Живучесть металла что такое
Изнашивание металлов
Живучесть
Важной характеристикой конструкционной прочности, характеризующей надежность материала, является живучесть при циклическом нагружении. Под живучестью понимают долговечность детали от момента зарождения первой макроскопической трещины, усталости размером 0,5—1,0 мм до окончательного разрушения.
Количественно живучесть конструкции оценивается коэффициентом
Коэффициент живучести может колебаться от 0,1 до 0,9. Ранее зарождение трещин усталости объясняется дефектами металлургического и технологического характера, а также неудачной конструкцией изделия (наличие концентраторов напряжений).
Живучесть имеет особое значение для надежности эксплуатации изделий, безаварийная работа которых поддерживается путем периодического дефектоскопирования различными физическими методами для выявления усталостных трещин. Чем меньше скорость развития трещины, тем легче ее обнаружить.
При трении сопряженных поверхностей имеет место изнашивание (износ), под которым понимают процесс отделения материала в поверхности твердого тела и (или) увеличения его остаточной деформации при трении, проявляющийся в постепенном изменении размеров и (или) формы тела (ГОСТ 27674—88).
Свойство материала оказывать сопротивление изнашиванию оцениваемое величиной, обратной скорости изнашивания, принято называть износостойкостью. В результате изнашивания изменяются размеры детали, увеличиваются зазоры между трущимися поверхностями, вызывающие биение и стук. Все это вызывает отказ машин.
Изнашивание является сложным физико-химическим процессом и нередко сопровождается коррозией. Реальные поверхности имеют сложный рельеф, характеризующийся шероховатостью и волнистостью. При трении существует дискретное касание шероховатых тел и, как следствие этого, возникают отдельные фрикционные связи, определяющие процесс изнашивания. Износ может возникнуть вследствие фрикционной усталости, хрупкого и вязкого разрушения, микрорезания при начальном взаимодействии, разрушения (в том числе усталостного) оксидных пленок, глубинного вырывания металла и т. д.
При относительном перемещении контактирующих материалов возникает сила трения F, препятствующая взаимному перемещению.
где Р — нормальная составляющая внешней силы, действующей на контактную поверхность,
f— коэффициент трения.
Коэффициент трения (безразмерная величина) может быть определен из уравнения:
f = А (mv/Р), (33)
где A – коэффициент;
Чем ниже значение f, тем меньше износ.
Обычно между трущимися поверхностями имеется тонкая пленка оксидов, которая изолирует поверхности соприкасающихся металлов.
Механизм изнашивания и величина износа зависят как от свойств материала пар трения, так и от характера их движения (трение скольжения, качения и т. д.), величины Р, скорости перемещения V и физико-химического действия среды.
При постоянных условиях трения имеют место три стадии изнашивания (рис. 45):
1. период приработки, при котором происходит интенсивное изнашивание, изменяется микрогеометрия поверхности и материал наклепывается; эти процессы обеспечивают упругое контактное взаимодействие тел; после приработки устанавливается равновесная шероховатость поверхности, характерная для заданных условий трения, которая в дальнейшем не изменяется и непрерывно воспроизводится;
2. период установившегося износа, в течение которого интенсивность износа минимальная для заданных условий трения;
3. период катастрофического износа.
Рис. 45. Кривая износа
Различают трение без смазочного материалаитрение со смазочным материалом. Трение без смазочного материала наблюдается во фрикционных передачах, тормозных парах и т. д. Широко применяется граничная смазка, когда масляная пленка толщиной от сотых до десятых долей миллиметра адсорбируется на поверхности детали. Коэффициент трения для этого случая составляет 0,01…0,03. При жидкостной смазке — трущиеся поверхности разделены находящимся под давлением слоем смазочного материала, который является несущим, так как уравновешивает внешнюю нагрузку. В этом случае слой смазочного материала имеет значительную толщину, трение происходит внутри масляного слоя, что приводит к снижению коэффициента трения (
При других видах изнашивания разрушение затрагивает поверхностные слои большей толщины.
Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет
Испытание на усталость. Живучесть
Большинство разрушений деталей и конструкций при эксплуатации происходит в результате циклического нагружения. Металл при таком нагружении может разрушаться при более низких напряжениях, чем при однократном плавном нагружении.
Процесс постепенного накопления повреждений в материале под действием циклических нагрузок, приводящий к образованию трещин и разрушению, называют усталостью. Свойство материалов противостоять усталости называют выносливостью.
На рис. 13.1 приведена типичная схема испытаний на усталость с соответствующими циклами напряжений. Согласно схеме, циклическое нагружение осуществляется подвешенным неподвижным грузом при вращении консольно закрепленного цилиндрического образца (рис. 13.1а). Цикл напряжений – это совокупность переменных значений напряжений за один период Т их изменения. За максимальное напряжение цикла σmах принимают наибольшее по алгебраической величине напряжение, а за минимальное σmin – наименьшее. Цикл характеризуется коэффициентом асимметрии Rσ = σmin / σmах. Если | σmin | = | σmах |, то Rσ = – 1 и цикл называют симметричным (рис. 13.1б). Если | σmin | ≠ | σmах |, то цикл называют асимметричным.
Рис. 13.1. Испытание на усталость: а – схема нагружения образца (1 – вращающийся шпиндель, 2 – образец, 3 – подшипник с грузом Р); б – циклическое изменение напряжения σ в образце
Сопротивление усталости характеризуется пределом выносливости σR, под которым понимают максимальное напряжение, которое не вызывает разрушения образца при любом числе циклов (физический предел выносливости) или заданном числе циклов (ограниченный предел выносливости). Предел выносливости при симметричном цикле обозначается σ–1.
Методика проведения испытаний материалов на усталость регламентирована ГОСТ 25.502-79. Для определения предела выносливости испытывают не менее 15 образцов. Каждый образец испытывают только на одном уровне напряжений – до разрушения или до базового числа циклов. По результатам испытаний отдельных образцов строят диаграммы усталости в координатах максимальное напряжение (σmах) – число циклов (N). При графическом изображении таких диаграмм удобно использовать логарифмические координаты – рис. 13.2.
Рис. 13.2. Диаграмма усталости для материалов имеющих (1) и не имеющих (2) физического предела выносливости
Переход кривой усталости в горизонталь наблюдается обычно у сталей после 10 7 циклов нагружения, для цветных сплавов это значение составляет примерно 10 8 циклов. Ордината, соответствующая постоянному значению σmах, является физическим пределом выносливости. Но могут быть случаи, когда и после указанного числа циклов кривая усталости не переходит в горизонталь, а продолжает снижаться. Тогда N = 10 7 для сталей и N = 10 8 для цветных сплавов принимают за базу испытаний и при указанных числах циклов определяют ограниченный предел выносливости.
Изложенная выше методика испытания материалов относится к испытаниям на многоцикловую усталость, когда используются большая база испытаний (до 10 7 …10 8 циклов) и высокая частота нагружения (до 300 Гц). Однако на практике имеют место испытания и на малоцикловую усталость, отражающие условия эксплуатации конструкций, подвергающихся воздействию сравнительно редких, но значительных по величине циклических нагрузок. Испытания на малоцикловую усталость проводятся при сравнительно малой частоте нагружения (3…5 Гц) на базе, не превышающей 5∙10 4 циклов.
Между пределом выносливости σ–1 и временным сопротивлением σв существует определенная связь. Для многих сталей отношение σ–1/σв ≈ 0,5; для медных сплавов – 0,3…0,5; а для алюминиевых – 0,25…0,4. Поэтому, зная σв, можно ориентировочно определить σ–1. Однако следует иметь в виду, что при высоком значении σв (σ0,2) отношение σ–1/ σв снижается. С повышением прочности (σв, σ0,2) возрастает σ–1 за счет увеличения сопротивления зарождению трещины усталости. Однако с увеличением σ0,2 снижается пластичность, что затрудняет релаксацию напряжений у вершины трещины и ускоряет ее развитие. С повышением прочности (понижением пластичности) возрастает чувствительность к концентраторам напряжений. Поэтому высокопрочные стали могут иметь более низкий σ–1, чем менее прочные стали.
Коррозия металла, приводящая к разупрочнению поверхности и появлению дополнительных концентраторов напряжения, снижает предел выносливости σ–1 на 50…60 % и более.
Живучесть. Важной характеристикой конструктивной прочности, характеризующей надежность материала, является живучесть при циклическом нагружении. Под живучестью понимают долговечность детали от момента зарождения первой макроскопической трещины усталости размером 0,5…1,0 мм до окончательного разрушения.
Количественно живучесть конструкции оценивается коэффициентом β = 1 – τо / τраз, где τо и τраз – продолжительность эксплуатации конструкции до появления трещин и до разрушения соответственно. Коэффициент живучести может колебаться от 0,1 до 0,9. Раннее зарождение трещин усталости объясняется дефектами металлургического и технологического характера, а также неудачной конструкцией изделия (наличие концентраторов напряжений).
Живучесть имеет особое значение для надежности эксплуатации изделий, безаварийная работа которых поддерживается путем периодической дефектоскопии различными физическими методами для выявления усталостных трещин. Чем меньше скорость развития трещины, тем легче ее вовремя обнаружить.
Механические свойства металлов
Поведение металла под нагрузкой определяется его механическими свойствами (прочностью, пластичностью, твердостью, упругостью, жесткостью, вязкостью). Методы испытаний механических свойств в зависимости от характера действия нагрузки делят на три группы: статические, когда нагрузка возрастает медленно (плавно); динамические – нагрузка возрастает с большой скоростью (мгновенно) – удар; циклические – при повторно-переменных нагрузках, когда нагрузка многократно изменяется по величине и знаку (испытания на усталость).
Механические свойства металлов при статическом нагружении.В результате испытаний определяют следующие характеристики металлов: прочность, пластичность, твердость, упругость, жесткость.
Прочность – свойство металла сопротивляться пластической деформации и разрушению под действием внешних сил. В зависимости от способа статического нагружения различают прочность при растяжении, сжатии и изгибе.
Испытания на растяжение. Для испытаний применяют специальные цилиндрические или плоские образцы. Расчетная длина образца равна десяти- или пятикратному диаметру. Образец закрепляют в испытательной машине и нагружают. Результаты испытаний отражают на диаграмме растяжения.
На диаграмме растяжения пластичных металлов (рис. 13, а) можно выделить три участка: ОА – прямолинейный, соответствующий упругой деформации; АВ – криволинейный, соответствующий упругопластической деформации при возрастании нагрузки; ВС – соответствующий упругопластической деформации при снижении нагрузки. В точке С происходит разрушение образца с разделением его на две части.
От начала деформации (точка О) до точки А образец деформируется пропорционально приложенной нагрузке. Участок ОА – прямая линия. Максимальное напряжение, не превышающее предела пропорциональности, практически вызывает только упругую деформацию, поэтому его часто называют пределом упругости металла.
|
Рис. 13. Диаграмма растяжения пластичных металлов:
а – с площадкой текучести; б – без площадки текучести
При испытании пластичных металлов на кривой растяжения образуется площадка текучести АА¢. В этом случае напряжение, отвечающее этой площадке, sт называют физическим пределом текучести. Физический предел текучести – это наименьшее напряжение, при котором металл деформируется (течет) без заметного изменения нагрузки.
Напряжение, вызывающее остаточную деформацию, равную 0,2 % от первоначальной длины образца, называют условным пределом текучести (σ0,2).
Участок А¢В (см. рис 13, а) соответствует дальнейшему повышению нагрузки и более значительной пластической деформации во всем объеме металла образца. Напряжение, соответствующее наибольшей нагрузке (точка В), предшествующей разрушению образца, называют временным сопротивлением, или пределом прочности при растяжении σв. Это характеристика статической прочности:
где Рmax – наибольшая нагрузка (напряжение), предшествующая разрушению образца, МПа;
У пластичных металлов, начиная с напряжения σв, деформация сосредоточивается (локализуется) в одном участке образца, где появляется сужение, так называемая шейка. В результате развития множественного скольжения в шейке образуется множество вакансий и дислокаций, возникают зародышевые несплошности. Сливаясь, они образуют трещину, которая распространяется в поперечном направлении растяжению, и образец разрушается (точка С). Кривая растяжения образца без площадки текучести показана на рис. 13, б.
Пластичность – свойство металла пластически деформироваться, не разрушаясь под действием внешних сил. Это одно из важных механических свойств металла, которое в сочетании с высокой прочностью делает его основным конструкционным материалом. Для определения пластичности не требуется образцов и оборудования. После испытания металла на растяжение эти же образцы измеряют и определяют характеристики пластичности. Показатели пластичности – относительное удлинение δ и относительное сужение ψ.
Относительным удлинением δ называется отношение абсолютного удлинения, т. е. приращения расчетной длины образца после разрыва (l – l0), к его первоначальной расчетной длине l0, выраженное в процентах:
(4)
где l0 – первоначальная длина образца, мм;
l – длина образца после разрыва, мм.
Относительным сужением y называется отношение абсолютного сужения, т. е. уменьшения площади поперечного сечения образца после разрыва (Fо – F), к первоначальной площади его поперечного сечения, выраженное в процентах:
(5)
где F0 – первоначальная площадь поперечного сечения образца, мм 2 ;
Твердость – свойство металла сопротивляться внедрению в него другого более твердого тела. Для определения твердости часто не требуется изготовления специальных образцов, испытания проводятся без разрушения металла.
Твердость металла можно определять прямыми и косвенными методами: вдавливанием, царапаньем, упругой отдачей, магнитным методом. Прямые методы состоят в том, что в металл вдавливают твердый наконечник (индентор) различной формы из закаленной стали, алмаза или твердого сплава (шарик, конус, пирамида). После снятия нагрузки на индентор в металле остается отпечаток, размер которого характеризует твердость.
Существует множество методов определения твердости металлов. Но лишь некоторые из них нашли широкое применение в машиностроении. Все они названы в честь своих создателей.
Метод Бринелля. В плоскую поверхность металла вдавливается стальной закаленный шарик диаметром 10; 5 или 2,5 мм (рис. 14, а). После снятия нагрузки в металле остается отпечаток (лунка). Диаметр отпечатка d измеряют специальным микроскопом с точностью 0,05 мм. На практике пользуются специальной таблицей, в которой каждому диаметру отпечатка соответствует определенное число твердости НВ.
Диаметр шарика и нагрузку устанавливают в зависимости от испытуемого металла, его твердости и толщины. Для стали и чугуна нагрузка Р = 3000 кг, диаметр шарика d = 10 мм. Например, твердость технически чистого железа, по Бринеллю, равна 80 – 90 единицам НВ.
Метод Бринелля не рекомендуется применять для металлов с твердостью более НВ450, так как шарик может деформироваться и получится искаженный результат. Этот метод в основном используется для измерения твердости неупрочненного металла заготовок и полуфабрикатов.
Метод Роквелла. Твердость определяют по глубине отпечатка. Наконечником служит стальной закаленный шарик диаметром 1,58 мм для мягких металлов или алмазный конус с углом при вершине 120° – для твердых и сверхтвердых (более HRC70) металлов (рис. 14, б).
Шарик и конус вдавливаются в металл нагрузкой 60, 100 или 150 кг. Отсчет результатов измерений определяется по показанию стрелки на шкале индикатора твердомера (рис. 15, а). После включения нагрузки стрелка перемещается по шкале индикатора твердомера (рис. 15, б) и указывает значение твердости (рис. 15, в).
Рис. 15. Показания индикатора прибора ТК
При вдавливании стального шарика нагрузка – 100 кг (отсчет по внутренней (красной) шкале индикатора), твердость обозначают как НRВ. При вдавливании алмазного конуса отсчет твердости осуществляется по показанию стрелки на наружной (черной) шкале индикатора (см. рис. 15, в). Нагрузка 150 кг – для твердых металлов. Это основной метод измерения твердости закаленных сталей. Обозначение твердости – НRC. Для очень твердых металлов, а также мелких деталей нагрузка – 60 кг, обозначение твердости – НRА.
Определение твердости по Роквеллу дает возможность испытывать мягкие и твердые металлы, а отпечатки от шарика или конуса очень малы, поэтому можно измерять твердость готовых деталей. Измерения не требуют никаких вычислений – число твердости читается на шкале индикатора твердомера. Поверхность для испытания должна быть шлифованной.
Метод Виккерса. В испытуемую поверхность (шлифованную или полированную) вдавливается четырехгранная алмазная пирамида под нагрузкой 5, 10, 20, 30, 50, 100 кг. В металле остается квадратный отпечаток. Специальным микроскопом твердомера измеряют величину диагонали отпечатка (рис. 16). Зная нагрузку на пирамиду и величину диагонали отпечатка, по таблицам определяют твердость металла, обозначаемую как HV.
Этот метод универсальный. Его можно использовать для определения твердости деталей малой толщины и тонких поверхностных слоев большой твердости (после азотирования, нитроцементации и т. п.). Чем тоньше металл, тем меньше должна быть нагрузка на пирамиду, но чем больше нагрузка, тем точнее получаемый результат.
Прочность при динамическом нагружении(испытания на ударную вязкость – на удар).В процессе эксплуатации многие детали машин испытывают динамические (ударные) нагрузки. Для определения стойкости металла к удару и одновременной оценки его склонности к хрупкому разрушению проводят испытания на ударный изгиб. В результате определяют ударную вязкость – характеристику динамической прочности.
Для определения ударной вязкости применяют 20 типов образцов (обычно размером 10 ´ 10 ´ 55 мм) с U- или V-образным надрезом. Надрез посередине образца называется концентратором. Испытания проводят на маятниковом копре 1 (рис. 17, а). Маятник 2, падая с определенной высоты, разрушает образец 3, свободно установленный на двух опорах копра (рис. 17, б). Работа удара К (Дж или кгс×м), затраченная на излом (разрушение) образца, фиксируется стрелкой на шкале копра и определяется из разности энергии маятника в положении его до и после удара. Ее можно определить по формуле:
где G – вес маятника, Н;
h1 – высота подъема маятника до разрушения образца, м;
h2 – высота подъема маятника после разрушения, м.
Ударная вязкость обозначается КС (прежнее обозначение – aн) и подсчитывается как отношение работы, затраченной на разрушение образца К, к площади поперечного сечения образца в месте надреза F, МДж/м 2 :
|
Определение ударной вязкости является наиболее простым и показательным способом оценки способности металлов, имеющих объемно центрированную кубическую решетку, к хрупкости при работе в условиях низких температур, называемой хладноломкостью.
Прочность при циклическом нагружении(испытания на усталость). Многие детали (валы, рессоры, рельсы, шестерни) в процессе работы подвергаются повторно-переменным нагрузкам. Разрушение таких деталей при эксплуатации происходит в результате циклического нагружения при напряжении, значительно меньшем, чем временное сопротивление металла. Процесс постепенного накопления напряжения в металле при действии циклических нагрузок, приводящий к образованию трещин и разрушению, называется уста-лостью. Свойство металла выдерживать большое число циклов переменных напряжений, т. е. противостоять усталости, называется выносливостью, или циклической (усталостной) прочностью.
Усталостная прочность – способность металла сопротивляться упругим и пластическим деформациям при переменных нагрузках. Она характеризуется наибольшим напряжением s-1, которое выдерживает металл при бесконечно большом числе циклов нагружения не разрушаясь и называется пределом усталости, или пределом выносливости. Для углеродистой конструкционной стали предел усталости принимается равным (0,4 – 0,5) sв.
Значение предела выносливости зависит от целого ряда факторов: степени загрязненности металла неметаллическими включениями, макро- и микроструктуры металла, состояния поверхности, формы и размеров детали и др.
Разрушение металлов при усталости отличается от разрушения при однократных нагрузках особым видом излома. При знакопеременной нагрузке происходит постепенное накопление напряжения, обусловленное движением дислокаций. Поверхность детали, как наиболее нагруженная часть сечения, претерпевает микродеформацию, и в наклепанной (упрочненной деформацией) зоне возникают микротрещины. Из множества микротрещин развитие получает только та, которая имеет наиболее острую вершину и наиболее благоприятно расположена по отношению к действующему напряжению.
Пораженная трещиной часть сечения детали не несет нагрузки, и она перераспределяется на оставшуюся часть, которая непрерывно уменьшается, пока не произойдет мгновенное разрушение. Таким образом, для усталостного излома характерно, как минимум, наличие зоны прогрессивно растущей трещины 1 и зоны долома 2 (рис. 18).
Важной характеристикой конструктивной прочности (надежности) металла является живучесть при циклическом нагружении.
Живучесть – это способность металла работать в поврежденном состоянии после образования трещины. Она измеряется числом циклов нагружения до разрушения или скоростью развития трещины усталости при данном напряжении. Живучесть является самостоятельным свойством, которое не зависит от других свойств металла. Живучесть имеет важное значение для оценки работоспособности деталей, работа которых контролируется различными методами дефектоскопии. Чем меньше скорость развития трещины усталости, тем легче ее обнаружить.
Для повышения усталостной прочности деталей желательно в поверхностных слоях металла создавать напряжение сжатия методами поверхностного упрочнения (механическими, термическими или химико-термическими).
3. металлические сплавы
Чистые металлы в большинстве случаев не обеспечивают требуемого комплекса механических и технологических свойств, поэтому для изготовления деталей машин наибольшее распространение получили металлические сплавы – вещества, обладающие металлическими свойствами, представляющие собой сочетание какого-либо металла (основа сплава) с другими металлами или неметаллами. Например, латунь – сплав меди (металл) с цинком (металл), сталь – сплав железа (металл) с углеродом (неметалл). Большинство сплавов получают путем сплавления, т. е. соединения компонентов сплава в жидком состоянии. Есть и другие способы образования сплавов. Так, металлокерамические сплавы образуются путем спекания из порошков.