Fiberglass что это за материал
Фибергласс и его свойства. Что лучше, фибергласс или алюминий?
Спортивное оборудование, а в частности — и каркас палатки часто изготавливается из так называемого фибергласса. Из него изготавливают в т.ч. и дуги для палатки. Что же такое фибергласс и какие он имеет преимущества перед другими материалами в обозначенной области применения?
Стеклопластик или фибергласс
Сам по себе фибергласс – это композитный полимерный материал. Часто можно встретить такое его название, как стеклопластик.
Что такое композитный материал? Про это мы рассказывали в этом видео:
В качестве струкутрообразующей сетки используются стекловолокна, составляющие 70% от основного объема материала, а наполняющим веществом является эпоксидная смола. Получил широкое распространение во всех отраслях промышленности. Часто используется при изготовлении пластиковых окон. До этого долгое время использовался в оборонке и самолетостроении.
Очень полезно посмотреть вот это наше видео:
Это один из немногих материалов, который сочетает высокую прочность, хорошие диэлектрические свойства, диэлектрические свойства и химическую стойкость. При этом цена пластика остаётся невысокой. Этот полимер не гниет, не меняет цвет, не охрупчивается с течением времени и практически не подвержен старению.
Прочность этого материала в несколько раз выше прочности алюминия и в девять раз выше прочности ПВХ.
К недостаткам можно отнести пожалуй только низкие показатели модуля упругости.
Правда говорить о достоинствах и недостатках материала с точки зрения материаловедения не совсем корректно. Ведь недостаток в одном случае становится преимуществом в другом. Возьмем ту же диэлектрическую проницаемость. Было бы весело делать провода из диэлектрика, но ведь мы этого не делаем. Правильнее будет сказать, что материал не применим для изготовления проводки в доме. Такая же ситуация и с остальными свойствами.
Сравнение механических свойств алюминия и фибергласса
Теперь подойдем непосредственно к численным значениям и показателям табличных значений механических свойств. Поскольку вторым типичным материалом для изготовления каркасов палаток является алюминий, бегло сравним композитный полимер именно с ним.
Например, если сравнивать алюминиевый сплав (на данный момент не столь важно какой именно, все показатели будут в указанных порядках) и фибергласс (опять же, возьмем общего представителя вида), то мы имеем следующие показатели:
Разрушающее напряжение МН/м2: 410 — 1180 у стеклопластика против 80 – 430 у алюминия
Модуль упругости при растяжении, ГПа: 21-41 у фибергласса, против 70 у алюминиевого сплава.
Что означает этот набор значений для обычного пользователя?
Удельная прочность стеклопластика выше прочности алюминиевых сплавов почти в два раза, из чего следует, что при изделии с одинаковой прочностью в случае использования стеклопластика будет весить в два раза меньше, чем изделие с такими же свойствами из алюминия. Т.е. при прочих равных, каркас палатки из фибергласса будет в два раза легче алюминиевого, а прочность будет одинаковая.
Далее, рассмотрим показатели разрушающего напряжения. Или предела прочности. В таблице приведены диапазоны значений. При их анализа получается, что неправильно подобранная марка стеклопластика окажется аналогична хорошему алюминиевому сплаву. Здесь также фиберглассовый каркас для палатки вырывается вперед по значениям свойств если брать средние показатели.
Остаётся модуль упругости. Если упростить формулировку – это то значение нагрузки, которое может выдержать материал без разрушения или насколько хорошо материал гнётся. Здесь стеклопластик проигрывает алюминию. Т.е. каркас из алюминиевого сплава будет лучше воспринимать деформации.
Какими свойствами обладает каркас палатки из фибергласса?
Каркас палатки из стеклопластика имеет большую прочность, меньший вес, но при этом способен деформироваться в меньших пределах. При этом остаточная деформация будет минимальной, так как материал не склонен к пластической деформации из-за его высокой прочности. Соответственно – это более хрупкий материал и не любит изгибы. Вопреки распространенному мнению, холод никак не сказывается на свойствах этого материала, т.к. палатки используются заведомо в меньшем интервале температур. Почему же ломается каркас из фибергласса на морозе у зимних палаток? Происходит это по той причине, что сам по себе стеклопластик не любит деформации и если они достигают придельных показателей (которые в разы меньше, чем для алюминия, способного к пластической деформации) просто ломается. Летом такой каркас сломался бы также.
Что в итоге лучше, фибергласс или алюминий?
Конечно же, фибергласс – материал инновационный и перспективный. Но неправильная работа с этим материалом делает его менее привлекательным для покупателя. Производители часто выбирают самые дешевые сорта пластика, которые обладают худшими свойствами и при этом сохраняет высокую хрупкость. Также нужно учитывать, что одинаковое построение каркаса из алюминия и фибергласса не возможно. На данный момент для рядового пользователя, а особенно – для пользователя зимней палатки, лучше выбирать алюминиевый каркас. Он ремонтопригоден и, в любом случае, будет обладать большей пластичностью – т.е. лучше гнуться без повреждения. Но при этом алюминий будет тяжелее и дуги будут со временем «проседать» (т.е. придётся выгибать их в обратную сторону для выпрямления руками).
Заключение и выводы
Правильным подходом в выборе материала каркаса является анализ каждой конкретной конструкции у каждой модели. В нашем случае, это возможно только по отзывам пользователей и по непосредственным ощущениям. Говорить однозначно, что палатка с алюминиевым каркасом будет лучше или хуже, чем палатка с каркасом из стеклопластика, неправильно. Для каждого конкретного случая нужно иметь четкое понимание механических показателей данной марки материала и предельных деформаций в данной модели. Иными словами, мы ни в коем случае не исключаем, что среди фиберглассовых каркасов есть надежные и очень достойные модели, поскольку при правильном просчёте и подборе материала – стеклопластик лучше алюминия. Среди бюджетных палаток такие не встретишь.
Ну и для окончательного понимания актуальности использования фибергласса для каркаса палаток и его достоинств, приводим диаграмму из английского журнала, где указано распределения материалов и их типов, которые использованы для изготовления самолёта типа Боинг. Обратите внимание — наша позиция выделена зеленым. Т.е. при правильном подходе, этот материал подходит для самолетостроения.
А в этом примере, найденном на одном из форумов, производитель сделал что-то неправильно и каркас сломался. По убеждения пользователя, добавившего фотографии, сломался из-за ветра. Значит предел допустимой деформации был превышен. Вероятно, не рассчитали размер купола и дуги для палатки лопнули от изгиба.
Есть и ещё один важный момент. Часто производитель использует какой-нибудь самый дешевый пластик с низкими показателями мех.свойств и выдает его за дорогой стеклопластик. Определить на глаз это практически невозможно. Но в итоге складывается впечатление, что плохим является материал, указанный в характеристиках изделия.
Стеклопластики. Их свойства. Производство. Методы изготовления.
Доброго времени суток.
Сегодня будем повышать культуру производства. Обязательно к прочтению 🙂 особенно новичкам.
Стеклопластик — композиционный материал, состоящий из стеклянного наполнителя и синтетического полимерного связующего. Наполнителем служат в основном стеклянные волокна в виде нитей, жгутов (роввингов), тканей, матов, рубленых волокон; связующим — полиэфирные, феноло-формальдегидные, эпоксидные, кремнийорганические смолы, полиимиды, алифатические полиамиды, поликарбонаты и др. Для стеклопластика характерно сочетание высоких прочностных, диэлектрических свойств, сравнительно низкой плотности и теплопроводности, высокой атмосферо-, водо- и химстойкости. Механические свойства стеклопластика определяются преимущественно характеристиками наполнителя и прочностью связи его со связующим, а температуры переработки и эксплуатации — связующим.
Наибольшей прочностью и жёсткостью обладают стеклопластики, содержащие ориентированно расположенные непрерывные волокна. Такие стеклопластики подразделяются на однонаправленные и перекрёстные; у первых волокна расположены взаимно параллельно, у вторых — под заданным углом друг к другу, постоянным или переменным по изделию. Изменяя ориентацию волокон, можно в широких пределах регулировать механические свойства стеклопластиков.
Большей изотропией механических свойств обладают стеклопластики с неориентированным расположением волокон: материалы на основе рубленых волокон, нанесённых на форму методом напыления одновременно со связующим, и на основе холстов (матов). Диэлектрическая проницаемость стеклопластиков 4-14, тангенс угла диэлектрических потерь 0,01-0,05.
Изделия из стеклопластика с ориентированным расположением волокон изготавливают методами намотки, послойной выкладки или протяжки с последующим автоклавным, вакуумным или контактным формованием либо прессованием, из пресс-материалов — прессованием и литьём.
Примеры изделий из стеклопластика
Стеклопластик применяют как конструкционный и теплозащитный материал при производстве корпусов лодок, катеров, судов и ракетных двигателей, кузовов автомобилей, цистерн, рефрижераторов, радиопрозрачных обтекателей, лопастей вертолётов, выхлопных труб, деталей машин и приборов, коррозионностойкого оборудования и трубопроводов, небольших зданий, бассейнов для плавания и др., а также как электроизоляционный материал в электро- и радиотехнике.
Свойства стеклопластиков.
Стеклопластик обладает многими очень ценными свойствами, дающими ему право называться одним из материалов будущего. Ниже перечислены некоторые из них.
Малый вес.
Удельный вес стеклопластиков колеблется от 0,4 до 1,8 и в среднем составляет 1,1 г/см3. Напомним, что удельный вес металлов значительно выше, например, стали – 7,8, а меди — 8,9 г/см3. Даже удельный вес одного из наиболее легкого сплава, применяемого в технике, — дуралюмина составляет 2,8 г/см3. Таким образом, удельный вес стеклопластика в среднем в пять-шесть раз меньше, чем у черных и цветных металлов, и в два раза меньше, чем у дуралюмина. Это делает стеклопластик особенно удобным для применения на транспорте. Экономия в весе на транспорте переходит в экономию энергии; кроме того, за счет уменьшения веса транспортных конструкций (самолетов, автомобилей, судов и т.п.) можно повысить их полезную нагрузку и за счет экономии топлива увеличить радиус действия.
Диэлектрические свойства.
Стеклопластики являются прекрасными электроизоляционными материалам при использовании как переменного, так и постоянного тока.
Высокая коррозионная стойкость.
Стеклопластики как диэлектрики совершенно не подвергаются электрохимической коррозии.
Существует целый ряд смол (некоторые полиэфирные смолы, смолы Norpol DION), позволяющие получить стеклопластики стойкие к различным агрессивным средам, в том числе и к воздействию концентрированных кислот и щелочей.
Хороший внешний вид.
Стеклопластики при изготовлении хорошо окрашиваются в любой цвет и при использовании стойких красителей могут сохранять его неограниченно долго. Прозрачность. На основе некоторых марок светопрозрачных смол можно изготовить стеклопластики, по оптическим свойствам немногим уступающим стеклу.
Высокие механические свойства.
При своем небольшом удельном весе стеклопластик обладает высокими физико-механическими характеристиками. Используя некоторые смолы и определенные виды армирующих материалов, можно получить стеклопластик, по своим прочностным свойствам превосходящий некоторые сплавы цветных металлов и стали.
Теплоизоляционные свойства.
Стеклопластик относится к материалам с низкой теплопроводностью. Кроме того, можно значительно повысить теплоизоляционные свойства путем изготовления стеклопластиковой конструкции типа “сэндвич”, используя между слоями стеклопластика пористые материалы, например пенопласт. Благодаря своей низкой теплопроводности, стеклопластиковые сэндвичевые конструкции с успехом применяются в качестве теплоизоляционных материалов в промышленном строительстве, в судостроении, в вагоностроении и т.д.
Простота в изготовлении.
Существует много способов изготовления стеклопластиковых изделий, большинство из которых требует минимальных вложений в оборудование. Например, для ручного формования потребуются только матрица и небольшой набор ручных инструментов (прикаточные валики, кисти, мерные сосуды и т.д.). Матрица может быть изготовлена практически из любого материала, начиная с дерева и заканчивая металлом. В настоящие время широкое распространение получили стеклопластиковые матрицы, которые имеют сравнительно небольшую стоимость и длительный срок службы.
Стеклопластик получают путем горячего прессования стекловолокна(Здесь имеется ввиду метод производства СТЕКЛОМАТЕРИЛА. Rules26), перемешанного с синтетическими смолами. В стеклопластиках стекловолокно играет роль армирующего материала, придающего изделиям высокую механическую прочность при малой плотности.
