За счет чего получается электричество
За счет чего получается электричество
КАК ПОЛУЧАЮТ ЭЛЕКТРИЧЕСТВО.
Автор работы награжден дипломом победителя III степени
Электричество имеет большое значение в нашей жизни. Почти все, что нас окружает, работает на электричестве. Например, бытовая техника у нас дома: телевизоры, стиральные машины, холодильники, компьютеры, лампочки для освещения. На улице за счет электрического тока ездят троллейбусы, трамваи, электрички, и, даже машины, используют электричество для управления и освещения дороги фарами. На заводах на электричестве работают станки, печи и другие сложные механизмы.
Так откуда же берется электричество, которое поступает к нам в дом по проводам?
В своей работе я изучу, как вырабатывается электричество на электростанциях: ТЭЦ, АЭС, гидроэлектростанция, ветроэлектростанция. Как по электрическим проводам, закрепленным на специальных опорах, электричество направляется в город, затем в каждый дом, в каждую квартиру.
В экспериментальной части докажу, как «маленький» генератор вырабатывает ток, которого будет достаточно для освещения домика.
Тема «Как получают электричество» мне особенно интересна, потому что, чтобы изготовить макеты, надо паять настоящие схемы.
Цель исследования: изучение возникновения электричества.
Задачи исследования:
Изучить, как появляется электричество за счет преобразования энергии воды, ветра, солнца и газа.
Понять, как устроен генератор, который вырабатывает электричество.
Рассмотреть, как устроена батарейка (переносной источник энергии).
Провести эксперименты: подключить игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. Затем, таким же образом включить вентилятор.
Изготовить самодельную батарейку из соленой воды и металлических пластинок.
Содержание работы:
Первое, что необходимо сделать: проанализировать учебную литературу. Из нее я узнал следующее: Электричество вырабатывается на электростанциях, затем по электрическим проводам, закрепленным на специальных опорах, направляется в город, затем в каждый дом, в каждую квартиру.
Электростанции
Электричество вырабатывается на электростанциях за счет преобразования энергии воды, ветра, солнца и газа в электрическую энергию (рис.1).
Рис.2. Схема работы ТЭЦ
Атомная электростанция (АЭС) сложнее предыдущей электростанции, см. рис.1б. Их меньше у нас в стране. Все дело в том, что в них не сжигают газ, а используют тепло от ядерной реакции (рис. 3). Получение такой ядерной энергии очень сложный процесс. На АЭС внутри реактора циркулирует обычная вода, очищенная от всех примесей. Реактор запускается, когда из его активной зоны извлекаются стержни, поглощающие нейтроны. Во время цепной реакции высвобождается большая тепловая энергия. Вода, циркулируя через активную зону, омывая топливные элементы, нагревается до 320 0 С. Проходя внутри теплообменных трубок парогенератора, вода первого контура отдает тепло воде второго контура, не соприкасаясь с ней, что исключает попадание радиоактивных веществ за пределы реакторного зала. В остальном схема точно такая же, как и предыдущая. Вода второго контура превращается в пар. Пар с бешеной скоростью вращает турбину, а турбина приводит в движение электрогенератор, который вырабатывает электрический ток. Электричество по линиям электропередачи направляется к нам в город [1, 4].
Рис. 3 Схема работы АЭС
Рис. 4 Схема работы гидроэлектростанции
Ветроэлектростанции используют энергию ветра (рис.1-г). Такие электростанции не очень мощные. Ветер вращает лопасти вентилятора, похожие на лопасти самолета, только очень большие. А они уже вращают генератор (рис.5) [4].
Рис. 5 Схема работы ветроэлектростанции
Есть и другие электростанции, в которых ничего не вращается, и в них нет генератора. Это солнечные электростанции [4]. Энергия солнечного света преобразуется в электрическую в солнечных панелях, изготовленных из специального материала, который под воздействием солнечной энергии начинает вырабатывать электрический ток (рис.6).
Рис. 6 Схема работы солнечной электростанции
Устройство генератора
Так как же устроен генератор, который вырабатывает электричество?
Все мы знаем, что такое магнит, любой с ним сталкивался и играл. Магнит притягивает к себе металлические предметы. Магниты бывают разные: большие и маленькие, сильные и слабые [1].
Если в магнитное поле поместить рамку, сделанную из электрического провода, закрепить ее так, чтобы можно было вращать за ручку, то получится простейший генератор [1, 3]. Если вращать рамку, в ней возникнет электрический ток. И, если ток будет достаточно мощный, то им можно будет зажечь электрическую лампочку (рис.7). В настоящих генераторах используют вместо рамки очень длинный провод, намотанный на специальные катушки и за счет этого, генераторы получаются очень мощные.
Рис.7 Схема устройства генератора
Но что будет, если к генератору подвести электрический ток?
Если к генератору подвести электрический ток, то рамка начнет сама вращаться, то есть произойдет обратный эффект (рис.8). Такие устройства называются электродвигатели [1, 3]. Они так же бываю большими и маленькими, мощными и слабыми.
Рис.8 Схема устройства двигателя
Что делать, если источник энергии нужен переносной, а не связанный с розеткой проводами? Для этого существуют, всем нам знакомые, батарейки.
Батарейки
Рис.9 Устройство батарейки
В процессе использования батарейки, химическая реакция разрушает ее изнутри и батарейка «садится», то есть разряжается. Чем больше мы нагружаем батарейку, тем сильнее химическая реакция и тем быстрее она разрядится [1, 2].
Рис.10 Самодельная батарейка
Но надо учесть, что такая батарейка будет очень слабая и ее не хватит даже для того, чтобы загорелась лампочка. То, что электричество появилось, мы видим только на приборе, который называется вольтметр.
Рис. 11 Самодельная батарейка
Вот такую батарейку я и продемонстрирую в экспериментальной части моей работы. А также проведу другие эксперименты: подключу игрушечный домик к генератору, который будет вырабатывать электрический ток, чтобы включить в домике освещение. И докажу следующее: механическая энергия вращения преобразуется в электрическую энергию, в генераторе.
Экспериментальная часть:
В первом эксперименте я подключу игрушечный домик к маленькой электростанции (рис.12). Буду вращать ручку, и маленький генератор будет вырабатывать ток, которого хватит, чтобы в домике заработало освещение.
Материалы для изготовления макета: картон, деревянные фанерки размером 90х170 мм, 70х165 мм, розетка, механизм от фонарика, провода, вилка, лампочки (5 шт.), клей.
Рис. 12 Первый эксперимент
Во втором эксперименте я подключу к электростанции вентилятор (рис.13). Мы увидим, как механическая энергии вращения в генераторе, преобразуется в электрическую, бежит по проводам к вентилятору, и в его двигателе, преобразуется обратно в энергию вращения.
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель.
Рис.13 Второй эксперимент
В третьем эксперименте я подключу к батарейкам, по-очереди, все тот же домик и вентилятор (рис.14-а,-б).
Материалы для изготовления макета: картон, деревянные фанерки размером 95х210 мм, 70х165 мм, 90х170 мм, розетка, провода, вилка, клей, вентилятор, электродвигатель, лампочки (5 шт.), батарейки.
Рис.14 Третий эксперимент
В следующем – четвертом эксперименте я продемонстрирую самодельную батарейку (рис.15-а). Берем баночки заполненные соленой водой. В каждую из них опускаем по два электрода, изготовленные из металлических пластинок. Одна пластинка покрыта медью, а вторая цинком.
Материалы для изготовления макета: картон Ø 20 мм, часовой механизм, лампочка (1 шт.), провода, три баночки с соленой водой, деревянная фанерка 75х330 мм для основания, медные и цинковые пластинки длиной 75 мм, клей.
Рис.15 Четвертый эксперимент
Энергии этих трех батареек хватило, чтобы загорелась лампочка и пошли часы (рис.15-б).
Выводы
В проведенных двух экспериментах, я подтвердил и наглядно продемонстрировал следующее: механическая энергия вращения в генераторе, преобразуется в электрическую. А также изготовил самодельную батарейку, энергии которой хватило, чтобы загорелась лампочка и пошли часы.
Но, у меня остались вопросы, на которые мне предстоит найти ответы:
О, сколько нам открытий чудных
Готовит просвещенья дух,
И опыт – сын ошибок трудных,
И гений, парадоксов друг.
1 Ю.И. Дик, В. А. Ильин, Д.А. Исаев и др. /Физика: Большой справочник для школьников и поступающих в вузы / Издательство «Дрофа», 2000 год.
2 «Энциклопедия для детей от А до Я» / Издательство «Махаон», Москва, 2010.
3 А.А. Бахметьев/ Электронный конструктор «Знаток»/ Практические занятия по физике. 8, 9, 10, 11 классы.// Москва, 2005 год.
История открытия электричества
Электричество – обыденное и жизненно необходимое для большинства людей явление. И как любая привычная вещь, оно редко заметно. Мало кто задаётся вопросом откуда оно появляется, как работает, что с его помощью можно сделать. Однако, его исследованием занимались задолго до нашей эры и до сих пор некоторые загадки остаются без ответа.
Что понимают под электрическим током
Электричество – это комплекс явлений, связанный с существованием электрических зарядов. Под этим словом чаще всего подразумевается электрический ток и все процессы, которые он вызывает.
Электрический ток – это направленное движение частиц, несущих заряд, под воздействием электрического поля.
Кто придумал электричество — история
Учёные издревле изучали три проявления электричества:
В Древнем Египте целители знали о странных способностях нильского сома и пытались с его помощью лечить головную боль и другие заболевания. Древнеримские врачи использовали в сходных целях электрического ската. Древние греки подробно изучали странные способности ската и знали, что оглушить человека существо могло без прямого контакта через трезубец и рыболовные сети.
Несколько раньше было обнаружено, что если потереть янтарь о кусок шерсти, то он начнёт притягивать шерстинки и небольшие предметы. Позже был открыт и другой материал со сходными свойствами – турмалин.
Примерно в 500-х годах до н.э. индийские и арабские учёные знали о веществах, способных притягивать железо и активно использовали эту способность в разных областях. Около 100-го года до н.э. китайские учёные изобрели магнитный компас.
В 1600 году Уильям Гилберт, придворный врач Елизаветы I и Якова I, обнаружил, что вся планета – это один огромный компас и ввел понятие «электричество» (с греческого «янтарность»). В его трудах эксперименты с натиранием янтаря о шерсть и способность компаса указывать на север начали объединяться в одну теорию. На картине ниже он демонстрирует магнит Елизавете I.
В 1633 год инженер Отто фон Герике изобретает электростатическую машину, которая может не только притягивать, но и отталкивать предметы, а в 1745 году Питер ван Мушенбрук сооружает первый в мире накопитель электрического заряда.
В 1800 году итальянец Алессандро Вольта изобретает первый источник тока – электрическую батарею, вырабатывающую постоянный ток. Также он смог передать электрический ток на расстояние. Поэтому именно этот год многие считают годом изобретения электричества.
В 1831 году Майк Фарадей открывает явление электромагнитной индукции и открывает направление для изобретения различных устройств на основе электрического тока.
На рубеже XIX-XX веков совершается огромное количество открытий и достижений, благодаря деятельности Николы Тесла. Среди прочего, он изобрёл высокочастотный генератор и трансформатор, электродвигатель, антенну для радиосигналов.
Наука, изучающая электричество
Электричество – природное явление. Оно частично изучается в биологии, химии и физике. Наиболее полно электрические заряды рассматриваются в рамках электродинамики – одного из разделов физики.
Теории и законы электричества
Законов, которым подчиняется электричество немного, но они полностью описывают явление:
Первые опыты с электричеством
Первые опыты с электричеством носили, в основном, развлекательный характер. Их суть была в лёгких предметах, которые притягивались и отталкивались под действием плохо изученной силы. Другой занимательный опыт – передача электричества через цепочку людей, взявшихся за руки. Физиологическое действие электричества активно изучал Жан Нолле, заставивший пройти электрический заряд через 180 человек.
Из чего состоит электрический ток
Электрический ток – это направленное или упорядоченное движение заряженных частиц (электронов, ионов). Такие частицы называют носителями электрического заряда. Для того чтобы движение появилось, в веществе должны быть свободные заряженные частицы. Способность заряженных частиц перемещаться в веществе определяет проводимость этого вещества. По проводимости вещества различают на проводники, полупроводники, диэлектрики и изоляторы.
В металлах заряд перемещают электроны. Само вещество при этом никуда не утекает – ионы металла надёжно закреплены в узлах структуры и лишь слегка колеблются.
В жидкостях заряд переносят ионы: положительно заряженные катионы и отрицательно заряженные анионы. Частицы устремляются к электродам с противоположным зарядом, где становятся нейтральными и оседают.
В газах под действием сил с разными потенциалами образуется плазма. Заряд переносится свободными электронами и ионами обоих полюсов.
В полупроводниках, заряд перемещают электроны, перемещаясь от атома к атому и оставляя после себя разрывы, считающиеся положительно заряженными.
Откуда берется электрический ток
Электричество, поступающее по проводам в дома, вырабатывается электрическим генератором на различных электростанциях. На них генератор соединён с постоянно вращающейся турбиной.
В конструкции генератора есть ротор – катушка, которая располагается между полюсами магнита. При вращении турбиной этого ротора в магнитном поле по законам физики появляется или наводится электрический ток. Таким образом назначение генератора – преобразовывать кинетическую силу вращения в электричество.
Заставить турбину крутиться можно многими способами, используя разнообразные источники энергии. Они разделяются на три вида:
Чаще всего электроэнергия возникает благодаря работе:
Преобразованная энергия по проводам поступает в трансформаторные подстанции и распределительные устройства и уже потом доходит до конечного потребителя.
Сейчас активно развиваются так называемые альтернативные виды энергии. К ним относят ветрогенераторы, солнечные батареи, использование геотермальных источников и любые другие способы получить электроэнергию через необычные явления. Альтернативная энергетика сильно уступает по производительности и окупаемости традиционным источникам, но в определённых ситуациях помогают сэкономить и снизить нагрузку на основные электросети.
Также есть миф о существовании БТГ — бестопливных генераторов. В интернете есть ролики демонстрирующие их работу и предлагается их продажа. Но о достоверности этой информации идут большие споры.
Виды электричества в природе
Самый простой пример электричества, возникающего естественным путём – это молнии. Частицы воды в облаках постоянно сталкиваются друг с другом, приобретая положительный или отрицательный заряд. Более лёгкие, положительно заряженные частицы оказываются в верхней части облака, а тяжёлые отрицательные перемещаются вниз. Когда два подобных облака оказываются на достаточно близком расстоянии, но на разной высоте, положительные заряды одного начинают взаимно притягиваться отрицательными частицами другого. В этот момент и возникает молния. Также это явление возникает между облаками и самой земной поверхностью.
Другое проявление электричества в природе – это специальные органы у рыб, скатов и угрей. С их помощью они могут создавать электрические заряды, чтобы обороняться от хищников или оглушать своих жертв. Их потенциал – от совсем слабых разрядов, незаметных для человека, до смертельно опасных. Некоторые рыбы создают вокруг себя слабое электрическое поле, помогающее искать добычу и ориентироваться в мутной воде. Любой физический объект так или иначе искажает его, что помогает воссоздавать окружающее пространство и «видеть» без глаз.
Также электричество проявляется и в работе нервной системы живых организмов. Нервный импульс передаёт информацию от одной клетки к другой, позволяя реагировать на внешние и внутренние раздражители, мыслить и управлять своими движениями.
Что такое статическое электричество и как с ним бороться?
Сила Лоренца и правило левой руки. Движение заряженных частиц в магнитном поле
Кто изобрел лампочку первым?
Что такое ЭДС индукции и когда возникает?
Закон Кулона, определение и формула — электрические точечные заряды и их взаимодействие
Определение направления вектора магнитной индукции с помощью правила буравчика и правила правой руки
Суть электричества простыми словами. Почему и как работает электричество, его природа и принцип действия
С тех пор, как научились добывать и пользоваться электричеством, люди перестали задаваться вопросом как оно работает, откуда возникает, в чём его природная физическая суть? В наше время эта суть раскрывается в научных трудах ученых, их открытиях и новых достижениях техники. На бытовом уровне мы не можем себе представить нашу жизнь без электричества: оно дает нам тепло, свет, возможность использования технических приборов, музыку, телевидение, выход в интернет. Что же собой представляет это явление? Эта статья будет посвящена природной сути электричества.
Электрический ток
Согласно школьного курса физики – это упорядоченное движение заряженных частиц. Заряженными частицами, в зависимости от среды распространения, считаются электроны или ионы. Для металлов эти частицы – электроны, для некоторых газов или электролитов – ионы. Считается что именно их движение и являются электрическим током.
Как известно, в мире физики, объекты, обладающие разностью зарядов притягиваются, чтобы достигнуть равновесного состояния. Этот факт отлично подтверждает всем известный эксперимент с эбонитовой палочкой. Таким образом, электрический ток — это поток электронов или ионов, стремящихся воссоздать равновесие в мире электрических зарядов.
Не углубляясь в разновидности проводников, рассмотрим обыкновенные электрические провода и электроны, бегущие в них. Электроны заряжены отрицательно, значит их массовое скопление — это отрицательно заряженный объект. В то же время положительно заряженный объект — это место где имеется нехватка этих самых электронов, а значит скопление ионов (атомов с недостающими электронами). Так как природа стремится воссоздать равновесие, образуется поток электронов от минуса к плюсу.
Если природа стремится к равновесию, то отчего же образовались эти недостачи и излишки электронов?
Ответ довольно банален, за исключением некоторых природных явлений вроде молнии или статических разрядов. Люди их создают искусственно, чтобы пользоваться стремлением, или другими словами, силой природы прийти в равновесное состояние, в своих интересах. Как это происходит подробно рассказано в статье про источники тока.
Маленькая особенность: так как само явление электричества было открыто гораздо раньше его природы (упорядоченного движения электронов в металлах), а раньше люди думали, что движутся положительно заряженные частицы), то принято считать, что электрический ток течет от плюса к минусу, хотя сейчас уже ясно, что всё происходит наоборот. В консервативном мире науки решили ничего не менять и продолжают пользоваться веками укоренившейся схемой.
Поняв, как всё это движется, можно попробовать разобраться, что нам даёт этот самый электрический ток. Прохождение электронов по проводнику сопровождается массой удивительных физических явлений, от простого нагревания проводника, до электромагнитного поля вокруг него, но обо всём по порядку.
Как известно, электроны очень маленькие и понаблюдать за ними даже через самый мощный микроскоп не удастся. Поэтому для понимания и визуализации такого действа как электрический ток, придумали очень удобное сравнение — сравнение с водопроводной трубой.
Итак, представим себе водопроводную трубу, она является проводником или просто проводом, очень близко не так ли? В этой трубе течет вода – капли которой очень похожи на электроны, текущие в проводах. Эту воду что-то толкает и ей что-то мешает.
Поток воды можно описать присущими ему свойствами, такими как давление и скорость, а характеристики трубы можно описать такими понятиями как её пропускная способность и сопротивление потоку воды.
По аналогии поток электронов, то есть электрический ток, можно описать такими характеристиками как электрическое напряжение (давление для воды) и сила тока (объём потока воды). Электрический проводник по аналогии с трубой можно описать таким свойством как сопротивление электрическому току (сопротивление потоку воды).
К примеру, тонкая труба может пропустить лишь небольшой поток воды, точно также, тонкий провод способен пропустить поток электронов только с небольшой силой тока. Тонкая струйка, вылетающая из водного пистолета, имеет большую скорость, но очень маленький объем воды, также искра, вылетающая из пьезоэлемента зажигалки, имеет высокое напряжение, но очень маленькую силу тока.
Представим себе огромную трубу диаметром в целый метр и из неё течет, а лучше сказать «вываливается» огромное количество воды, при этом давление в ней довольно низкое (единицы атмосфер), но поток воды просто огромен (сотни литров в секунду). Та же история с толстым проводом точечной электросварки, напряжение там невысокое (несколько вольт), но сила тока просто огромная (сотни ампер), в месте контакта плавится металл. Предположим, что на краю трубы есть кран и он закрыт, вода внутри есть, но она никуда не течёт. Тоже самое с проводником, если цепь от плюса к минусу разорвана, а воздух для электрического тока настолько же труднопроходимая среда, как кран для воды, то ток тоже никуда не течёт. Но электроны из проводника, как и вода из трубы, никуда не делись и напряжение, как и давление в трубе тоже осталось, нет только потока электронов, а значит сила тока равна нулю.
Электрический ток – это..
направленный поток электронов, который имеет две основные характеристики, это сила тока и напряжение. Проводники электрического тока характеризуются электрическим сопротивлением.
Конечно же, проводники имеют массу других характеристик, вроде сечения провода и сопротивления изоляции. По аналогии с водопроводной трубой это сечение трубы и толщина её стенки, а сам ток бывает переменным или постоянным, а переменный ток имеет ещё и частоту этих самых перемен, об этом подробно написано в других статьях сайта:
Суть электричества, его открытие
Итак, суть электричества заключается в следующем: в составе атомов и молекул находятся так называемые элементарные частицы электроны и протоны. В центре атома находится ядро, состоящее из протонов и нейтронов.
Протоны — это частицы положительного заряда. Они по силе действия на другой заряд другой частицы могут отталкивать или притягивать её. Нейроны — это частицы нейтральные с точки зрения зарядов. Электроны вращаются на очень большой скорости вокруг ядра атома, и имеют отрицательный заряд. Количество элементарных частиц в атоме может быть разным в зависимости от конкретного вещества.
Суть электричества волновала человечество с античных времен. В VII веке до нашей эры) был такой философ Фалес Милетский, который впервые заметил некоторое электрическое явление. Если потереть о кусочек шерсти янтарь, то он начинает притягивать к себе имеющие небольшой вес предметы. Однако на этом развитие исследований в данной сфере почти на 2,5 тысячелетия остановилось. Продолжилось оно лишь в XVII веке. Сначала греческим философом был введен термин, затем начались активные изыскания по изучению природы электричества, возможностей его применения на благо человечества.
Наиболее значимые открытия и изобретения
Никола Тесла
На рубеже XIX – XX веков одним из самых известных и загадочных ученых, занимавшихся изучением того, что такое электричество, и создавшим множество изобретений был Никола Тесла. Он раскрыл суть электричества.
Никола Тесла – выдающийся ученый, внесший огромный вклад в изучение данного явления. Ему принадлежит более 1000 разнообразных изобретений, около 800 из которых он запатентовал. Наиболее значительными и важными изобретениями великого ученого являются:
А ещё Тесла был первым, кто разработал и выдвинул в практику правила техники безопасности при работе с электрическим током различной частоты и силы.
Электричество в природе
Природное электричество представлено следующими явлениями:
1.Атмосферное электричество (ветвистые и шаровые молнии); 2.Электрические импульсы в нервной системе живых организмов; 3.Электрические заряды, используемые некоторыми видами скатов и морских рыб для защиты от опасности и добычи пищи.
Дальнейшая суть электричества связана с самим движением этих электронов в различных средах.материалах и условиях. Например действие обычной батарейки. В ней находятся химические вещества, которые взаимодействуя друг с другом. Они из одного своего состояния переходят в другое. Это происходит посредством перераспределения электронов между изменяющимися веществами внутри. И так работает со множество электрических явлений, процессов и взаимодействий. В итоге и получаем всё то разнообразиевзаимодействий. К примеру, обычная батарейка. В ней находятся различные химические вещества, переходят в другое, а сопутствующим процессом будет перераспределение электронов внутри. Если есть дисбаланс электрических зарядов, значит есть и сила, стремящаяся выровнять его. И эту самую силу используют в батарейке для питания различных электрических устройств.
Металлы — проводники электричества
Металлы служат проводником этих самых электронов (заряженных частиц). Они легко перетекают по проводнику с одного участка в другой. Пока же совершается движение электронов, происходят параллельные физические явления. К примеру, когда много электронов упорядоченно движутся через тонкий проводник, они сталкиваются с атомами, неподвижно стоящих на своих местах в кристаллической решётки вещества. В результате таких столкновений энергия движения электронов переходит в энергию тепла атома, с которым было столкновение. То есть, энергия движения электронов частично перешла в энергию тепла, произведя нагрев данного вещества.
Электромагнитные поля
Есть и другой пример, в котором проявляется суть электричества. Это взаимодействие электромагнитных полей. Вспомним, что вокруг неподвижных заряженных частиц существует электрическое поле, а вокруг движущихся электрических частиц ещё возникает и магнитное поле. В итоге, когда заряженные частицы движутся вокруг них образуется общее электромагнитное поле, и оно воздействует на другие поля иных заряженных частиц. По такому принципу работает электродвигатель. Простыми словами — магнитные поля заставляют вращаться электрический мотор, а в этот момент по его обмоткам совершается перетекание электрических зарядов с одного полюса на другой.
Строение атома, положительный и отрицательный ионы
Итак, любое вещество, любого происхождения (вода, дерево, камень, стекло) состоит из более мелких элементов. Они называются молекулами. Взять хотя бы каплю воды. Она состоит из множества отдельных молекул, имеющих знакомую нам химическую формулу H2O. Далее молекулу вещества можно разделить еще на более мелкие частицы – атомы.
В настоящее время известны всего лишь более ста различных атомов, однако это еще не предел. Атомы могут образовать миллионы разных молекул и соответственно столько же разных веществ.
Планетарная модель атома
Как всем известно еще со школьной программы, в центре атома находится наиболее тяжелый его элемент — ядро. Вокруг него на определенном расстоянии по разным орбитам перемещаются электроны. Ядро не является цельным элементом, его составляют протоны и нейтроны.
Электроны обладает отрицательным зарядом, а протоны – положительным. Нейтрон, как видно из самого названия, не проявляет свойств ни тех, ни других зарядов. Иначе говоря, он нейтрален.
Чтобы уяснить суть электричества, поближе познакомимся со строением атомов. Для упрощения некоторых процессов применяется планетарная модель атома. Как в нашей солнечной системе вокруг солнца (ядра) движутся планеты по своей траектории, так и в атоме вокруг ядра движутся электроны. Электрон представляет собой не плотную частичку материи.Это размазанный в пространстве сгусток энергии, наподобие расплюснутой шаровой молнии.
Масса протона приблизительно в 2000 раз превышает массу электрона. Но суммарный положительный электрический заряд всех протонов равен суммарному отрицательному заряду всех электронов. Поэтому при нормальных условиях атом электрически нейтрален и за его пределами не ощущаются никакие силы. Положительные и отрицательные заряды как бы нейтрализуют друг друга.
Рассмотрим периодическую систему химических элементов, известную всем, как таблица Менделеева. В этих элементах все атомы расположены в строгой последовательности: от наиболее легкого до наиболее тяжелого – по величине относительной атомной массе, основную долю которой составляют протоны. Нейтроны также имею массу, но поскольку они не обладают выраженным электрическим зарядом, не будет заострять на них внимание.
Как работает электричество, электризация
Положительный и отрицательный ионы
Как уже было отмечено, по умолчанию, атом электрически нейтрален: положительный и отрицательный заряды равны. Они компенсируют другу друга. Но, если, вдруг, представить себе, что хотя-бы один электрон покинет сове место в атоме, то суммарный положительный электрический заряд протонов превысит отрицательный заряд всех оставшихся электронов. Поэтому такой атом в целом имеет свойства положительного заряда и называется положительный ион.
Атом, получивший дополнительный электрон, будет иметь в преобладающей степени отрицательный заряд. В этом случае атом называется отрицательный ион.
Следует заметить, что не только атом будет иметь положительный или отрицательный заряд, но и молекула, а соответственно и вещество, которое содержит данный атом.
Электризация
Электризацией называют процесс получения дополнительного электрона, либо наоборот его потерю. Если какое-либо тело имеет избыток или нехватку электронов, то есть явно выраженный заряд какого либо знака, то говорят, что тело наэлектризовано.
Опытным путем установлено, что заряды одного знака отталкиваются, а разных знаков притягиваются. Подобный опыт можно повторить следующим очень известным образом: подвесить на нити два металлических шарика, которые изначально имеют нейтральный заряд. Далее придать одному шарику положительный заряд, а второму отрицательный. В результате шарики притянутся друг к другу. Если двум шарикам сообщить заряд одного знака, то они будут отталкиваться.
Электризация трением
А вот, при натирании стеклянной палочки шелком, все происходит наоборот. Электроны поверхностного слоя стекла покидают палочку. В этом случае стеклянная палочка приобретает положительный заряд за счет перевеса суммарного заряда протонов.
Электризация металла
Если мы возьмем хорошо проводящий материал, например кусок металла, то при натирании его о диэлектрик, образовавшийся на поверхности металла заряд, мгновенно уйдет в землю через наше тело и другие предметы. Поскольку в отличии от рассматриваемых диэлектриков наше тело обладает относительно хорошей проводимостью и по нему сравнительно легко перемещаются заряды.
Опыт электризации трением не получится оценить и в том случае, когда мы возьмём два металлических предмета даже с хорошо изолированными рукоятками. При взаимном трении металл об металл, как и в предыдущих опытах возникнут свободные электроны. Однако вследствие наличия неизбежной шероховатости поверхностей, не получится одновременно по всей поверхности отделить оба металлических предмета. Так, в последней точке соприкосновения двух поверхностей электроны перетекут через так называемый «мостик» пока их количество снова не станет таким же, как и до натирания.
Статическое электричество
Итак, теперь нам известно, что при натирании рассмотренных предметов, некоторые электроны получают избыточную энергию. Затем они покидают атомы одного тела, которое становится положительно заряженным. Эти электроны занимают места на орбитах атомов другого вещества. Которое, в свою очередь, приобретает свойства отрицательного заряда. При этом одноименные заряды отталкиваются друг от друга, а разноименные – притягиваются. Силы, порождаемые зарядами, называются электрическими. А сам факт наличия электрических зарядов и их взаимодействие называют электричество.
В рассмотренных примерах получают так называемое статическое электричество.
Электрическая сила
В процессе электризации к заряженной пластмассовой палочке будут сами собой притягиваться кусочки бумаги. Почему это происходит?
Попробуем раскрыть тайну физического процесса. Она заключается в следующем. При поднесении заряженного тела к незаряженному телу под действием электрических сил происходит перемещение электронов к одному из краев тела. И этот край тела ввиду избытка электронов становится отрицательно заряженным. А противоположный край, соответственно, положительно заряженным. Средняя часть тела будет нейтрально заряженной. Таким образом, заряды смещаются по краям данного тела.
Ближе к поднесенному заряженному телу будут стремиться заряды противоположного знака. Например, если палочка заряжена положительно, то к ней притянется бумага. Той поверхностью, на которой скопились отрицательные заряды. И наоборот.
Действие электрического тока, некоторые факты об электричестве
Как правило, электрический переменный ток, наиболее распространенный в быту, оказывает на человеческий организм негативное влияние. Степень которого зависит от значения такой его характеристики, как сила тока:
Простые факты, как вырабатывается электричество
Чтобы добыть электричество из магнита от динамика, на него наматывают два медных провода. И два конца спаивают вместе, к оставшимся подсоединяют небольшую лампочку, светодиодную ленту. Для того, чтобы сделать источник питания для лампы накаливания на 220 В, нужно использовать более мощные и крупные магниты, толстые медные провода большого сечения. Самой древней батарейкой считается найденное при раскопках в Египте устройство, представляющее собой медный сосуд с вставленным в него железным стержнем, не касающимся стенок.
Интересный опыт проводили при дворе короля Людовика. Для того чтобы показать, как вырабатывается и протекает электричество, сделали взаимосвязь с Лейденской банкой и строем солдат. Взявшиеся за руки солдаты при этом образовывали ни что иное, как первую в мире полноценную живую электрическую цепь; Из-за большого количества смертей от даров молний в Италии в XVIII веке во многих европейских странах появилась очень странная мода на шляпки и зонтики с громоотводами; В скандинавских странах главный, порой и единственный, источник электроэнергии – это гидроэлектростанции. Благодаря таким станциям, в этих государствах очень низкий уровень загрязнения атмосферы.
Заключение
Мы познали суть электричества, выяснили как это работает, по крайней мере, в общих чертах. Для людей с творческим мышлением, далеким от физики, можно мысленно представить, как очень маленькие частички очень быстро перетекают с одного места на другое по своей электрической цепи. Основой любого вещества является ядро. Если есть разница потенциалов (в одном месте возникло скопление одного вида зарядов, а в другом, противоположного вида), то при появлении пути (соединение цепи) начинается процесс выравнивания этих самых потенциалов. Таким образом вырабатывается электрический ток.