствах. До скорого!