За счет чего летают дроны
Квадрокоптеры — как все начиналось?
Современный квадро (гекса, окто) коптер — это достаточно мощное «вычислительное» устройство, способное управляться со смартфона по WiFi, зависать в одной точке, летать по маршруту и пр. Купить такой аппарат сейчас может любой желающий. А с чего все начиналось?
Как летает квадрокоптер?
Чтобы понимать суть технических решений, разберемся немного как вообще квадрокоптер летает. По сути, квадрокоптер — это неустойчивая система. Если взять 4 мотора, и просто подключить их к батарейке, квадрокоптер никуда не полетит, он просто перевернется т.к. сила тяги моторов никогда не будет идентичной. И тут вступает в действие электроника. На борту квадрокоптера есть центральная «плата управления», ключевой частью которой является блок датчиков. В простейшем случае, это трехосевой гироскоп. Микроконтроллер постоянно считывает данные с гироскопов, и как только гироскоп «чувствует» наклон по какой-либо оси, контроллер дает соответствующему двигателю команду чуть-чуть увеличить или уменьшить обороты, чтобы компенсировать наклон. В общем-то и вся логика — за исключением кучи всего (ПИД-регуляторов, теории управления, фильтров Калмана), ничего сложного тут нет (шутка). Ну а для пользователя все действительно прозрачно. Никаких движущихся частей кроме моторов, в квадрокоптере нет, все управление происходит исключительно изменением вращения оборотов моторов (с поворотами аналогично — изменяем скорости вращения, получаем вращающий момент). А теперь вернемся к истории.
MikroKopter
Легендарная немецкая компания, благодаря инженерам которой в 2006 году появился первый аппарат. Контроллер имел на борту процессор Atmega644 c 4Кбайт памяти и частотой до 20МГц, 3 гироскопа по каждой из осей, акселерометр (для возможности горизонтального полета) и барометр для удержания высоты (точность барометра MPX4115A около 1м). Позже появились дополнительные модули, например GPS для удержания позиции.
Сейчас в youtube можно найти видео, как примерно все это летало (2007 год).
В целом система оказалась весьма удачной. Их продукция никогда не была дешевой, ценник начинался где-то от 1500Евро. Фирма существует и сейчас, они производят профессиональные аппараты, ценовая категория соответствующая. И еще один важный момент — первоначально, создатели Микрокоптер сделали исходный код открытым. Разумеется, уже в скором времени стали появляться различные клоны (в том числе производимые и в РФ), это конечно негативно сказалось на продажах, и код потом закрыли. Но все-таки, думаю это послужило большим толчком к созданию различного вида мультикоптеров.
У нас MikroKopter не был популярен из-за цены, и владельцев было не так уж много. Однако толчок мировому сообществу был дан, и различные системы стали появляться.
KaptainKuk
Одна из самых простых систем, выпускаемых (в различных версиях) с 2010 года и до сих пор. Плата управления имеет только 3 гироскопа, для регулировки параметров используются обычные переменные резисторы.
(Фото с сайта Hobbyking.com)
Такая плата сейчас стоит всего около 15$, как можно видеть, на борту кроме гироскопов и слабого процессора, в общем-то ничего и нет. Прошивки в исходных кодах для KK свободно доступны в Интернете, желающие могут скачать их, набрав в поиске гугла имя файла «kk2_1V1.zip» (размер всего 90Кб). Наверное, это первая и последняя версия прошивки какого-либо коптера, написанная на ассемблере.
MultiWii
Следующей вехой в развитии коптеров стала система MultiWii. Название пошло от игрового манипулятора Nintendo Wii и Wii Nunchuk, которые умельцы разбирали, и выпиливали оттуда плату с датчиками. В качестве центрального процессора использовалась Arduino Nano.
Внешний вид платы получался примерно такой (фото с сайта rcgroups, 2010 год):
Впрочем, за несколько лет система эволюционировала, и последние платы (они продаются и сейчас, цена вопроса 20-30$) выглядят где-то так:
(фото с сайта Hobbyking.com)
Последние версии MultiWii имеют вполне неплохие датчики, умеют зависать в точке по GPS, удерживать высоту и возвращаться домой. Т.к. Multiwii был написан для Arduino, все платы так и остались Arduino-совместимыми, исходный код можно скачать на Github. Одним из недостатков MultiWii является слабый процессор, что ограничивает вычислительные возможности алгоритмов, позже стали появляться клоны на STM32, однако погоды они не сделали, т.к. в плане «железа» любой квадрокоптер достаточно прост, 95% сложности заключается именно в коде. В то же время, я уверен что именно исходники MultiWii стали основой всех сегодняшних коммерческих систем.
ArduCopter
Еще одна система, основанная на Arduino, пошла дальше всех. Сейчас это система с возможностью программируемого полета по точкам, поддержкой радиомодемов и передачи телеметрии, хранения различных логов и пр.
Их софт выглядит примерно так:
Платы эволюционировали от таких:
до таких
Платы продаются и сейчас, цена вопроса от 50$ (за клоны) до 250$ за оригинальные версии. Исходные коды Ardupilot так же полностью доступны на github, и судя по количеству коммитов, проект активно развивается. Эта система по возможностям не уступает профессиональным аппаратам, качество полета можно посмотреть на видео:
Здесь все классно, за исключением одного «но» — это Open Source, со всеми вытекающими последствиями. Система открытая, дорабатывается энтузиастами, и никто ничего не гарантирует, в том числе и отсутствия багов в софте. Если квадрокоптер упадет на чей-то BMW, жаловаться будет некому.
Бесколлекторные подвесы (brushless gimbal)
Видно что коптер качается, а ось камеры нет.
Сейчас этим уже никого не удивить, а тогда это был настоящий прорыв в качестве видеосъемки.
Коммерческие системы
Про них писать не так интересно, т.к. принцип здесь простой, «заплати и лети». Первым был вышеупомянутый MicroKopter, следующей (и не очень удачной) попыткой был XAircraft, в бюджетном секторе были популярны аппараты марки Gaui (это был первый бюджетный аппарат ценой около 400$ за готовый коптер). И наконец, самой успешной компанией является DJI, про которую не писал только ленивый, так что повторяться здесь смысла нет. Они вышли на рынок с контроллерами DJI Naza (ценой 200-400$, с возможностью удержания позиции, возврата домой), была отдельная профессиональная серия DJI Wookong (ценой около 1000$ и большей стабильностью полета). Наконец, DJI вышла на рынок устройств готовых к полету (RTF, Ready To Fly), ну про них уже все знают.
И последние видео.
Первый бюджетный квадрокоптер Gaui 330. Цена вопроса 400$, 2010 год, никаких доп.функций.
Dji Naza v2, цена вопроса те же 400$, возможность удержания позиции, возврата домой, полета любой стороной к пилоту (режим carefree).
Dji Phantom 3 — со встроенным подвесом камеры, управлением со смартфона и прочими плюшками.
На этом пока все, sorry за большое количество видео, но без них никак, иначе было бы неинтересно. Посмотрим что будет дальше, лет через 5…
От «Ориона» до «Охотника». Как работают российские беспилотники
Рой дронов-беспилотников может появиться у России раньше, чем у США
БЛА «Охотник» и «Орион»
РИА «Новости»/АО «Кронштадт»
Долгое время эксперты ждали, когда Россия догонит в этом отношении США. Вернее, ждали того, чтобы у нас появились такие же изделия самолетного типа, какие мы уже привыкли наблюдать в голливудском кино.
Интересные полевые образцы я увидел своими глазами в авиационном отряде спецназа «Ястреб» МВД России еще в 2015 году. Они там не стояли без дела, а буквально за месяц до моего визита вернулись с Дальнего Востока, где их применяли для борьбы с браконьерами.
Конечно, этих злоумышленников они не уничтожали, а только фиксировали их местонахождение, которое передавалось группе захвата. В данном случае речь шла об ижевских ZALA cамолетного типа. Они были способны развивать скорость более 100 километров в час и работать до трех часов на высоте в несколько километров.
Применялись тогда, шесть лет назад, беспилотники и во время спецопераций на Северном Кавказе. Однажды, по словам командира «Ястреба», с их помощью удалось обнаружить опасную группу боевиков, спрятавшуюся в кукурузном поле.
С началом военной операции Воздушно-космических сил (ВКС) России в Сирии возникла нужда и в ударных беспилотниках.
В 2016 году первый полет совершил российский «Орион», ставший отечественным аналогом американского MQ-1C Grey Eagle. Характеристики экспортного варианта известны, а тот, что применяется российскими ВКС, – засекречен. Не слишком афишируется и опыт его боевого применения.
Лишь на днях источник РИА «Новости» сообщил, что «Орион» уже совершил свыше 40 вылетов для нанесения ударов по террористам. По его словам, этот беспилотник успешно применял управляемые ракеты X-БПЛА и авиабомбы.
Кроме того, «Орион» собирал разведывательные данные, «подсвечивал» инфраструктуру противника для артиллерии и авиации.
Об экспортной модели известно, что она способна сутки находиться в полете, набирать высоту до 7500 метров, нести боезапас весом 200 килограммов, двигаться со скоростью (по разным данным) от 120 до 200 километров в час, работать в радиусе 250 километров, а с применением беспилотника-ретранслятора – 300 километров.
Журналистам совсем недавно был продемонстрирован первый летный образец другого новейшего российского ударного беспилотника – презентация С-70 «Охотник» с плоским реактивным соплом прошла на Новосибирском авиационном заводе (НАЗ) имени Чкалова. Замминистра обороны Алексей Криворучко отметил, что его функционал «превосходит немногочисленные иностранные аналоги».
Однако и американцы не стоят на месте. Они развивают концепцию, предполагающую использование сразу целого роя дронов. На ум в связи с этим приходят аналогии с армией дроидов из Звездных войн. Но и уязвимость у них пока что схожая: есть пункт управления, который находится относительно недалеко от зоны боевых действий. Если его уничтожить, то дроны рухнут на землю.
Американцы пытаются решить проблему уязвимости с помощью автономных систем, которые будут работать в связке с пилотируемыми самолетами-носителями. Уже проводились экспериментальные запуски беспилотников проекта X-61А Gremlin с транспортника «Геркулес».
Наши разработчики осваивают эту тему. И, вероятно, нашли оригинальное решение. Так, компания «Кронштадт» начала создание системы применения «роя» боевых беспилотных летательных аппаратов разных классов. Такой «рой» будет действовать самостоятельно.
«Управляющий оператор будет выдавать задачи не конкретным аппаратам, а ставить задачу выполнить действие в заданном районе. Группа или «рой» будет самостоятельно распределять роли и определять приоритетность выполнения задачи. Это касается как ударных задач, так и задач воздушной разведки. Проще говоря – самостоятельно обнаруживать, классифицировать и поражать заданные цели»,
– рассказал гендиректор «Кронштадта» Сергей Богатков РИА «Новости».
Есть все основания предполагать, что рой дронов-беспилотников может появиться у России раньше, чем у США.
Сергей Лютых, журналист, капитан милиции в отставке, работал участковым милиционером, расследовал уголовные дела в дознании, раскрывал преступления, будучи оперативником в МУРе на Петровке, 38.
Мнение автора может не совпадать с позицией редакции «Газеты.Ru».
Зачем нам дроны и как сделать их лучше
Дроны, или беспилотные летательные аппараты (БПЛА) сейчас используются в самых разных сферах жизни людей, от военных операций до съёмки дней рождения с воздуха. Ещё в 2016 году в США число лицензий, выданных на управление дронами, превысило число лицензий пилотов «обычного» авиатранспорта, а в 2020 году Федеральное управление гражданской авиации (FAA) сообщило, что общее количество коммерческих и потребительских дронов в стране достигло 1,7 млн единиц. Так почему же дроны ещё не стали нормой жизни для бизнеса и обычных пользователей? Обсудим основные проблемы и технологические ограничения современных БПЛА, но сперва поговорим о том, для чего они в принципе нужны.
Птицы одного полёта
Скажем сразу, что в этой статье мы не планируем подробно останавливаться на военных и боевых БПЛА — по своей конструкции эти летательные аппараты намного ближе к классическим самолётам (или крылатым ракетам), поэтому список сильных и слабых сторон для них будет сильно отличаться от аналогичных параметров у коммерческих дронов, доступных для пользователей или бизнеса. Итак, что же такое дрон? Само название происходит от английского drone, что можно перевести и как «трутень», и как «гул» или «жужжание». Термин отлично подходит для классических дронов-коптеров, но впервые был применён к беспилотным самолётам-мишеням ещё в 30-х годах прошлого века. В зависимости от сферы применения, конструкция дрона может различаться, но общими знаменателями остаются наличие пропеллеров, которые необходимы для полёта и маневрирования в воздухе (в зависимости от их количества устройство может также называться моно- би- три- квадро- и т. д. коптером) и система связи, позволяющая управлять устройством дистанционно.
Армейский беспилотник CH-4. Источник: Zerbout / Wikimedia Commons
Подробный разбор всех возможных способов использования дронов — дело неблагодарное просто потому, что человеческая фантазия продолжает придумывать их практически постоянно. К примеру, ещё в 2018 году на открытии Олимпийских игр в Южной Корее Intel продемонстрировала грандиозное световое шоу (точнее, его запись) с синхронным полётом более тысячи дронов, которое попало в Книгу рекордов Гиннесса. В целом же сферы применения БПЛА можно разделить на несколько крупных групп:
Дела войны: дроны не просто активно используются в военных целях, они фактически были разработаны именно как альтернатива летательным аппаратам с пилотами, например, для удалённой бомбардировки наземных целей. В современных условиях активно применяются дроны-камикадзе, которые мало чем отличаются по своему принципу действия от крылатых ракет, дроны-разведчики и наводчики для сбора сведений и корректировки огня ракетных войск, а также дроны связи. Эффективность БПЛА как была в очередной раз доказана во время недавнего конфликта в Нагорном Карабахе.
Логистика и транспорт: в эту группу входят, в основном, проекты различных компаний по доставке грузов на малые расстояния (так называемая доставка «последней мили»), например, программа Amazon Prime Air предусматривает доставку малогабаритных посылок получателям в течение 30 минут с момента заказа. Большая их часть в данный момент находится на стадии разработки из-за серьёзных законодательных и технических ограничений. Также сюда можно отнести применение дронов в качестве беспилотных такси в городах. Подобный проект уже несколько лет рассматривается властями города Дубай в качестве альтернативы наземному транспорту и вертолётам.
Потребительские дроны — самая, пожалуй, широкая группа, в неё входит огромное количество устройств, от совсем дешёвых и миниатюрных до аппаратов стоимостью в несколько тысяч долларов. Используются эти БПЛА в первую очередь в рекреационных целях: с их помощью ведётся фото- и видеосъёмка, включая оригинальные селфи, устраиваются спортивные соревнования и бьются рекорды скорости.
Сельское хозяйство и промышленность — учитывая высокую маневренность дронов и возможность установки на них дополнительного оборудования, эти устройства всё чаще начинают использоваться для решения сельскохозяйственных задач, например, для оценки качества посевов или опрыскивания полей, создания трёхмерных карт местности и ведения аэрофотосъёмки. Также дроны могут применяться для проведения осмотров крупных промышленных объектов.
К примеру, Toshiba разработала систему с использованием дронов, которая способна оценивать состояние промышленных структур, снимая их на встроенную камеру БПЛА. В системе применяется технология проведения измерений при помощи 3D лазера наземного базирования, которая позволяет разработать оптимизированный маршрут для дрона, охватывающий все ключевые точки объекта, БПЛА с камерой, а также технологии распознавания изображения, необходимые для оценки состояния конструкций (например, мест образования ржавчины) на объекте.
Периодические облёты объекта дронами помогают отслеживать динамику его состояния и своевременно выявлять проблемные детали конструкции, которые требуют ремонта или замены. При этом система избавляет технический персонал от необходимости лично проводить такие проверки, подвергая себя риску. Использовать систему предполагается на крупных объектах, которые могут представлять опасность в случае аварий, например, на нефтеперерабатывающих заводах или электростанциях. (*Данный проект прекращён в 2019 году.)
Построение трёхмерной карты и маршрута для дрона, фото: Toshiba
Правоохранительные органы — это сравнительно новые пользователи дронов, но они входят во вкус, ведь полицейские дроны могут применяться, помимо прочего, для поиска пропавших людей в местности со сложным рельефом, анализа мест преступления, наблюдения за преступниками во время захвата заложников и большими группами людей в публичных местах.
На честном слове и. — основные проблемы современных дронов и как их решить
Перспективы использования дронов можно смело назвать колоссальными, но мы не видим пролетающие в небе эскадрильи БПЛА каждый день. Почему? По целому ряду причин, только часть из которых может быть устранена в ближайшее время. Условно эти причины можно разделить на несколько основных групп:
Законодательство и контроль. В большинстве стран до сих пор не введены законодательные нормы, которые позволили бы владельцам дронов без особых проблем запускать их устройства в любом удобном месте, не опасаясь штрафов и судебного преследования. Связано это в первую очередь с тем, что реальных систем контроля за перемещением дронов существует крайне мало, а добраться БПЛА может практически куда угодно. Дроны могут, например, парализовать работу целого аэропорта, как произошло в 2018 году в лондонском Гатвике, когда неизвестные в течение двух суток выводили на взлётно-посадочные полосы группу БПЛА, не давая самолётам приземляться или взлетать. Интересно, что местные власти не смогли разобраться с проблемой существующими на тот момент методами, так как дроны использовали нестандартные частоты и просто заглушить сигнал от оператора или сбить их не удавалось.
Чтобы избежать подобных ситуаций, во многих странах введена жёсткая процедура регулирования и регистрации БПЛА, что с одной стороны позволяет выявить нарушения закона, а с другой сильно тормозит развитие коммерческих дронов. Например, заявленная в 2016 году и уже описанная выше служба Amazon Prime Air до сих пор не введена в эксплуатацию из-за ограничений Федерального управления гражданской авиации. Более того, компании даже испытания своих дронов пришлось изначально проводить в более лояльных в этих вопорсах Канаде и в Великобритании.
Решение данной проблемы — вопрос, скорее, времени, а не усилий отдельных компаний или правительств. Та же FAA постепенно ослабляет ограничения для БПЛА на территории США, а законодательства различных стран совершенствуются, чтобы пользователи и бизнес могли наслаждаться новыми технологиями (в рамках закона) без риска. Ещё один вариант, который поможет ускорить принятие более мягких законов, — это использование новых технологий, позволяющих лучше контролировать перемещение дронов и идентифицировать их для последующей «работы» с владельцами.
Конструкция и материалы: дрон по определению не может быть бронированным и неуязвимым: такая машина будет либо совершенно неподъёмной, либо обойдётся конечному пользователю в сумму, за которую легко можно купить «обычное» пилотируемое средство. Поэтому создатели дронов постоянно балансируют между весом и прочностью, ценой и качеством. Чаще всего для в конструкции коммерческих дронов используется пластик, композитные материалы на основе углепластика, алюминий и литий-ионные батареи для питания пропеллеров и внутренних систем. Здесь бы самое время вспомнить дрон «Почты России», который обошёлся бюджету в миллион рублей и разбился во время тестового полёта, и задуматься, какие материалы применялись в его конструкции.
Но если отбросить шутки, то проблемы надёжности дронов — вопрос эволюции технологий. Уже сейчас существуют дроны, которые намного лучше защищены от ударов и падений (в первую очередь от них страдают пропеллеры, которые делают из более мягких материалов, чтобы избежать травм пользователей). Также ведутся работы о замене самих двигателей и пропеллеров на более надёжные решения. Например, стартап Sentient Blue предлагает заменить их на гибрид миниатюрного турбореактивного двигателя на ископаемых видах топлива с высокой плотностью энергии и мотор-генератора, питающего большинство систем БПЛА. По данным разработчика такая система значительно повышает надёжность и одновременно позволяет резко повысить дальность автономных перелётов дронов.
Автономность: одной из основных причин падения дронов (помимо аварий) можно назвать низкий уровень заряда батареи, который не позволяет своевременно вернуть «в гнездо» слишком далеко улетевший аппарат. Ограничения конструкции в данном случае почти те же, что и в предыдущем пункте, ведь бо́льшая ёмкость батареи почти всегда равна большему её весу. Значит, в корпус дрона поместится меньше полезных систем или конструкторам придётся увеличивать его габариты. И не факт, что такое увеличение не нивелирует все преимущества от роста ёмкости батареи. Это достаточно серьёзный ограничивающий фактор для развития дронов, потому что идей нового оборудования и сфер применения устройств традиционно больше, чем идей для новых источников питания.
Преимущества батарей SCiB для дронов, изображение: Toshiba
Как вариант многие компании предлагают отказаться от традиционных литий-ионных батарей и воспользоваться другими технологиями. Например, южнокорейская компания MetaVista в 2019 году провела испытания дрона с водородным двигателем, который смог продержаться в воздухе более 10 часов, что само по себе рекорд для отрасли.
А Toshiba в свою очередь развивает идеи батарей SCiB собственной разработки, применение которых позволит резко снизить количество отходов и влияние на экологию за счёт долгого времени службы, даёт возможность заряжать дроны намного быстрее и использовать их в условиях низких температур, которые крайне негативно влияют на ёмкость литий-ионных аккумуляторов.
Риск взлома и человеческий фактор. Отсутствие пилота на борту дрона, несомненно, снижает риск человеческих потерь в случае аварии и позволяет сильно уменьшить габариты устройств, но такой подход создаёт целый ряд проблем, связанных с их безопасностью. В первую очередь, как и любое устройство с беспроводной связью с пользователем, их можно взломать, чтобы перехватить управление либо просто перекрыть/заглушить канал связи и поймать неуправляемый дрон механическими средствами. Также хакеры используют подмену GPS-координат, чтобы направить дрон в нужную им локацию. Более того, сам дрон может стать источником вредоносного ПО и вектором атаки на незащищённые устройства пользователей. Вторая половина проблемы с человеческим фактором — это необходимость в операторе. Несмотря на то, что современные дроны уже умеют совершать простые манёвры в воздухе без участия «пилота» и даже возвращаться на стартовую локацию в случае потери сигнала от оператора, такая автономия не гарантирует их сохранности. Например, автопилот на базе данных GPS чаще всего не учитывает особенности рельефа и просто прокладывает маршрут до стартовой точки по прямой.
Итог — столкновение с не нанесенными на внутреннюю карту деревьями или столбами и авария почти гарантированы. Более того, в некоторых странах законодательно запрещено управлять дронами, которые находятся вне прямого поля зрения оператора, что дополнительно снижает степень их автономности в полёте. Решения проблем из этой группы зависят как от конструкторов устройств, так и от пользователей. Развитие систем защиты базовых станций и дронов поможет избежать взлома, но не менее важна цифровая гигиена оператора, своевременное обновление прошивки устройств и смартфонов или планшетов, которые часто используются в качестве базовой станции и пульта управления БПЛА.
Выводы и прогнозы
Общество всегда опасалось новых идей, но назвать дроны и БПЛА в целом чем-то новым уже не получается. В конце концов, появились они значительно больше века назад. Компании по всему миру активно заинтересованы в том, чтобы дроны продолжали летать, что можно заметить и по количеству новых стартапов, и по стабильному росту спроса на дроны в потребительском и коммерческом секторах — по прогнозам аналитиков этот рынок к 2025 году увеличится более чем вдвое по сравнению с 2020 годом (с 20,8 млрд до 51,97 млрд долларов США). Соответственно, решение большинства описанных в статье проблем — это только вопрос времени и совершенствования новых технологий.