В настоящее время существует целый ряд различных смол, используемых в производстве стеклопластиковых изделий. Наибольшее распространение получили полиэфирные, винилэфирные и эпоксидные смолы. В зависимости от метода формования, химсостава и области применения все смолы можно разделить на следующие группы:
а) по методу формования:
для ручного формования
для вакуумной инжекции
для горячего прессования
для процессов намотки
для пултрузии
б) по области применения:
обычные конструкционные
химстойкие
огнестойкие
теплостойкие
светопрозрачные
Основные методы изготовления стеклопластиковых изделий.
1. Ручное (контактное) формование.
При этом методе стеклоармирующий материал вручную пропитывается смолой при помощи кисти или валиков. Затем пропитанный стекломат укладывается в форму, где он прикатывается прикаточными валиками. Прикатка осуществляется с целью удаления из ламината воздушных включений и равномерного распределения смолы по всему объему. Отверждение ламината происходит при обычной комнатной температуре, после чего изделие извлекается из формы и подвергается мехобработке (обрезка облоя, высверливание отверстий и т.д.)
Применяемые материалы:
Смолы: Любые, например эпоксидные, полиэфирные, винилэфирные.
Волокна: Любые.
Наполнители: Любые, стойкие к используемым смолам.
Основные преимущества:
Широко используется в течении многих лет.
Простота процесса.
Недорогие используемые инструменты, если используются смолы, отверждаемые при комнатной температуре.
Широкий выбор поставщиков и материалов.
Более высокое содержание стеклянного наполнителя и более длинные волокна по сравнению с методом напыления рубленного роввинга.
Основные недостатки:
Качество смеси смолы и катализатора, качество ламината, содержание стеклообразующего в ламинате очень зависят от квалификации рабочих.
Высокая вероятность воздушных включений в ламинате.
Малая производительность метода.
Вредные условия труда.
2. Метод напыления рубленного ровинга.
Стеклонить подается в ножи пистолета, где она рубится на короткие волокна. Затем они в воздухе смешиваются с струей смолы и катализатора и наносятся на форму. После нанесения рубленного роввинга, его необходимо прикатать с целью удаления из ламината воздушных включений. Прикатанный материал оставляют отвердевать при обычных атмосферных условиях.
Применяемые материалы:
Смолы: Прежде всего полиэфирные.
Волокна: Только стеклонить в виде роввинга (ровницы).
Наполнители: Любые, стойкие к стиролу. Укладываются вручную.
Основные преимущества:
Широко используется много лет.
Быстрый путь нанесения волокна и смолы.
Дешевые формы.
Основные недостатки:
Ламинаты имеют тенденцию быть очень богатыми смолой и поэтому чрезмерно тяжелыми.
Присутствуют только короткие волокна, которые ограничивают механические свойства ламината.
Смолы должны быть с низкой вязкостью для возможности их напыления. Это приводит к уменьшению их механических свойств и теплостойкости.
Вредные условия труда, большое содержаний в воздухе мелких частиц стекла.
Качество конечного продукта в основном зависит от мастерства оператора установки.
Стеклоармирующий материал укладывается на матрицу в виде заранее заготовленных выкроек. Затем укладывается пуансон, который прижимается к матрице при помощи прижимов. Смола подается в полость формы под рассчитанным давлением. Иногда, для облегчения прохода смолы через материал используется вакуум, который создается внутри формы. Как только смола пропитала весь стекломатериал, инжекцию останавливают и ламинат оставляют в форме до полного отверждения. Отверждение может проходить при обычной или повышенной температурах.
Применяемые материалы:
Смолы: эпоксидные, полиэфирные, винилэфирные.
Волокна: Любые. Желательно использовать специально предназначенные для этого стекломатериалы с проводящим слоем и механически связанными волокнами.
Наполнители: Любые стойкие к стиролу, кроме материалов в виде сот.
Основные преимущества:
Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.
Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ.
Возможно сокращение трудовых затрат и времени на изготовление изделия. Один рабочий может обслуживать одновременно несколько аппаратов, производяших инжекцию.
Вся форма изделия имеет глянцевую поверхность.
Минимизированы отходы материалов.
Основные недостатки:
Дорогие и сложные формы.
Сложность процесса.
Необходимость иметь инжекционное оборудование.
Волокна подаются от катушечной рамы до ванны со смолой и затем проходят через нагретую фильеру. В фильере убираются излишки смолы, происходит профилирование ламината и отверждение материала. После этого отвержденный профиль автоматически обрезается на необходимые длины.
Применяемые материалы.
