За счет чего осуществляется

ГДЗ биология 6 класс Пасечник, Суматохин, Калинова Просвещение 2019-2020 Задание: 37 Рост и развитие – свойства живых организмов

Стр. 154. Вспомните

№ 1. Что такое рост?

Рост – это увеличение линейных размеров и массы особи, а также его отдельных органов за счет увеличения массы и числа клеток, а также неклеточных образований.

№ 2. Какие признаки свидетельствуют о росте организмов?

О росте организмов могут свидетельствовать увеличение их размеров и массы через определённый промежуток времени.

Стр. 154. Вопросы после параграфа

№ 1. Что лежит в основе роста организмов?

В основе роста любого живого организма лежит деление клеток способом митоза, при котором каждая дочерняя клетка получает набор хромосом, который идентичен материнской клетке, и как следствия – увеличения их количества.

№2. За счёт чего происходит рост корня и побега у растений?

Корень у растений растет за счет зоны деления клеток, который располагается на самом кончике корня и покрыт корневым чехликом, предотвращающим механическое повреждение делящихся клеток.

Рост побега растения также происходит за счет деления клеток, которые находятся в его верхней точке – конусе наращивания.

№ 3. Как зависит рост и развитие организмов от условий среды обитания?

Рост и развитие организмов напрямую зависят от условий, в которых они обитают. Например, семена у растений могут прорастать только при достаточной увлажненности почвы. А для размножения споровых растений обязательным условием является наличие воды на поверхности субстрата. Аналогично и фотосинтез в растениях возможен только при наличии достаточного количества света и, как правило, у большинства видов активнее происходит в теплое время года. Соответственно, именно весна и лето являются благоприятными для роста и развития растений. К осени все эти процессы утихают.

Стр. 155. Задание

№ 1. Прочитайте текст параграфа, составьте план ответа на вопрос: «Что лежит в основе роста организмов?»

Основа роста – деление клеток в живом организме.

Способы размножения: половой и бесполый.

Ядро как центр и начало в процессе деления клетки.

№ 2. Сравните особенности роста и развития организмов. Данные представьте в виде таблицы.

Свойства организмовРостРазвитие
Особенности свойствУвеличение массы и размеров организмов. Для растений характерен рост в течение всей жизни, для животных – неодинаковая скорость роста, его неравномерность и, как следствие, изменение пропорций тела с возрастом. Причина роста организмов – деление и рост клеток образовательной ткани.Является качественным изменением (упрощением или усложнением) особи с момента ее зарождения и до конца жизни. Может быть индивидуальным (онтогенез) или историческим (филогенез). Индивидуальное развитие происходит за счет обмена веществ, а потому является сложным процессом количественных изменений и качественных превращений, которые происходят в живом организме. Его закономерность это: периодичность, неравномерность, ритмичность.

Стр. 155. Подумайте

Почему рост и развитие взаимосвязаны?

Рост и развитие очень тесно связаны друг с другом и представляют разные стороны единого процесса – индивидуального развития, а потому являются неотъемлемой частью любого живого организма.

В одном и том же организме процессы роста и развития могут происходить в разном сочетании. Например, организм может расти, но в то же время развиваться медленно, или, наоборот, при замедленном росте быстро развиваться. Границу между этими двумя понятиями можно установить только условно, потому что она определяется исключительно чувствительностью средств, которые используются для изучения роста и развития – наблюдение, применение лупы и микроскопа, глазомерная оценка и т.д. При визуальном наблюдении может казаться, что растение в период кущения только растет. Однако при внимательном изучении можно увидеть закономерные отличия в каждом последовательно появляющемся листе на новом месте.

Глава 4.

Строение и многообразие покрытосеменных растений

Источник

1. Какие процессы жизнедеятельности характерны для клетки любого организма?
Рост, обмен веществ, деление.

2. В процессе обмена веществ через клетку осуществляется постоянный ток веществ и энергии, сопровождающийся их превращениями. Что произойдет, если этот процесс будет нарушен?

Клетка лишится питательных веществ и умрет.

3. Рассмотрите в учебнике рисунок 20 «Рост растительной клетки».

1) Опишите, что происходит с растительной клеткой по мере ее роста и развития.
Клетка увеличивается.
2) За счет чего происходит увеличение объема клетки, если известно, что количество цитоплазмы остается неизменным?
Увеличивается размер вакуолей, поскольку увеличивается количество клеточного сока, хранящегося в них.

4. Рассмотрите рисунок, на котором изображены молодая и старая растительная клетки. Определите и подпишите на рисунке названия основных структурных элементов данных клеток.

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Ответьте на вопросы:
1) В чем заключается различие в строении этих клеток?
В старой клетке вакуоль большая, в молодой много небольших. В старой клетке ядро смещено к мембране, в молодой расположено ближе к центру.
2) Какое значение имеют поры (поровые каналы) для растительной клетки?
Благодаря им клетка дышит и взаимодействует с другими клетками.
3) Какую роль играют хлоропласты и вакуоли в жизни растительной клетки?
Хлоропласты обеспечивают фотосинтез, а вакуоли содержат клеточный сок. В нем хранится запас питательных веществ для клетки.

5. Проведите наблюдения за движением цитоплазмы в клетках листа элодеи. Сделайте выводы о влиянии изменений условий среды на клетку (описание опытов см. в учебнике, с. 38).

На движение цитоплазмы в клетках влияют факторы окружающей среды.

Источник

Энергетический обмен или откуда берется энергия для организма?

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

АТФ + H2O ⇒ АДФ + Ф + Энергия

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье «Пульс для бега и пульс при физической нагрузке (Пульсовые зоны)«.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Энергообеспечение организма человека.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно, то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти ЗДЕСЬ.

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Источник

Жизнедеятельность клетки: рост, развитие, деление

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

В данный момент вы не можете посмотреть или раздать видеоурок ученикам

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Конспект урока «Жизнедеятельность клетки: рост, развитие, деление»

Клетка — наименьшая единица жизни.

Каждая клетка питается, дышит, реагирует на воздействие внешней среды, выделяет ненужные ей вещества, размножается, то есть живет.

Внутренняя среда клетки ― полужидкое содержимое ─ называется цитоплазмой (от греч. κύτος ─ «клетка» и πλάσμα ─ «содержимое»).

В состав цитоплазмы входят органические и неорганические вещества многих видов. Основное вещество цитоплазмы — вода.

В ней находятся обязательные клеточное компоненты ― органеллы, каждый из которых выполняет какие-то определенные функции.

Важнейшая роль цитоплазмы — объединение всех клеточных структур (компонентов) и обеспечение их химического взаимодействия.

Одно из важнейших проявлений жизнедеятельности клетки — движение цитоплазмы. Благодаря движению цитоплазмы ко всем частям клетки доставляются нужные ей вещества.

Движение цитоплазмы можно наблюдать под микроскопом в клетках листа элодеи. С этим водным растением вы уже знакомы. Элодею часто выращивают в аквариумах.

Чтобы увидеть движение цитоплазмы, надо приготовить препарат с живыми клетками и рассмотреть при увеличении в 300 раз. Для этого окуляр микроскопа должен иметь 20-кратное увеличение, а объектив — 15-кратное (20 х 15 = 300).

Зеленые пластиды клеток листа элодеи, перемещаясь вместе с цитоплазмой, позволяют увидеть медленное движение бесцветной цитоплазмы.

Движение цитоплазмы может замедляться или ускоряться под воздействием экологических факторов окружающей среды — света, температуры, снабжения кислородом, водой.

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Если зеленый лист элодеи подсветить ярким светом или положить в слегка подогретую каплю воды, то цитоплазма в клетках такого листа будет двигаться быстрее.

И наоборот, при охлаждении листа скорость движения цитоплазмы замедляется. В этом проявляется реакция живых клеток растения на изменение условий среды обитания.

Движение цитоплазмы свойственно как клеткам растений, так и клеткам животных. Например, благодаря цитоплазматическому потоку перемещается микроскопический одноклеточный организм ─ амёба. Водится он в прудах, во влажной почве, а также во внутренностях животных.

Цитоплазма одной живой клетки обычно не изолирована от цитоплазмы других живых клеток, расположенных рядом. В клеточных оболочках есть поры, через которые нити цитоплазмы соединяются с соседними клетками.

Нередко живые растущие клетки всех органов растения меняют форму. Их оболочки округляются и местами отходят друг от друга. В этих участках межклеточное вещество разрушается, клетки разъединяются. Возникают межклетники, заполненные воздухом.

Так происходит при варке клубней картофеля. В спелых плодах арбузов и томатов, рассыпчатых яблоках клетки также легко разъединяются.

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Любая живая клетка питается, то есть захватывает из внешней среды съедобные для себя вещества (в виде отдельных молекул или больших групп молекул ― пищевых частиц, иногда даже целых клеток меньшего размера) и так или иначе использует эти вещества.

Питанием называют совокупность процессов, которые включают поступление в организм, переваривание, всасывание и усвоение им пищевых веществ. В процессе питания организмы получают химические соединения, используемые ими для всех процессов жизнедеятельности.

Питание клетки происходит в результате целого ряда сложных химических реакций. В ходе этих реакций неорганические вещества, поступившие в клетку из внешней среды (углекислый газ, минеральные соли, вода), преобразуются в органические и входят в состав тела самой клетки в виде белков, сахаров, жиров, масел и др.

Большая часть веществ, поступающих из окружающей среды, расходуется не для получения энергии, а на синтез новых веществ, необходимых клетке или организму.

Помимо поступления различных питательных веществ в клетку в ней происходит и другой немаловажный процесс ― дыхание.

Дыхание клетки — это сложный процесс химических реакций, дающих клетке энергию. Реакции протекают в цитоплазме и митохондриях (специальных органеллах ― энергетических станциях клетки).

В ходе этих реакций поступившие в клетку органические вещества (углеводы, липиды, аминокислоты) окисляются кислородом до углекислого газа и воды. В итоге происходит выделение энергии, которая используется клеткой и всем организмом по мере необходимости.

В результате питания и дыхания происходит рост и развитие клетки.

Клетка возникает благодаря делению другой клетки. Затем она несколько увеличивается, главным образом за счет увеличения веществ цитоплазмы.

В старой клетке обычно имеется одна большая вакуоль, поэтому цитоплазма, в которой находится ядро, прилегает к клеточной оболочке, а молодые содержат много мелких вакуолей. Молодые клетки, в отличие от старых, способны делиться.

Клетка увеличивается в размере (растягивается), а затем дифференцируется. Так происходит ее развитие. То есть в ней появляются какие-то отличия от других клеток. В результате чего клетки начинают выполнять определенные возложенные на них функции.

После дифференциации клетка снова делится. Согласно клеточной теории, возникновение новых клеток происходит путём деления предыдущей, материнской клетки.

Жизнь клетки от момента её появления и до собственного деления, включая само деление, а также гибель клетки называется жизненным циклом клетки.

В результате деления происходит рост организмов.

Деление клетки — сложный процесс, состоящий из ряда этапов, последовательно идущих друг за другом. Главную роль в нем играют события, происходящие в ядре.

Сначала ядро увеличивается, и в нём становятся хорошо заметны тельца (обычно цилиндрической формы) — это хромосомы.

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Хромосомы — это очень важные структуры. В них заложена вся необходимая информация об организме. Они передают наследственные признаки от клетки к клетке.

В результате сложного процесса каждая хромосома как бы копирует себя. Образуются две одинаковые части.

Благодаря специальным структурам хромосомы выстраиваются на экваторе клетки. Эти структуры тянут хромосомы с двух сторон к полюсам клетки.

При этом каждая хромосома расщепляется на две хроматиды ─ половинки двойной хромосомы.

Таким образом у двух полюсов клетки оказывается одинаковый генетический наследственный материал. Такой же, как был в клетке до начала деления.

В каждой вновь образованной клетке формируются ядерные оболочки и ядрышки. Ядро молодой клетки располагается в центре.

Всё содержимое также равномерно распределяется между двумя новыми клетками.

Благодаря делению клеток и их растяжению осуществляется рост организма. Например, растения, в отличие от других живых существ, растут всю жизнь. Отсюда и происходит их название ─»растения».

Источник

Энергетический обмен или откуда берется энергия для организма?

За счет чего человек двигается? Что такое энергетический обмен? Откуда берется энергия для организма? На сколько ее хватит? При какой физической нагрузке, какая энергия расходуется? Вопросов как видите много. Но больше всего их появляется, когда начинаешь эту тему изучать. Попробую облегчить самым любопытным жизнь и сэкономить время. Поехали…

Энергетический обмен – совокупность реакций расщепления органических веществ, сопровождающихся выделением энергии.

Для обеспечения движения (актиновых и миозиновых нитей в мышце) мышце требуется АденозинТриФосфат (АТФ). При разрыве химических связей между фосфатами выделяется энергия, которая используется клеткой. При этом АТФ переходит в состояние с меньшей энергией в АденозинДиФосфат (АДФ) и неорганического Фосфора (Ф)

АТФ + H2O ⇒ АДФ + Ф + Энергия

Если мышца производит работу, то АТФ постоянно расщепляется на АДФ и неорганический фосфор выделяя при этом Энергию (порядка 40-60 кДж/моль). Для продолжительной работы необходимо восстановление АТФ с такой скоростью, с какой это вещество используется клеткой.

Источники энергии, используемые при кратковременной, непродолжительной и продолжительной работе различные. Образование энергии может осуществляться как анаэробным (безкислородным), так и аэробным (окислительным) способом. Какие качества развивает спортсмен тренируясь в аэробной или анаэробной зоне я писал в статье «Пульс для бега и пульс при физической нагрузке (Пульсовые зоны)«.

Выделяют три энергетические системы, обеспечивающие физическую работу человека:

За счет чего осуществляется. Смотреть фото За счет чего осуществляется. Смотреть картинку За счет чего осуществляется. Картинка про За счет чего осуществляется. Фото За счет чего осуществляется

Энергообеспечение организма человека.

Источники энергии при кратковременной работе.

Быстродоступную энергию мышце дает молекула АТФ (АденозинТриФосфат). Этой энергии хватает на 1-3 секунды. Этот источник используется для мгновенной работы, максимальном усилии.

АТФ + H2O ⇒ АДФ + Ф + Энергия

В организме АТФ является одним из самых часто обновляемых веществ; так, у человека продолжительность жизни одной молекулы АТФ менее 1 мин. В течение суток одна молекула АТФ проходит в среднем 2000—3000 циклов ресинтеза (человеческий организм синтезирует около 40 кг АТФ в день, но содержит в каждый конкретный момент примерно 250 г), то есть запаса АТФ в организме практически не создаётся, и для нормальной жизнедеятельности необходимо постоянно синтезировать новые молекулы АТФ.

Пополняется АТФ за счет КрФ (КреатинФосфат), это вторая молекула фосфата, обладающего высокой энергией в мышце. КрФ отдает молекулу Фосфата молекуле АДФ для образования АТФ, обеспечивая тем самым возможность работы мышцы в течение определенного времени.

АДФ+ КрФ ⇒ АТФ + Кр

Запаса КрФ хватает до 9 сек. работы. При этом пик мощности приходится на 5-6 сек. Профессиональные спринтеры этот бак (запас КрФ) стараются еще больше увеличить путем тренировок до 15 секунд.

Как в первом случае, так и во втором процесс образования АТФ происходит в анаэробном режиме, без участия кислорода. Ресинтез АТФ за счет КрФ осуществляется почти мгновенно. Эта система обладает наибольшей мощностью по сравнению с гликолитической и аэробной и обеспечивает работу «взрывного» характера с максимальными по силе и скорости сокращениями мышц. Так выглядит энергетический обмен при кратковременной работе, другими словами, так работает алактатная система энергообеспечения организма.

Источники энергии при непродолжительной работе.

Откуда берется энергия для организма при непродолжительной работе? В этом случае источником является животный углевод, который содержится в мышцах и печени человека — гликоген. Процесс, при котором гликоген способствует ресинтезу АТФ и выделению энергии называется Анаэробным гликолизом (Гликолитическая система энергообеспечения).

Гликолиз – это процесс окисления глюкозы, при котором из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты (Пируват). Дальнейший метаболизм пировиноградной кислоты возможен двумя путями — аэробным и анаэробным.

При аэробной работе пировиноградная кислота (Пируват) участвует в обмене веществ и многих биохимических реакциях в организме. Она превращается в Ацетил-кофермент А, который участвует в Цикле Кребса обеспечивая дыхание в клетке. У эукариот (клетки живых организмов, которые содержат ядро, то есть в клетках человека и животных) Цикл Кребса протекает внутри митохондрии (МХ, это энергетическая станция клетки).

Цикл Кребса (цикл трикарбоновых кислот) – ключевой этап дыхания всех клеток использующих кислород, это центр пересечения многих метаболических путей в организме. Кроме энергетической роли, Циклу Кребса отводится существенная пластическая функция. Участвуя в биохимических процессах он помогает синтезировать такие важные клетки-соединения, как аминокислоты, углеводы, жирные кислоты и др.

Если кислорода недостаточно, то есть работа проводится в анаэробном режиме, тогда пировиноградная кислота в организме подвергается анаэробному расщеплению с образованием молочной кислоты (лактата)

Гликолитическая анаэробная система характеризуется большой мощностью. Начинается этот процесс практически с самого начала работы и выходит на мощность через 15-20 сек. работы предельной интенсивности, и эта мощность не может поддерживаться более 3 – 6 минут. У новичков, только начинающих заниматься спортом, мощности едва ли хватает на 1 минуту.

Энергетическими субстратами для обеспечения мышц энергией служат углеводы – гликоген и глюкоза. Всего же запаса гликогена в организме человека на 1-1,5 часа работы.

Как было сказано выше, в результате большой мощности и продолжительности гликолитической анаэробной работы в мышцах образуется значительное количество лактата (молочной кислоты).

Гликоген ⇒ АТФ + Молочная кислота

Лактат из мышц проникает в кровь и связывается с буферными системами крови для сохранения внутренней среды организма. Если уровень лактата в крови повышается, то буферные системы в какой-то момент могут не справиться, что вызовет сдвиг кислотно-щелочного равновесия в кислую сторону. При закислении кровь становится густой и клетки организма не могут получать необходимого кислорода и питания. В итоге, это вызывает угнетение ключевых ферментов анаэробного гликолиза, вплоть до полного торможения их активности. Снижается скорость самого гликолиза, алактатного анаэробного процесса, мощность работы.

Продолжительность работы в анаэробном режиме зависит от уровня концентрации лактата в крови и степенью устойчивости мышц и крови к кислотным сдвигам.

Буферная емкость крови – способность крови нейтрализовать лактат. Чем тренированнее человек, тем больше у него буферная емкость.

Источники энергии при продолжительной работе.

Источниками энергии для организма человека при продолжительной аэробной работе, необходимые для образования АТФ служат гликоген мышц, глюкоза в крови, жирные кислоты, внутримышечный жир. Этот процесс запускается при длительной аэробной работе. Например, жиросжигание (окисление жиров) у начинающих бегунов начинается после 40 минут бега во 2-й пульсовой зоне (ПЗ). У спортсменов процесс окисления запускается уже на 15-20 минуте бега. Жира в организме человека достаточно для 10-12 часов непрерывной аэробной работы.

При воздействии кислорода молекулы гликогена, глюкозы, жира расщепляются синтезируя АТФ с выделением углекислого газа и воды. Большинство реакций происходит в митохондриях клетки.

Гликоген + Кислород ⇒ АТФ + Углекислый газ + Вода

Образование АТФ с помощью данного механизма происходит медленнее, чем с помощью источников энергии, используемых при кратковременной и непродолжительной работе. Необходимо от 2 до 4 минут, прежде чем потребность клетки в АТФ будет полностью удовлетворена с помощью рассмотренного аэробного процесса. Такая задержка вызвана тем, что требуется время, пока сердце начнет увеличивать подачу крови обогащенной кислородом мышцам, со скоростью необходимой для удовлетворения потребностей мышц в АТФ.

Жир + Кислород ⇒ АТФ + Углекислый газ + Вода

Фабрика по окислению жира в организме является самой энергоемкой. Так как при окислении углеводов, из 1 молекулы глюкозы производится 38 молекул АТФ. А при окислении 1 молекулы жира – 130 молекул АТФ. Но происходит это гораздо медленнее. К тому же для производства АТФ за счет окисления жира требуется больше кислорода, чем при окислении углеводов. Еще одна особенность окислительной, аэробной фабрики – она набирает обороты постепенно, по мере увеличения доставки кислорода и увеличения концентрации в крови выделившихся из жировой ткани жирных кислот.

Больше полезной информации и статей вы можете найти ЗДЕСЬ.

Если представить все энергообразующие системы (энергетический обмен) в организме в виде топливных баков, то выглядеть они будут так:

Все это я придумал не сам, а брал выжимки из книг, литературы, интернет-ресурсов и постарался лаконично донести до вас. Если остались вопросы — пишите.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *