За счет чего усиливает транзистор
Биполярный транзистор. Что он собой представляет, как устроен и как
работает?
Структура, носители, принципы и режимы работы: нормальный режим (в активной области), режимы отсечки и насыщения. Как и за счёт чего усиливает биполярный транзистор?
Ну вот, а теперь можно переходить к описанию структурной схемы транзистора.
Рис.1
Рассмотрим цепь, иллюстрирующую работу n-p-n транзистора типа в различных режимах.
Рис.2 а) Режим отсечки тр-ра б) Активный режим тр-ра
в) Режим насыщения тр-ра
На следующей странице рассмотрим эквивалентную схему транзистора, а также свойства и характеристики различных типов усилительных каскадов.
Биполярные транзисторы. For dummies
Предисловие
Поскольку тема транзисторов весьма и весьма обширна, то посвященных им статей будет две: отдельно о биполярных и отдельно о полевых транзисторах.
Транзистор, как и диод, основан на явлении p-n перехода. Желающие могут освежить в памяти физику протекающих в нем процессов здесь или здесь.
Необходимые пояснения даны, переходим к сути.
Транзисторы. Определение и история
Транзистор — электронный полупроводниковый прибор, в котором ток в цепи двух электродов управляется третьим электродом. (tranzistors.ru)
Первыми были изобретены полевые транзисторы (1928 год), а биполярные появилсь в 1947 году в лаборатории Bell Labs. И это была, без преувеличения, революция в электронике.
Очень быстро транзисторы заменили вакуумные лампы в различных электронных устройствах. В связи с этим возросла надежность таких устройств и намного уменьшились их размеры. И по сей день, насколько бы «навороченной» не была микросхема, она все равно содержит в себе множество транзисторов (а также диодов, конденсаторов, резисторов и проч.). Только очень маленьких.
Кстати, изначально «транзисторами» называли резисторы, сопротивление которых можно было изменять с помощью величины подаваемого напряжения. Если отвлечься от физики процессов, то современный транзистор тоже можно представить как сопротивление, зависящее от подаваемого на него сигнала.
В чем же отличие между полевыми и биполярными транзисторами? Ответ заложен в самих их названиях. В биполярном транзисторе в переносе заряда участвуют и электроны, и дырки («бис» — дважды). А в полевом (он же униполярный) — или электроны, или дырки.
Также эти типы транзисторов разнятся по областям применения. Биполярные используются в основном в аналоговой технике, а полевые — в цифровой.
И, напоследок: основная область применения любых транзисторов — усиление слабого сигнала за счет дополнительного источника питания.
Биполярный транзистор. Принцип работы. Основные характеристики
Биполярный транзистор состоит из трех областей: эмиттера, базы и коллектора, на каждую из которых подается напряжение. В зависимости от типа проводимости этих областей, выделяют n-p-n и p-n-p транзисторы. Обычно область коллектора шире, чем эмиттера. Базу изготавливают из слаболегированного полупроводника (из-за чего она имеет большое сопротивление) и делают очень тонкой. Поскольку площадь контакта эмиттер-база получается значительно меньше площади контакта база-коллектор, то поменять эмиттер и коллектор местами с помощью смены полярности подключения нельзя. Таким образом, транзистор относится к несимметричным устройствам.
Прежде, чем рассматривать физику работы транзистора, обрисуем общую задачу.
Она заключаются в следующем: между эмиттером и коллектором течет сильный ток (ток коллектора), а между эмиттером и базой — слабый управляющий ток (ток базы). Ток коллектора будет меняться в зависимости от изменения тока базы. Почему?
Рассмотрим p-n переходы транзистора. Их два: эмиттер-база (ЭБ) и база-коллектор (БК). В активном режиме работы транзистора первый из них подключается с прямым, а второй — с обратным смещениями. Что же при этом происходит на p-n переходах? Для большей определенности будем рассматривать n-p-n транзистор. Для p-n-p все аналогично, только слово «электроны» нужно заменить на «дырки».
Поскольку переход ЭБ открыт, то электроны легко «перебегают» в базу. Там они частично рекомбинируют с дырками, но большая их часть из-за малой толщины базы и ее слабой легированности успевает добежать до перехода база-коллектор. Который, как мы помним, включен с обратным смещением. А поскольку в базе электроны — неосновные носители заряда, то электирическое поле перехода помогает им преодолеть его. Таким образом, ток коллетора получается лишь немного меньше тока эмиттера. А теперь следите за руками. Если увеличить ток базы, то переход ЭБ откроется сильнее, и между эмиттером и коллектором сможет проскочить больше электронов. А поскольку ток коллектора изначально больше тока базы, то это изменение будет весьма и весьма заметно. Таким образом, произойдет усиление слабого сигнала, поступившего на базу. Еще раз: сильное изменение тока коллектора является пропорциональным отражением слабого изменения тока базы.
Помню, моей одногрупнице принцип работы биполярного транзистора объясняли на примере водопроводного крана. Вода в нем — ток коллектора, а управляющий ток базы — то, насколько мы поворачиваем ручку. Достаточно небольшого усилия (управляющего воздействия), чтобы поток воды из крана увеличился.
Помимо рассмотренных процессов, на p-n переходах транзистора может происходить еще ряд явлений. Например, при сильном увеличении напряжения на переходе база-коллектор может начаться лавинное размножение заряда из-за ударной ионизации. А вкупе с туннельным эффектом это даст сначала электрический, а затем (с возрастанием тока) и тепловой пробой. Однако, тепловой пробой в транзисторе может наступить и без электрического (т.е. без повышения коллекторного напряжения до пробивного). Для этого будет достаточно одного чрезмерного тока через коллектор.
Еще одно явления связано с тем, что при изменении напряжений на коллекторном и эмиттерном переходах меняется их толщина. И если база черезчур тонкая, то может возникнуть эффект смыкания (так называемый «прокол» базы) — соединение коллекторного перехода с эмиттерным. При этом область базы исчезает, и транзистор перестает нормально работать.
Коллекторный ток транзистора в нормальном активном режиме работы транзистора больше тока базы в определенное число раз. Это число называется коэффициентом усиления по току и является одним из основных параметров транзистора. Обозначается оно h21. Если транзистор включается без нагрузки на коллектор, то при постоянном напряжении коллектор-эмиттер отношение тока коллектора к току базы даст статический коэффициент усиления по току. Он может равняться десяткам или сотням единиц, но стоит учитывать тот факт, что в реальных схемах этот коэффициент меньше из-за того, что при включении нагрузки ток коллектора закономерно уменьшается.
Вторым немаловажным параметром является входное сопротивление транзистора. Согласно закону Ома, оно представляет собой отношение напряжения между базой и эмиттером к управляющему току базы. Чем оно больше, тем меньше ток базы и тем выше коэффициент усиления.
Третий параметр биполярного транзистора — коэффициент усиления по напряжению. Он равен отношению амплитудных или действующих значений выходного (эмиттер-коллектор) и входного (база-эмиттер) переменных напряжений. Поскольку первая величина обычно очень большая (единицы и десятки вольт), а вторая — очень маленькая (десятые доли вольт), то этот коэффициент может достигать десятков тысяч единиц. Стоит отметить, что каждый управляющий сигнал базы имеет свой коэффициент усиления по напряжению.
Также транзисторы имеют частотную характеристику, которая характеризует способность транзистора усиливать сигнал, частота которого приближается к граничной частоте усиления. Дело в том, что с увеличением частоты входного сигнала коэффициент усиления снижается. Это происходит из-за того, что время протекания основных физических процессов (время перемещения носителей от эмиттера к коллектору, заряд и разряд барьерных емкостных переходов) становится соизмеримым с периодом изменения входного сигнала. Т.е. транзистор просто не успевает реагировать на изменения входного сигнала и в какой-то момент просто перестает его усиливать. Частота, на которой это происходит, и называется граничной.
Условные обозначения n-p-n и p-n-p транзисторов отличаются только направлением стрелочки, обозначающей эмиттер. Она показывает то, как течет ток в данном транзисторе.
Режимы работы биполярного транзистора
Схемы включения биполярных транзисторов
Поскольку контактов у транзистора три, то в общем случае питание на него нужно подавать от двух источников, у которых вместе получается четыре вывода. Поэтому на один из контактов транзистора приходится подавать напряжение одинакового знака от обоих источников. И в зависимости от того, что это за контакт, различают три схемы включения биполярных транзисторов: с общим эмиттером (ОЭ), общим коллектором (ОК) и общей базой (ОБ). У каждой из них есть как достоинства, так и недостатки. Выбор между ними делается в зависимости от того, какие параметры для нас важны, а какими можно поступиться.
Схема включения с общим эмиттером
Эта схема дает наибольшее усиление по напряжению и току (а отсюда и по мощности — до десятков тысяч единиц), в связи с чем является наиболее распространенной. Здесь переход эмиттер-база включается прямо, а переход база-коллектор — обратно. А поскольку и на базу, и на коллектор подается напряжение одного знака, то схему можно запитать от одного источника. В этой схеме фаза выходного переменного напряжения меняется относительно фазы входного переменного напряжения на 180 градусов.
Но ко всем плюшкам схема с ОЭ имеет и существенный недостаток. Он заключается в том, что рост частоты и температуры приводит к значительному ухудшению усилительных свойств транзистора. Таким образом, если транзистор должен работать на высоких частотах, то лучше использовать другую схему включения. Например, с общей базой.
Схема включения с общей базой
Эта схема не дает значительного усиления сигнала, зато хороша на высоких частотах, поскольку позволяет более полно использовать частотную характеристику транзистора. Если один и тот же транзистор включить сначала по схеме с общим эмиттером, а потом с общей базой, то во втором случае будет наблюдаться значительное увеличение его граничной частоты усиления. Поскольку при таком подключении входное сопротивление низкое, а выходное — не очень большое, то собранные по схеме с ОБ каскады транзисторов применяют в антенных усилителях, где волновое сопротивление кабелей обычно не превышает 100 Ом.
В схеме с общей базой не происходит инвертирование фазы сигнала, а уровень шумов на высоких частотах снижается. Но, как уже было сказано, коэффициент усиления по току у нее всегда немного меньше единицы. Правда, коэффициент усиления по напряжению здесь такой же, как и в схеме с общим эмиттером. К недостаткам схемы с общей базой можно также отнести необходимость использования двух источников питания.
Схема включения с общим коллектором
Особенность этой схемы в том, что входное напряжение полностью передается обратно на вход, т. е. очень сильна отрицательная обратная связь.
Напомню, что отрицательной называют такую обратную связь, при которой выходной сигнал подается обратно на вход, чем снижает уровень входного сигнала. Таким образом происходит автоматическая корректировка при случайном изменении параметров входного сигнала
Коэффициент усиления по току почти такой же, как и в схеме с общим эмиттером. А вот коэффициент усиления по напряжению маленький (основной недостаток этой схемы). Он приближается к единице, но всегда меньше ее. Таким образом, коэффициент усиления по мощности получается равным всего нескольким десяткам единиц.
В схеме с общим коллектором фазовый сдвиг между входным и выходным напряжением отсутствует. Поскольку коэффициент усиления по напряжению близок к единице, выходное напряжение по фазе и амплитуде совпадает со входным, т. е. повторяет его. Именно поэтому такая схема называется эмиттерным повторителем. Эмиттерным — потому, что выходное напряжение снимается с эмиттера относительно общего провода.
Такое включение используют для согласования транзисторных каскадов или когда источник входного сигнала имеет высокое входное сопротивление (например, пьезоэлектрический звукосниматель или конденсаторный микрофон).
Два слова о каскадах
Бывает такое, что нужно увеличить выходную мощность (т.е. увеличить коллекторный ток). В этом случае используют параллельное включение необходимого числа транзисторов.
Естественно, они должны быть примерно одинаковыми по характеристикам. Но необходимо помнить, что максимальный суммарный коллекторный ток не должен превышать 1,6-1,7 от предельного тока коллектора любого из транзисторов каскада.
Тем не менее (спасибо wrewolf за замечание), в случае с биполярными транзисторами так делать не рекомендуется. Потому что два транзистора даже одного типономинала хоть немного, но отличаются друг от друга. Соответственно, при параллельном включении через них будут течь токи разной величины. Для выравнивания этих токов в эмиттерные цепи транзисторов ставят балансные резисторы. Величину их сопротивления рассчитывают так, чтобы падение напряжения на них в интервале рабочих токов было не менее 0,7 В. Понятно, что это приводит к значительному ухудшению КПД схемы.
Может также возникнуть необходимость в транзисторе с хорошей чувствительностью и при этом с хорошим коэффициентом усиления. В таких случаях используют каскад из чувствительного, но маломощного транзистора (на рисунке — VT1), который управляет энергией питания более мощного собрата (на рисунке — VT2).
Другие области применения биполярных транзисторов
Транзисторы можно применять не только схемах усиления сигнала. Например, благодаря тому, что они могут работать в режимах насыщения и отсечки, их используют в качестве электронных ключей. Также возможно использование транзисторов в схемах генераторов сигнала. Если они работают в ключевом режиме, то будет генерироваться прямоугольный сигнал, а если в режиме усиления — то сигнал произвольной формы, зависящий от управляющего воздействия.
Почему биполярный транзистор может усиливать сигналы
Итак, мы уже знаем, что усиление электрических сигналов возможно в приборах с управляемыми потоками электрических зарядов. Однако сама по себе данная фраза ничего не значит. Возникает естественный вопрос: как, имея управляемый поток зарядов и подавая на вход слабый сигнал, на выходе прибора получить сильный сигнал?
Что же необходимо для работы усилительного устройства? Рассмотрим простой пример. Водитель автомобиля давит на педаль газа, и чем большее усилие он прикладывает к маленькой педали, тем быстрее едет большой и тяжелый автомобиль. Однако всем известно, что автомобиль двигает не слабый водитель, а мощный двигатель. Т.е. педаль — это лишь средство воздействия на двигатель, который и выполняет всю работу. На таком же принципе основано действие и усилителей электрических сигналов. В них создается отдельный мощный сигнал, который и попадает на выход усилителя, а слабый входной сигнал лишь воздействует на этот мощный сигнал, заставляя его изменяться по тому же закону.
Как уже говорилось, в полупроводниках могут существовать потоки электрических зарядов. Если такой поток протекает от одного электрода полупроводникового прибора к другому, то между этими двумя электродами возникает электрический ток, абсолютная величина которого пропорциональна мощности потока (количеству перемещаемых за единицу времени зарядов). Очевидно, что при определенных условиях с помощью мощного внешнего источника питания мы можем создавать в полупроводниковых структурах самые разнообразные потоки зарядов. Вопрос, однако, заключается в том, как обеспечить воздействие на эти потоки слабого сигнала, который мы хотим усилить. Вернемся теперь к рассмотрению биполярного транзистора.
На рис. 1.2 показана схема, в которой на выводы эмиттера и коллектора транзистора \(n\)-\(p\)-\(n\)-типа подано достаточно большое напряжение от внешнего мощного источника питания плюсом к коллектору и минусом к эмиттеру. Если бы между эмиттерной и коллекторной \(n\)-областями транзистора не было тонкой базовой прослойки с проводимостью \(p\)-типа, то очевидно, что в полупроводнике возник бы мощный поток электронов от эмиттера к коллектору.
Рис. 1.2. Схема подачи напряжений на биполярный транзистор n-p-n-типа для обеспечения режима усиления
Однако на практике даже весьма тонкой базовой прослойки оказывается достаточно, чтобы предотвратить это явление. Все изменяется, если мы приложим к базе транзистора некоторое незначительное по величине и положительное относительно эмиттера напряжение (рис. 1.2). При этом эмиттерный p-n-переход транзистора оказывается под напряжением, соответствующим его проводящему состоянию, и в \(p\)-\(n\)-структуре эмиттер—база образуется поток электронов в том же направлении, в котором он мог бы возникнуть при отсутствии базовой области. Электроны, достигая базовой области, по логике должны уходить в базовый электрод, обеспечивая прохождение тока в цепи база—эмиттер транзистора, но на практике происходит другое. Подгоняемые большим напряжением, приложенным между коллектором и эмиттером, электроны быстро пролетают через узкую базовую область и уходят к коллекторному электроду, т.е. возникает тот самый мощный поток зарядов между эмиттером и коллектором, который мы не могли получить ранее. Только крайне незначительная часть электронов попадает в базовый электрод. Таким образом, мы имеем слабый ток в цепи эмиттер—база и сильный ток в цепи эмиттер—коллектор (напомним, что направление электрического тока считается противоположным направлению движения отрицательных зарядов, в нашем случае — электронов). Повышая напряжение на базе транзистора, мы будем наращивать мощность потока электронов, при этом токи в цепях будут расти соответственно.
Итак, оказывается, что в биполярном транзисторе можно создать сильный электрический ток в цепи «коллектор — эмиттер — внешний мощный источник питания» при достаточно слабом токе в цепи «база — эмиттер — маломощный источник сигнала». Причем данное слабое воздействие на базу оказывает управляющее действие на ток в коллекторно-эмиттерной цепи. Если далее в коллекторную или эмиттерную цепь транзистора (рис. 1.2) включить некоторое сопротивление (нагрузку), то окажется, что ток и напряжение на нем повторяют форму входного сигнала на базе транзистора, но мощность, подаваемая на него, гораздо выше мощности входного сигнала, т.е. происходит усиление.
Мы описали работу биполярного транзистора \(n\)-\(p\)-\(n\)-типа. Для приборов \(p\)-\(n\)-\(p\)-типа все выглядит совершенно аналогично. Только здесь мы должны рассматривать не потоки электронов, а потоки положительных зарядов — дырок. При этом полярности всех внешних напряжений меняются на обратные. Других отличий нет.