Смолы: Эпоксидная смола, полиэфирная смола, винилэфирная смола.
Волокна: Любые.
Наполнители: Не используются.
Основные преимущества:
Это может быть очень быстрый процесс пропитки и отверждения материала.
Автоматизированное управление содержанием смолы в ламинате.
Недорогие материалы.
Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.
Закрытый процесс пропитки волокна.
Основные недостатки:
Ограниченная номенклатура изделий.
Дорогое оборудование.
Этот процесс прежде всего используется для изготовления пустотелых круглых или овальных секционных компонентов, типа труб или резервуаров. Волокна пропускаются через ванну со смолой, затем через натяжные валики, служащие для натяжения волокна и удаления излишков смолы. Волокна наматываются на сердечник с необходимым сечением, угол намотки контролируется отношением скорости движения тележки к скорости вращения.
Применяемые материалы:
Смолы: Любые.
Волокна: Любые, волокна подаются напрямую от рамы для катушек без дополнительного сшивания в ткань.
Наполнители: Любые.
Основные преимущества:
Это может быть очень быстрый и поэтому экономически выгодный метод укладки материала.
Регулируемое соотношение смола/стекло.
Высокая прочность при малом собственном весе.
Неподверженность коррозии и гниению
Недорогие материалы
Хорошие структурные свойства ламинатов, так как профили имеют направленные волокна и высокое содержание стекломатериала.
Основные недостатки:
Ограниченная номенклатура изделий.
Дорогое оборудование.
Волокно трудно точно положить по длине сердечника.
Высокие затраты на сердечник для больших изделий.
Рельефная лицевая поверхность.
6. Метод RFI (Resin Film Infusion).
Сухие ткани выкладываются вместе со слоями полутвердой пленки из смолы. Весь полученный пакет закрывается специальной пленкой. Сначала между пленкой и формой создается вакуум, после чего форму помещают в термошкаф или автоклав. Под воздействием температуры смола переходит в текучее состояние и благодаря вакууму пропитывает материал. После некоторого времени смола полимеризуется.
Применяемые материалы:
Смолы: Только эпоксидная смола.
Волокна: Любые.
Наполнители: Почти все, хотя ПВХ пена нуждается в специальной обработке из-за высоких температур процесса.
Основные преимущества:
Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.
Высокие физико-механические характеристики из-за твердого начального состояния полимера и высоких температур отверждения.
Более низкая стоимость процесса по сравнению с методом препрегов.
Хорошие условия труда и окружающей среды. Нет большого выброса вредных веществ.
Основные недостатки:
Мало применяется вне аэрокосмической промышленности.
Для процесса необходима система вакуумного мешка, термошкаф или автоклав.
Требования к оборудованию и инструменту по температуростойкости.
Препрег — предварительно пропитанная смолами стеклоткань.
Ткани и волокна предварительно пропитаны пред-катализированной смолой под высокой температурой и давлением. В таком виде препреги могут хранится до нескольких недель, однако для увеличения срока хранения, их хранят при пониженных температурах. Смола в препрегах находится в полутвердом состоянии. При формовании препреги укладываются на поверхность формы и закрываются вакуумным мешком. Затем происходит их нагревание до температуры примерно 120 — 180 град.C при этой температуре смола переходит в текучие состояние и препрег принимает размеры формы. Далее при дальнейшем повышении температуры происходит отверждение смолы. Дополнительное давление (до 5 атмосфер) для формования обычно обеспечивается автоклавом.
Применяемые материалы:
Смолы: Эпоксидные, полиэфирные, фенольные и высокотемпературные смолы типа полиимидных др.
Волокна: Любые.
Наполнители: Любые стойкие к температурам процесса.
Основные преимущества:
Могут быть получены ламинаты с высоким содержанием стекла и с минимальным содержанием пустот.
Хорошие условия труда и окружающая среда. Нет большого выброса вредных веществ.
Возможность автоматизировать процесс и снизить трудовые затраты.
Основные недостатки:
Высокая стоимость материалов
Для отверждения необходимы автоклавы, которые ограничивают размеры выпускаемых изделий.
Надеюсь выше преведеная классификация была Вам полезна и поможет разобраться в основах стеклоластикового производства.
Файбергласс: что такое, особенности применения, пошаговые техники
Стекловолокно или файбергласс – материал-новинка, используемый в нейл-индустрии для наращивания, укрепления и коррекции ногтей. Изготовляется из стекла с добавлением химических компонентов для придания пластичности. Материал этот очень прочный и гибкий. Он не ломается, как стекло.
Что такое файбергласс
Из одной упаковки файбергласса получается около 40 наращенных ногтей при пересчете на максимальную длину наращивания. Максимальная длина файбергласса для наращивания ногтей может просчитываться с помощью нижних бумажных форм для наращивания ногтей. На них есть разметка длины.
Технология новая, очень стремительно набирает популярность, и с таким же успехом на рынке появляется много подделок. Заказывай файбергласс на проверенных сайтах, с сертификатом. Лучше отказаться от китайских дешевых вариантов без отзывов, с того же AliExpress. При покупке рекомендуется обращать внимание на наличие сертификата качества. В нём должно быть указано, что данное стекловолокно изготовлено непосредственно для ногтей, имеет специальную обработку.
Популярные качественные марки с хорошими отзывами мастеров:
Толщина
Чем толще файбергласс, тем он менее гибкий и более прочный. При этом дает дополнительный объем. Поэтому толстый файбергласс рекомендуется использовать для наращивания ногтей и донаращивания углов. Такой материал лучше формирует свободный край, и тот не заламывается при носке.
Тонкий файбергласс имеет большую гибкость, не дает объема, но остается таким же прочным в носке. Его рекомендуется использовать для ремонта наращенных ногтей, достраивания стенок и армирования архитектуры пластины.
Плюсы и минусы
Как и любой материал, стекловолокно имеет ряд плюсов и минусов в работе и носке. Учитывай их сразу, чтобы адаптировать технологию для себя или клиентов.
Плюсы:
Минусы:
Инструменты и дополнительные материалы
Для работы с файберглассом потребуется перечень дополнительных инструментов и материалов, которые облегчат процедуру и дадут желаемый результат:
Особенности технологии
Подготавливая материал к фиксации на ногти, его необходимо предварительно нарезать участками нужной длины и скрепить волокна между собой топом без липкого слоя. Так они не рассыпятся. Получатся пучки, которые затем фиксируются на пластины.
Для армирования нужно будет нарезать материал очень мелкими кусочками длиной по несколько миллиметров. Для этого этапа потребуется файлик или плотная клеенчатая подложка.
Волокно складывается по длине в два раза и посередине «раскатывается» карандашом или фломастером до получения плоской пластины. Можно помогать себе разделять волоски апельсиновой палочкой. При этом они всё же должны плотно прилегать друг к другу, без пробелов по ширине, иначе топ не соединит их между собой.
Полученную плоскую пластину из раскатанных волокон необходимо промазать по ширине топом без липкого слоя. Далее снимаем с лампы дно и полимеризуем топ для фиксации «полотна». Топ будет хорошо отделяться от файла или плотной полиэтиленовой подложки.
Чтобы разметить волокно одной упаковки файберглассса на рабочие отрезки и сделать скрепленные топом заготовки заранее, используй нижние формы для наращивания ногтей. Они содержат сетку-разметку длины. Для этого наклейка отделяется от основы, сгибается, склеивается вдвое, и со стороны теперь хорошо видно возможную максимальную длину, которую может запросить клиент.
Прикладываем полученный шаблон к пучку волокон и скрепляем их топом через равные промежутки этой длины. Каждый раз раскатываем пучок карандашом для получения «пластины из волокон». Теперь вся длина файбергласса промазана топом через равные участки.
При работе с клиентом, тебе потребуется просто отрезать нужное количество заготовок и выполнять наращивание или укрепление. Так мы экономим время и усилия.
Для дополнительного укрепления или армирования ногтей файбергласс может выступать в качестве аналога акриловой пудры. Для армирования материал нарезается очень мелкими кусочками, стригущими движениями, и складывается в специальную баночку с подложкой на дне из файла или бумаги. Материал нарезается очень легко.
После самостоятельной нарезки необходимо протереть рабочее место и файл-подложку влажной салфеткой, чтобы улетевшие частички не попадали на кожу, вызывая раздражение.
Подготовка ногтей к покрытию
Этот этап является обязательным для прочной фиксации файбергласса и создания ноской основы. Любой искусственный материал требует специальной подготовки, чтобы не возникало сколов и отслоек.
Пошаговая инструкция подготовки для наращивания стекловолокном: