За счет чего самолет движется по земле
АВИАГЛОБУС
Авиационный журнал о достижениях авиационной промышленности, технологиях и отраслевых тенденциях. Образован в 1998 г.
Свежие записи
Популяные рубрики
Самолет едет, двигатели стоят
Самолеты созданы для полета, н и по земле им приходится ездить немало – когда с помощью тягача, а когда и самостоятельно. Обходятся эти поездки недешево, и с этим надо бороться.
[dropcap color=»#555555″]С[/dropcap]амостоятельно самолет движется по земле с помощью маршевых двигателей, работающих на холостом ходу. Однако их тяга даже в таком режиме чрезмерна, и самолет все время стремится набрать скорость больше требуемой для рулежки. Пилотам приходится парировать это тормозами, так что езда отнимает у них немало сил. Даже тяга одного двигателя для самолета великовата, да и использовать двигатели для руления неэкономично.
Во-первых, двигатели потребляют драгоценный керосин, причем явно в большем, чем надо для руления, количестве. Расход топлива на руление составляет 2-4% от общего расхода топлива на выполнение полетов, и тем значительнее, чем чаще летает (и рулит) самолет. Проблема особенно значительна для узкофюзеляжных авиалайнеров, летающих на небольшие расстояния. Им приходится большее время перемещаться по земле, особенно если они летают в крупные загруженные аэропорты, где ситуация усугубляется задержками вылета. Если задержки небольшие, выключать на время двигатели, как это практикуют иные авиакомпании в случае значительного простоя, бессмысленно и даже опасно: можно не успеть вписаться в слот.
Во-вторых, потребляя керосин, двигатели работают. Из лишних минут набегают часы, а это больший износ двигателя (особенно в запыленных и «засоленных» местах), больше ТО, больше расходов.
В третьих, двигатели, работая, создают не только тягу, но и эмиссии. Газы – это половина беды, вот звук – это очень серьезно. Кабы самолет ездил, используя только ВСУ, в аэропортах было бы значительно «зеленее».
Ну и практически снимается проблема попадания в двигатели посторонних предметов: раз двигатели не работают, они ничего в себя и не засасывают.
Отчасти проблема решается с помощью тягачей, но их использование не только дорого, но и неудобно, и не везде возможно. Вот если бы тягач находился на самом самолете…!
Таким образом, идея снабдить самолет приводом на колеса является очевидной, очевиден и тип привода – электрический. Но вот дальнейшее далеко не очевидно. Проще всего поставить привод на колеса носовой стойки – там ему не будут мешать тормоза, да и сама конструкция стойки попроще. Это предлагает зарегистрированная на Гибралтаре компания Borealis Exploration, с 2005 года работающая над устройством WheelTug. Устройство состоит из индукционных электромоторов, устанавливаемых в колеса носовой стойки, и весит всего 136 килограмм, включая интерфейс в кабине и контроллеры.
Первые испытания прошли еще в 2005 году на Boeing 767 авиакомпании Air Canada, тогда колеса носовой стойки вращались установленными снаружи их моторами. Самолет вполне успешно рулил, развивая по прямой скорость до 15 км/ч и мог даже двигаться задом наперед.
В 2010 году опытный образец WheelTug был смонтирован на B737 чешской авиакомпании Travel Service и также показал себя хорошо. Именно 737-й является основной целью Borealis Exploration, хотя устройство можно установить буквально на любой самолет. Первой интерес проявила израильская авиакомпания El Al, но стартовым покупателем станет итальянская Alitalia. Первый WheelTug она должна получить для своих А320 в 2013 году. По прикидкам производителя, итальянцы, используя WheelTug, на каждом самолете будут экономить до 500000 долларов в год! Сумма складывается из расценок на пушбэк – от 50 до 150 долларов за раз, экономии керосина – 200-210 литров (150-170 долларов) за раз, и снижение износа двигателей. Другие специалисты называют меньшие суммы экономии – 200000 долларов в год, напоминая вдобавок, что даже те полтораста килограммов, которые весит WheelTug, в полете окажутся лишним грузом и будут способствовать увеличению расхода топлива. Отказаться же совсем от услуг тягачей в аэропортах в любом случае не получится: в случае поломки на самолете ВСУ его придется буксировать на взлет «традиционным способом».
Но в любом случае заказчики на WheelTug есть – в общей сложности итальянская Alitalia, израильские El Al и Israir, индийская Jet Airways и турецкая Onur Air собираются, судя по протоколам о намерениях, закупить 232 системы для своих A320 и В737, причем от итальянцев получен твердый контракт на 100 WheelTug.
Немцы из DLR в июне 2011 года провели эксперименты, снабдив А320 колесами с электроприводом, работающим от батарей. Из положительных находок – тот факт, что применение электрической рулежной системы, питающейся от батарей, на узкофюзеляжных лайнерах в масштабах аэропорта Франкфурта дало бы ежедневную экономию 44 тонн керосина. Однако в чисто техническом плане возникли сложности. Оказалось, что из 73.5 тонн максимального веса самолета на носовую стойку приходится всего 5-7 тонн. Ее колеса при весе самолета в 47 тонн начинают буксовать при приложении к ним усилия в 6000 ньютонов на метр. По сравнению с табличными 3500 ньютонами на метр, требуемыми для того, чтобы сдвинуть с места А320 с отключенным тормозом, это солидно, но ведь этот параметр взят для идеального сцепления колес по ровной и сухой поверхности. Если же колеса носовой стойки попадают в понижение на полосе, это усилие сразу возрастает до 5800 ньютонов на метр, а при обледенении носовые колеса вообще не смогут стронуть самолет с места.
Уж как этот вопрос с «Эрбасом» собираются решать в Borealis Exploration, не ясно, но уже упоминавшиеся испытания WheelTug в 2010 году на Боинге 737 проходили в декабре в Праге, там были и лужи, и снег и даже ледок, и руление осуществлялось нормально.
Но в других краях снег имеется в избытке, и там прорабатывают другие варианты, точнее оснащение электромоторами основных стоек шасси. Тут проблема недостаточного прижима отсутствует – стойки расположены вблизи центра тяжести, – зато есть много других трудностей. Но попытаться все же стоит.
Пытаются американская L-3 communication, Lufthansa и Airbus. В декабре прошлого года они провели испытания предоставленного немецкой авиакомпанией А320, во внешних колесах основных стоек которого были смонтированы обычные электромоторы с планетарной коробкой передач. Правда, для размещения двигателей в колесах пришлось демонтировать тормоза, так что на летные испытания рассчитывать не приходилось – самолет только рулил по земле.
Испытания заняли 14 часов чистого времени, измерения проводились в 40 точках по параметрам усилия для приведения самолета, масса которого изменялась в пределах от 46 до 60 тонн, в движение, разгонным характеристикам, потреблению энергии, выделению тепла, деформации шин при различном давлении в них, и т.д. в различных условиях. Самолет ездил и по сухой, и по влажной полосе, в ветер с порывами до 70 узлов, вверх по 3% уклону и даже задом наперед, причем с работающими на холостом ходу двигателями. Максимальная скорость составила 13.5 узлов.
Пилотам, участвовавшим в испытаниях, система понравилась. Управление самолетом серьезно облегчилось, поскольку приемистость электромотора гораздо больше, чем у турбин, и он быстрее откликается на желания пилота. Турбина сначала «тормозит», медленно набирая обороты, а потом пилоту приходится уже тормозить самому, смиряя чересчур разогнавшийся самолет – с электромотором об этом можно забыть. Были отработаны всевозможные развороты и заходы на парковку, никаких проблем с этим у испытателей не возникло, тем более что двигатели оборудованы системой синхронизации, и при повороте носовой стойки на 75 градусов соответствующий двигатель отключается и самолет разворачивается «на пятке».
По результатам испытаний планируется определить конкретную мощность, которую должны развивать электромоторы, отчего напрямую будет зависеть масса и размеры серийного устройства. На первый раз инженеры перестарались – поставили столь мощные электромоторы, что самолет уверенно двигался даже на одном из них. Мощность надо будет подобрать так, чтобы самолет мог набрать 20 узлов за полторы минуты – таковы требования «Эрбаса».
В июле 2012 года было объявлено, что в состав разработчиков вошла британская Crane Aerospace, которая займется созданием привода на колеса, управления тормозами, трансформаторами и прочей электроникой, управляющей энергоснабжением, а равно и интеграцией всего механизма в самолет. На долю L-3 останется создания моторов и сцепления. Прототип, как ожидается, будет готов к концу 2013 года, а сертификация состоится в 2015-м.
У L-3 сотоварищи уже есть конкуренты – Safran и Honeywell, которые собирали в ноябре 2011 года данные, гоняя по земле обычный А320. Они планируют создать устройство, которое в сборе (мотор, система охлаждения, коробка передач, сцепление, которое отсоединяется для взлета и посадки) будет весить около 100 килограмм, пока решено, что на каждой стойке ведущим будет одно колесо, и их будут приводить в движение по одному мотору (были варианты сделать ведущими все четыре или ставить по два мотора на колесо).
Испытания прототипа планируются на 2013 год, а в серию изделие пойдет где-то в 2016-м.
[dropcap color=»#555555″]К[/dropcap]ак альтернатива самодвижущемуся самолету, предлагается «беспилотный» аэродромный тягач TaxiBot, управляемый из пилотской кабины. Машина разрабатывается совместно Israel Aerospace Industries (IAI), производителем тягачей TLD, Airbus и Lufthansa LEOS, подразделением Lufthansa Technik. В отличие от обычных аэродромных тягачей, используемых только для вывода самолета со стоянки, с использованием TaxiBot самолет будет буксироваться вплоть до стартовой позиции.
Первые испытания прошли еще весной 2011 года, в 2012 году производилась доработка конструкции, в 2013 году начнется сертификация, а в мае того же года должны начаться шестимесячные «строевые» испытания трех опытных машин в аэропорту Франкфурта на рейсовых B737 «Люфтганзы». В ходе их будет отрабатываться применение тягачей, сбор данных, оптимизация процедур и начнется подготовка к серийному выпуску. Что касается заказов, то пока есть только протокол о намерениях от Bankers Capital Transportation Leasing Group, предполагающей купить «значительное количество» TaxiBot на сумму в 97 миллионов долларов. IAI ведет переговоры с американцами об организации у них таких же испытаний, что и во Франкфурте, в конце 2013 года.
Таким образом, конкуренция на рынке «вспомогательных наземных двигателей» ожидается значительная. Но и безо всякой конкуренции задача предстоит нелегкая: обеспечить не только движение самолета по полосе, но и надежность, легкость ТО, экономичность. И возможность установки как на новые, так и на ранее произведенные самолеты.
С такими требованиями не факт, что затея с самодвижущимся без помощи турбин самолетом вообще реализуется. Но игра все же стоит свеч!
samolet_blog
Путешествия и самолёты
Самолеты созданы для полета, но и по земле им приходится ездить немало – когда с помощью тягача, а когда и самостоятельно. Обходятся эти поездки недешево, и с этим надо бороться.
Самостоятельно самолет движется по земле с помощью маршевых двигателей, работающих на холостом ходу. Однако их тяга даже в таком режиме чрезмерна, и самолет все время стремится набрать скорость больше требуемой для рулежки. Пилотам приходится парировать это тормозами, так что езда отнимает у них немало сил. Даже тяга одного двигателя для самолета великовата, да и использовать двигатели для руления неэкономично.
Во-первых, двигатели потребляют драгоценный керосин, причем явно в большем, чем надо для руления, количестве. Расход топлива на руление составляет 2-4% от общего расхода топлива на выполнение полетов, и тем значительнее, чем чаще летает (и рулит) самолет.
Во-вторых, потребляя керосин, двигатели работают. Из лишних минут набегают часы, а это больший износ двигателя (особенно в запыленных и «засоленных» местах), больше ТО, больше расходов.
В третьих, двигатели, работая, создают не только тягу, но и эмиссии. Газы – это половина беды, вот звук – это очень серьезно.
Отчасти проблема решается с помощью тягачей, но их использование не только дорого, но и неудобно, и не везде возможно. Вот если бы тягач находился на самом самолете!
Первые испытания прошли еще в 2005 году на Boeing 767 авиакомпании Air Canada, тогда колеса носовой стойки вращались установленными снаружи их моторами. Самолет вполне успешно рулил, развивая по прямой скорость до 15 км/ч и мог даже двигаться задом наперед.
Как альтернатива самодвижущемуся самолету, предлагается «беспилотный» аэродромный тягач TaxiBot, управляемый из пилотской кабины. В отличие от обычных аэродромных тягачей, используемых только для вывода самолета со стоянки, с использованием TaxiBot самолет будет буксироваться вплоть до стартовой позиции. Задача предстоит нелегкая: обеспечить не только движение самолета по полосе, но и надежность, легкость ТО, экономичность.
Физика в движении самолета
Введение
Обоснования выбора темы
Из множества предоставляемых вариантов тем, я выбрала именно изучение физических явлений, связанных с полетом самолета, потому что такой популярный и распространенный способ передвижения на сегодняшний день является интересным объектом изучения. Самолёт — воздушное судно, предназначенное для полётов в атмосфере с помощью силовой установки, создающей тягу, и неподвижного относительно других частей аппарата крыла, создающего подъёмную силу. Физика играет огромную роль в процессе работы самолета. Тысячи самолетов летают каждый день. Тысячи людей доверяют жизни самолетам. Как же физика связана с этим? Именно этот вопрос натолкнул меня на изучения данной темы.
Актуальность это работы обусловлена изучением историей открытия физических явления в полете самолета, совершенствования их использования, а также возможностью развития моих исследовательских способностей, расширения кругозора и базы математических и физических знаний, развития логического мышления, тренировки интеллекта.
Объектом исследования является школьный материал физики 7-9 класс.
Предметом исследования являются физические явления в полете самолета.
Гипотезой исследования стало предположение: изученные физические явления лежат в основе полета самолета.
Цель исследования: проследить историю открытия физики, связанной с самолетом, как эти открытия повлияли на развитие общества. Исследовать некоторые физические явления, происходящие при полете самолета, установить между ними связь.
Практическая значимость работы определяется возможностью подробного изучения, саморазвития, анализа открытий.
I глава. Научное описание и объяснение явлений
1. Подъемная сила
Упрощённый вариант появления подъёмной силы крыла, которое располагается параллельно потоку воздуха. Конструкция крыла такова, что верхняя часть его профиля имеет выпуклую форму. Воздушный поток, обтекающий крыло, разделяется на два: верхний и нижний. Скорость нижнего потока остаётся практически неизменной. А вот скорость верхнего возрастает за счёт того, что он должен преодолеть больший путь за то же время. Чем выше скорость потока, тем ниже давление в нём. Следовательно, давление над крылом становится ниже. Из-за разницы этих давлений возникает подъёмная сила, которая толкает крыло вверх, а вместе с ним поднимается и самолёт. И чем больше эта разница, тем больше и подъёмная сила. А почему подъёмная сила появляется, когда профиль крыла имеет вогнуто-выпуклую или двояковыпуклую симметричную форму?
Профиль крыла самолёта располагается под углом к воздушному потоку. А поток воздуха, сталкиваясь с нижней поверхностью такого крыла, скашивается и приобретает движение вниз. Согласно закону сохранения импульса на крыло будет действовать сила, направленная в противоположном направлении, то есть, вверх.
На самом деле всё намного сложнее. Набегающий поток воздуха воздействует на крыло с силой, которая называется полной аэродинамической силой. А подъёмная сила – это одна из составляющих этой силы. Вторая составляющая – сила лобового сопротивления. Вектор полной аэродинамической силы – это сумма векторов подъёмной силы и силы лобового сопротивления. Вектор подъёмной силы направлен перпендикулярно вектору скорости набегающего воздушного потока. А вектор силы лобового сопротивления – параллельно.
Самолёт может взлететь только в том случае, если подъёмная сила больше его веса. Скорость он развивает с помощью двигателей. С увеличением скорости увеличивается и подъёмная сила. И самолёт поднимается вверх.
Если подъёмная сила и вес самолёта равны, то он летит горизонтально. Двигатели самолёта создают тягу – силу, направление которой совпадает с направлением движения самолёта и противоположно направлению лобового сопротивления. Тяга толкает самолёт сквозь воздушную среду. При горизонтальном полёте с постоянной скоростью тяга и лобовое сопротивление уравновешены. Если увеличить тягу, самолёт начнёт ускоряться. Но и лобовое сопротивление увеличится тоже. И вскоре они снова уравновесятся. И самолёт будет лететь с постоянной, но большей скоростью.
Если скорость уменьшается, то становится меньше и подъёмная сила, и самолёт начинает снижаться.
2. Сила тяжести
Сила тяжести остается всегда одинаковой, на земле ли самолет или в воздухе, и поэтому приятно знать, что эта постоянная сила всегда с нами. Полет возможен только тогда, когда есть поступательная скорость. Поступательная скорость получается за счет энергии от сгорания горючего.
Если мы отрываемся от земли и поднимаемся на некоторую высоту, мы уже имеем некоторый запас энергии (вес самолета), способный придать самолету поступательную скорость, когда мотор перестанет ее развивать. В случае остановки мотора на некоторой высоте над землей вес продолжает тянуть самолет вперед; самолет не падает, а начинает планировать, скользя вниз, будучи все время управляем.
Чем выше самолет находится в воздухе, тем большее расстояние он может пролететь без мотора. Постоянно действующая сила тяжести становится чем- то вроде постоянной охраны обеспечивая самолет невидимой энергией, необходимой для движения вперед.
3. Электризация
На задней кромке крыла хорошо видны 10 электростатических разрядников.
Статическое электричество для летательных аппаратов представляет серьёзную проблему, но успешно решаемую.
Из-за трения о воздух на самолете в полёте набирается заряд 200 – 300 мкКл, поднимающий потенциал до 200 – 300 киловольт.
Когда шасси самолета приближаются к посадочной полосе, происходит электрический разряд на землю длиной около метра, чаще всего по поверхности резины колес. Его хорошо видно в темноте.
Для предотвращения негативного влияния статического электричества на летательных аппаратах установлены следующие средства защиты:
На самолётах электростатические разрядники установлены группами на конце крыла, а также других выступающих частях конструкции планера.
Тело разрядника длиной 10–15 см представляет объемный резистор сопротивлением в 10–100 МОм.
II глава. История открытия, интересные факты о рассматриваемых явлениях
1. Подъемная сила
Подъемная, она же Архимедова, сила. Легенда гласит, что царь Герон II попросил мыслителя определить, из чистого ли золота сделана его корона, не причиняя вреда самому царскому венцу. Взвесить корону Архимеду труда не составило, но этого было мало — нужно было определить объем короны, чтобы рассчитать плотность металла, из которого она отлита, и определить, чистое ли это золото. Дальше, согласно легенде, Архимед, озабоченный мыслями о том, как определить объем короны, погрузился в ванну — и вдруг заметил, что уровень воды в ванне поднялся. И тут ученый осознал, что объем его тела вытеснил равный ему объем воды, следовательно, и корона, если ее опустить в заполненный до краев таз, вытеснит из него объем воды, равный ее объему. Решение задачи было найдено. А в развитии аэродинамики у нас в стране выдающуюся роль сыграл профессор Николай Егорович Жуковский (1847—1921) —«отец русской авиации». Заслуга Жуковского состоит в том, что он первый объяснил образование подъемной силы крыла и сформулировал теорему для вычисления этой силы. Теорема Жуковского: Подъёмная сила сегмента крыла бесконечного размаха равна произведению плотности газа (жидкости), скорости газа (жидкости), циркуляции скорости потока и длины выделенного отрезка крыла. Направление действия подъёмной силы получается поворотом вектора скорости набегающего потока на прямой угол против циркуляции. До Жуковского возникновение подъёмной силы объяснялось ударной теорией Ньютона, описывающей ударяющиеся об обтекаемое тело не связанные друг с другом частицы воздуха. Данная теория даёт заниженное значение подъёмной силы крыла. Жуковский впервые представил открытый им осенью 1904 года механизм образования подъёмной силы крыла на заседании Математического общества 15 ноября 1905 года.
2. Сила тяжести
3. Электризация
Электризация – это явления, в которых тела приобретают свойства притягивать другие тела; вэлектризациивсегдаучаствуютдватела. Приэтом электризуются оба тела. Электризация происходит при соприкосновении. Греческий философ Фалес Милетский, живший в 624-547 гг. до нашей эры, открыл, что янтарь, потертый о мех, приобретает свойство притягивать мелкие предметы — пушинки, соломинки и т.п. Это свойство в течение ряда столетий приписывалось только янтарю, от названия которого и произошло слово «электричество». Рождение учения об электричестве связано с именем Уильяма Гильберта (1540-1603). Он был одним из первых ученых, утвердивших опыт, эксперимент как основу исследования. Он показал, что при трении электризуется не только янтарь, но и многие другие вещества и что притягивают они не только пылинки, но и металлы, дерево, листья, камешки и даже воду и масло.
Вывод
Изучая физические явления, у меня возникло желание более подробно изучить их применение. Удивительным фактом и маленьким открытием становится то, что окружающие явления подчиняются и объясняются общими законами и закономерностями в физике.
Разбираемся, почему вращение Земли не влияет на дальность полета самолета
И почему с запада на восток самолет летит быстрее?
То, что наша планета вращается вокруг наклонной оси с запада на восток, известно каждому школьнику. Но кто может сходу ответить, почему вращение Земли не влияет на расстояние между точками на ее поверхности? Не должно ли вращение нашей планеты «помогать» самолетам, летящим в западном направлении? Разбираемся ниже.
На самом деле ответ прост: самолет вращается вместе с Землей. Воздушные судна летают над поверхностью нашей планеты, поэтому единственное, что имеет значение, – это расстояние.
А расстояние – это физическое измерение, которое не меняется, независимо от того, в каком направлении вращается Земля. Кроме того, вместе с планетой вращается и атмосфера, в которой летит самолет. В широком смысле Землю и атмосферу можно рассматривать как единую целостную систему.
И любое тело, будь то воздушное судно, корабль, машина, человек, гепард или муравей, которое находится на Земле или над ней, будет двигаться с той же скоростью, что и поверхность нашей планеты. На экваторе эта скорость составляет около 1670 км/ч.
Так что если у вас есть дом в Сингапуре или Найроби (оба города расположены очень близко к экватору) и вы смотрите телевизор в своей гостиной, вы тоже движетесь со скоростью 1670 км/ч. Причем постоянно! А вы думали, что лежите и отдыхаете на диване?
Если разбираться в вопросе глубже, из-за вращения Земли атмосфера и все, что в ней находится, подвержены определенным физическим силам. Одна из них известна как сила Кориолиса, которая получила свое название из-за имени французского ученого Гаспара-Гюстава де Кориолиса, впервые описавшего ее в статье 1835 года.
Это эффект, при котором масса, движущаяся во вращающейся системе, испытывает силу (силу Кориолиса), действующую перпендикулярно направлению движения и оси вращения планеты. Обычно на Земле эффект заставляет перемещающиеся вдоль поверхности объекты отклоняться вправо (по отношению к направлению движения) в северном полушарии и влево – в южном.
wikipedia.org
Кроме того, эффект Кориолиса играет важную роль в формировании циклонических погодных систем. За счет него в различных частях земного шара формируются совершенно разные схемы воздушных потоков – в отличие от ветровых течений или потоков, связанных с местными погодными условиями. Эти движения ветра могут существенно влиять на скорость полета самолетов.
Это означает, что в зависимости от направления полета существует вероятность увеличения времени перелета между двумя городами, расстояние между которыми остается прежним. В результате путь из Лондона в Нью-Йорк занимает почти на час больше, чем путь из Нью-Йорка в Лондон.
В итоге можно сказать, что вращение Земли все же влияет на то, насколько «далеки» друг от друга объекты, но лишь косвенно. Движение планеты вокруг своей оси не оказывает воздействия на расстояние, которое преодолевает самолет, зато влияет на время полета воздушного судна между двумя точками на поверхности Земли.