Дельта активность на ээг что это
Нормы показателей ритмов на ЭЭГ
По результатам ЭЭГ врач делает заключение, исходя из которого, больному будет поставлен диагноз и определена стратегия лечения. При этом принимаются во внимание индивидуальные особенности организма – возраст, наличие хронических заболеваний и т.д. Отклонения показателей мозговой деятельности могут свидетельствовать о заболевании.
Нормы и нарушения альфа-ритма
Это колебания, частота которых в норме варьирует в пределах от 8 Гц до14 Гц, а максимум амплитуды ограничивается 100 мкВ. К признакам патологических изменений альфа-ритма относят:
Перечисленные нарушения свидетельствуют об асимметрии полушарий, которая может оказаться симптомом наличия опухоли, кровоизлияния, инсульта или другой патологии мозга, локализованной в одном полушарии. Превышение частотной нормы – признак травмы черепа или мозговой ткани.
Нормы и нарушения бета-ритма
На сегодняшний день нормальными показателями принято считать колебания от 3 мкВ до 5 мкВ, которая фиксируется в обоих полушариях мозга. Чересчур высокая амплитуда бета-ритмов может говорить о сотрясении мозга. Так называемые короткие веретена на ЭЭГ – признак заболевания энцефалитом. Если длительность и частота веретен возрастают, это является признаком воспаления тканей мозга.
Для детского возраста бета-ритмы, частота которых стабилизирована в пределах 15-16 Гц, а амплитуда лежит между 40 мкВ и 50 мкВ, считаются признаком патологии. Особенно настораживает врача локализация колебаний в передней либо центральной зоне мозга. В этом случае можно говорить о возможности задержек в умственном развитии младенца.
Нормы и нарушения дельта- и тэта-ритмов
Врачи могут заподозрить функциональное расстройство мозга, если амплитуда дельта и тэта-ритмов увеличена более чем до 45 мкВ, и это увеличение носит постоянный характер. Если такая картина наблюдается для всех долей мозга, с большой долей вероятности, можно говорить о тяжёлом поражении нервной системы.
Чрезмерно высокая амплитуда дельта-колебаний нередко служит симптомом развития опухоли. Рост показателей тэта и дельта, локализованный для затылочной части мозга, являются тревожным признаком, когда фиксируются у ребёнка: это может говорить о задержке его развития, заторможенной психике и даже о нарушениях кровообращения мозга.
Ритмы при ЭЭГ — обозначение и расшифровка
Ритмы ЭЭГ – это диагностируемые электрические колебания головного мозга. Различные степени бодрствования сопровождаются изменениями частотного спектра сигналов ЭЭГ.
В зависимости от амплитуды, формы волн, топографии, частотного диапазона и типа реакции различают ритмы электроэнцефалографии.
Основные ритмы ЭЭГ обозначают греческими буквами:
Как работает электроэнцефалография?
Передача сигналов в нервной системе человека осуществляется как химическим (с помощью нейротрансмиттеров), так и электрическим (потенциалы действия) путем. Одиночный потенциал действия или мембранное напряжение одного нейрона являются слишком слабыми, чтобы их было возможно уловить не инвазивными методами диагностики. Однако электроды могут улавливать суммирование синхронно действующих потенциалов действия и сделать колебания электрической активности видимыми.
Существует определенная связь между психическим состоянием человека и волнами ЭЭГ. Отклонения или необычные мозговые волны могут указывать на патологию. Анализом и описанием таких волн занимается невролог.
Электроды измеряют активность тех частей коры головного мозга, которые имеют высокую плотность нервных клеток. Однако ЭЭГ измеряет не только электрический потенциал нервных клеток в головном мозге, но также мышцы головы и кожи. Соответственно, основные ритмы ЭЭГ не отражают точную активность нейронов. Ритмы ЭЭГ и их связь с функциональным состоянием мозга является предметом споров в научной среде.
Дельта-ритмы
Дельта-ритмы ЭЭГ имеют низкую частоту от 0,1 до
Электроэнцефалография и ее клиническое значение
Биофизическим проявлением функционирования нервной системы является спонтанная электрическая активность. Благодаря процессам генерации электрических импульсов, их подавления, передачи, нервные клетки объединяются в единую систему, управляющую организмом. Данную электрическую активность можно зарегистрировать в нервной системе на любом уровне.
Электроэнцефалография — раздел электрофизиологии центральной нервной системы (ЦНС), занимающийся изучением закономерностей распространения электрической активности в головном мозге для определения функционального состояния головного мозга. В настоящее время данная методика нашла очень широкое применение в неврологии, нейрохирургии, психиатрии, эндокринологии и является ведущей при изучении функции ЦНС. Методика основана на регистрации электрической активности, являющейся основой функционирования всякой возбудимой ткани организма.
Электроэнцефалограмма (ЭЭГ) — кривая, получаемая при регистрации электрической активности головного мозга через ткани черепа. Регистрация потенциалов непосредственно с коры головного мозга называется электрокортикограммой.
Электрическая активность в коре головного мозга была обнаружена физиологами еще в середине прошлого столетия (1849 г.), когда была выявлена электронегативность в месте разреза головного мозга лягушки и черепахи. Затем дли¬тельное время электрическую активность мозга никто не изучал. Только в 1875 — 1876 г. возобновили изучение потенциалов головного мозга животных при различных раздражениях (Данилевский В. Я., Caton). В 1884 г. Введенский Н. Е. приме¬нил телефон для прослушивания электрических процессов в мышцах и нервах, а в дальнейшем и в нервных центрах. В дальнейшем изучение электрофизиологии головного мозга проводилось с помощью гальванометров, которые из-за своей инертности позволяли наблюдать изменение постоянного потенциала при различных раздражениях, т. е. фиксировались медленные колебания в коре. Быстрые ритмы определялись со значительными искажениями.
Началом клинической ЭЭГ считают 1924 г., когда Ганс Бергер впервые осуществил регистрацию ЭЭГ сигналов у человека. Тогда же в его работах было да¬но описание основных ритмов. В 1936 году G.Walter при исследовании больных с опухолью головного мозга обнаружил, что изменения ритмов могут иметь диагностическое значение. В ЭЭГ больных он нашел медленные волны, которые, назвал Дельта-волнами. В США в середине 30-х годов Devis, Jasper и Gibbs обнаружили специфические проявления на ЭЭГ у больных с малыми эпилептическими припадками.
В дальнейшем ЭЭГ развивалась двумя путями: совершенствование технической базы, с созданием новых, более чувствительных и точных приборов; исследование феноменологии ЭЭГ и совершенствование диагностики. Но постоянно перед энцефалографистами вставал вопрос о локализации и механизме гене¬рации импульсов. В этом направлении были достигнуты значительные успехи, особенно после начала изучения нейрофизиологии отдельных нейронов. Это имело важное значение для понимания природы ЭЭГ.
В настоящее время установлено, что центральная нервная система на всех своих уровнях генерирует спонтанную электрическую активность. Эта ритмика сложна, особенно в коре больших полушарий, она зависит от функциональной организации и изменяется под действием различных раздражителей.
Существует много теорий объяснения природы данных ритмических процессов, основанных на изучении электрической активности отдельных нейронов, синоптических потенциалов. Установлено, что нейроны, даже находящиеся близко друг от друга, обладают различной активностью. Но если считать, что нейроны все работают независимо друг от друга, тогда каким образом из этой шумовой кривой получается ритмическая активность, наблюдаемая на ЭЭГ. Наличие ритмов на ЭЭГ сейчас считают прямым показателем того, что нейроны мозга синхронизируют свою активность сложным образом, что позволяет системе функционировать как единому целому. Т.е. нейроны работают в едином динамическом соотношении, и изменение соотношений на разных уровнях организации, межуровневых соотношений приведет к изменению ритмической активности, что будет прямым отражением изменения функционального состояния.
Оборудование
Для регистрации ЭЭГ используют приборы, называемые Электроэнцефалографами. Они состоят из электродной части, системы усилителей, регистрирующего прибора. Электроды бывают разными: чашечковые и мостиковые. Изготавливают их из электропроводного угля или из металла с хлорсеребряным покрытием. Такое покрытие необходимо, что бы на электроде не накапливался постоянный потенциал, который вызывает поляризацию электрода. Это приводит к появлению помех. Менее всего поляризуются неметаллические электроды.
Для обеспечения точной регистрации используют параллельные синфазные усилители с режекционным фильтром. Это позволяет бороться с сетевыми помехами. По своему качеству усилители сейчас позволяют проводить запись без электроизолированной камеры и без заземления.
Регистрирующий прибор. Первоначально в качестве регистратора использовались пишущие приборы с подачей бумажной ленты. Они различались на чернильные приборы, приборы с термопером. Но расходные материалы были достаточно дороги. Сейчас в качестве регистрирующего прибора используют компьютерную технику. С приходом компьютерной техники появилась возможность не только записывать ЭЭГ на небумажный носитель, но так же проводить дополнительную математическую обработку ЭЭГ. Это повысило разрешающую способность метода.
Наложение электродов проводится так же различными способами. Международной системой, принятой за эталон, является система 10 — 20. Электроды накладывают следующим образом. Измеряют расстояние по сагиттальной линии от Inion до Nasion и принимают его за 100%. В 10% этого расстояния от Inion и Nasion соответственно устанавливают нижние лобные и затылочные электроды. Остальные расставляют на равном расстоянии составляющем 20% от расстояния inion — nasion. Вторая основная линия проходит между слуховыми проходами через макушку.
Нижние височные электроды располагают соответственно в 10% этого расстояния над слуховыми проходами, а остальные электроды этой линии на расстоянии 20% длины биаурикулярной линии. Буквенные символы обозначают соответственно области мозга и ориентиры на голове: О — occipitalis, F — frontalis, A — auricularis, P — parietalis, С — centralis, Т — temporalis. Нечетные номера соответствуют электродам левого полушария, четные — правому.
По системе Юнга лобные электроды (Fd, Fs) располагают в верхней части лба на расстоянии 3 — 4 см от средней линии, затылочные (Od, Os) — на 3 см выше от inion и на 3 — 4 см от средней линии. Отрезки линий Od — Fd и Os — Fs делят на три равные части и в точках деления устанавливают центральные (Cd, Cs) и теменные (Pd, Ps) электроды. На горизонтальном уровне верхнего края ушной раковины по фронтальной линии Cd — Cs устанавливают передние височные (Tad, Tas), а по фронтальной линии Ps — Pd — задние височные (Tpd, Tps).
Преимуществом системы 10 — 20 является большое количество электродов (от 16 до 19 — 24), но эта система требует более чувствительного оборудования, т.к. межэлектродное расстояние мало и потенциал слаб. Система Юнга дает достаточное расстояние и все электроды равномерно распределены по поверхности головы, но степень локализации при отведении недостаточна.
Способ отведения потенциала так же может быть различен. Общепринятой является система монополярной записи. При этом электроды на голове являются активными и регистрируют изменение потенциала относительно индифферентно¬го электрода (чаще всего располагают на мочках ушей). Биполярная запись определяет изменение потенциала между двумя электродами, расположенными в разных точках на поверхности скальпа.
Нормальный рисунок ЭЭГ
В норме ЭЭГ снимается в состоянии спокойного бодрствования, когда пациент сидит с закрытыми глазами, расслабившись. В своей основе нормальная ЭЭГ представляет достаточно организованную кривую, состоящую преимущественно из быстрых ритмов, которые имеют определенную пространственную и временную организацию.
Параметры нормального альфа-ритма
Частота 8-13 Гц, по некоторым авторам признается частота 7-12 Гц или 8-12 Гц. Чаще всего в нормальном состоянии встречается частота 9-10 Гц, что можно назвать норморитмом. Тогда среднюю частоту 8-9 (7-9) Гц можно считать замедленным альфа ритмом, а 11-12 Гц — учащенным. Естественно замедлен¬ный и учащенный ритмы уже выходят за рамки нормы (у взрослых людей) и могут рассматриваться, как условно патологические (по Гриндель О. М.)
Амплитуда в норме составляет 20-80 мкВ. Некоторые авторы признают за норму 20 110 мкВ. Амплитуда в норме варьирует в зависимости от возраста.
Зональное распределение — в норме определяются затылочно-теменной зоной, где ритм наиболее выражен. Данное положение признается всеми одинаково.
Модулированность характеризуется волнообразным изменением амплитуды ритма.
Синусоидальность устанавливает в норме закругленность вершин. При ком-пьютерной визуализации синусоидальность не выявляется столь четко (при 8-ми битовой записи) и все ритмы кажутся заостренными. Но, как правило, истинное заострение ритма должно сочетаться с другими нарушениями нормального ритма.
Симметричность по амплитуде и частоте. Достоверность амплитудной сим¬метрии устанавливается путем хорошего наложения электродов с измерением импеданса. Частотная асимметрия так же должна быть объективизирована (критерии достоверности). При этом надо учитывать наличие физиологической асим¬метрии полушарий.
Реакция активации альфа-ритма, т. е. его угнетение при открывании глаз или вспышке света. Данный феномен является одним из основных в характери¬стике альфа-ритма. По нему можно точно отнести выявляемый ритм к альфа-ритму.
Индекс альфа-ритма, который в норме составляет 80 %. При математической обработке индекс можно вычислять, как процент мощности альфа-ритма относительно мощности остальных ритмов в затылочных и теменных отведениях.
Параметры нормального бета ритма
Амплитуда мала — 10—15 мкВ.
Зональность — в норме распределяется в передне-центральных и височных отделах. По мнению Жирмунской Е.А. Бета 1-ритм не является чисто физиологическим и для нормы не характерен. Височный бета ритм часто бывает результатом мышечного артефакта.
Ц-ритм — является вариантом нормального ритма частотой 8 — 13 Гц и выявляется в центральных отделах. Имеет следующие особенности: исчезает при контралатеральном активном сжимании кисти в кулак, узко локализован в цен¬тральных отделах.Медленные ритмы, встречающиеся в норме.
Тета-ритм — частота 4—8 Гц, амплитуда до 30—40 мкВ.
Дельта-ритм — частота 0,5—4 Гц, амплитуда до 30—40 мкВ.
Регионарные особенности ЭЭГ
Доминирующий ритм — это ритм потенциалов, преобладающий на данном участке кривой и при визуальном анализе отличается наибольшей периодичностью и регулярностью, а при частотном анализе — наибольшей амплитудой.Затылочная, теменно-затылочная и височно-затылочная область. Четко выражен доминирующий альфа-ритм, двухфазный, синусоидальный, подавляе¬мый на открывание глаз. Появление в задне-теменной и теменной области ритма частотой в 20—26 Гц, в состоянии покоя, может рассматриваться, как ирритация коры.
Передние отделы полушарий — прецентральная и лобная области. Частые ритмы усилены, альфа почти не прослеживается. Тета-ритм снижен по сравнению с центральными отделами.
Т. о. фоновый рисунок ЭЭГ представляет собой сложный организованный волновой процесс, состоящий из веретен модулированного в разной степени альфа-ритма, на фоне низкоамплитудной высокочастотной активности типа бета-ритма. Данный паттерн проявляется в задних отделах. В более оральных отделах появляются элементы медленноволновой активности с фоновым бета-ритмом.
Теоретически происхождение основного рисунка ЭЭГ выводится из биофизической предпосылки, что каждая клетка представляет собой малый генератор импульсов. Но ЦНС нельзя воспринимать, как совокупность различных центров, которые в свою очередь состоят из отдельных, элементарных (пусть даже взаимосвязанных процессами возбуждения и торможения) генераторов импульсов. Нервная система является сложной, сбалансированной, гибкой системой, функция которой определяется, в первую очередь, морфологическими и динамически¬ми связями. Это подтверждается большими компенсаторными возможностями НС.
Филогенетически оральный ганглий червя развился в обонятельный мозг, который в дальнейшем развитии дополнился зрительным мозгом и лимбической корой для организации поведенческих реакций. С увеличением сложности афферентной импульсации организуется таламическая система. С усложнением движений образуется подкорковая экстрапирамидная система. Последней формируется кора. Параллельно с возникновением новых структур усложняется и организация системы. Чтобы обеспечить все многообразие связей, их гибкость и постоянство, система должна иметь энергетическую и информационную подпитку. Организуется дополнительная, недифференцированная система — ретикулярная формация. Следовательно, основными функциональными структурами, определяющими активность мозга, являются кора, подкорковые отделы и ретикулярная формация.
Взаимосвязь ритмов, независимо от амплитудных значений, математически оценивается когерентностью, кроскорелляцией и фазностью. По волновой теории (Гриндель О. М. с соавт.), построенной на основании анализа большого количества данных, все ЭЭГ были разделены на два больших типа по характеру связей: волновой и импульсный (20%). Волновой тип, являясь более распространенным, определяет сбалансированность и постоянство циклических процессов, что согласуется с принципом активной обратной связи (по Анохину П. К.). Когерентность максимальна в лобных отделах по всем диапазонам волн и минимальна в затылочных. Учитывая, что когерентность определяет степень связи, можно считать, что в затылочных отделах происходит образование большого количества разобщенных источников, а в лобных отделах они объединяются единой организующей силой. Попробуем объяснить процессы следующим образом.
Афферентные импульсы приходят в таламус, где переключаются и после определенной обработки переходят в кору (общепринятое представление). По теории динамической локализации функций в коре (Павлов И. П.) импульсы функ¬ционально приходят в разные отделы, что приводит к возникновению многих центров по обработке разнородной информации. Совокупность центров дает сочета¬ние импульсов, проявляющегося в затылке (не удивительно т. к. основная часть информации приходит к зрительным центрам, кроме того, в височно-затылочные области приходит разнородная информация от других аффекторов) (Кроль Б. М.). Эта информация достаточно не специфична в состоянии спокойного бодрствования. Посылки идут импульсно, что согласуется с триггерной функцией таламуса (иные посылки не будут приводить к образованию центров с учетом функциональной рефрактерности последних). Импульсность выражается в модулированности альфа-ритма в затылочных отделах и несовпадении по фазе огибающей веретен в разных отведениях (видно на глаз при оценке кривой). Подобные процессы про¬исходят в центральных отделах, где стыкуются афферентный и эфферентный (двигательный) анализаторы. Благодаря этой стыковке степень рассогласования процессов меньше. Далее идет сложный процесс восприятия и анализа раздра¬жении «на местах». В лобных отделах происходит интегрирование всей информации и формирование единого действия. Это приводит к возникновению в лобных отделах единого центра, но более медленного по волновой функции. Далее информация идет в подкорковые структуры и реализуется системой в виде произвольных реакций. Волновой круг информации замыкается и начинается новый, что также определяет степень модулированности.
Картина ЭЭГ меняется при проведении функциональных проб. При функциональных пробах происходит повышение активности тех или иных структур. В качестве нагрузок используют следующие: открывание глаз, вспышка света, гипер-вентиляция, фотостимуляция, фоностимуляция.
Проба «Открывание глаз». При открывании глаз на ЭЭГ альфа-ритм исчезает и заменяется быстрыми ритмами (реакция активации). При этом оценивают скорость наступления реакции, степень угнетения альфа-ритма, стойкость активации (по нашим данным замечено, что в среднем реакция сохраняется 20 — 25 с, далее появляются элементы альфа-ритма). После закрывания глаз, в норме, наступает реакция отдачи, которая проявляется во временном усилении основного ритма. При этом оценивают латенцию восстановления основного ритма, степень и стойкость реакции отдачи. При данной пробе оценивают реактивность коры, стойкость процессов возбуждения в коре, выраженность тонуса подкорки. Данная проба более физиологична, чем реакция активации на вспышку света и несет больше информации. (Но реакцию на вспышку света можно использовать при обследовании коматозных больных). Процессы, происходящие при реакции активации, функционально можно представить следующим образом. Открывание глаз значительно усиливает поток импульсов в корковые отделы, что приводит к повышению дифференцировки коры. Это проявляется на ЭЭГ в виде реакции активации с десинхронизацией (внешняя десинхронизация) за счет быстрых ритмов. Математически происходит усиление градиента когерентности, но в целом когерентность остается на основном уровне т.к. физиологическая активация не нарушает системы связей.
Проба с гипервентиляцией. При проведении пробы больной усиленно дышит, акцентируя внимание больше на выдохе. Гипервентиляция проводится в течение 3 мин. При экспертизе, при специальных обследованиях, проводят 5 минутную гипервентиляцию. На ЭЭГ, при проведении пробы возникает усиление альфа-ритма с его незначительным замедлением и перераспределением на передние отделы. Степень модулированности уменьшается. Физиологически при гипервентиляции снижается парциальное давление С02 в крови. Это приводит к активации неспецифических подкорковых структур и усиливает поток неспецифических, синхронизирующих импульсов в кору. При перевозбуждении подкорковых отделов возникает островолновая активность на ЭЭГ (наступает в норме при гипервентиляции более пяти минут).
Фотостимуляция. Проводится в двух вариантах: ритмическая и триггерная. При ритмической фотостимуляции вспышки света подаются ритмично с определенной частотой. Используют различные частотные диапазоны. При ритмической стимуляции возникает реакция усвоения ритма. На ЭЭГ появляется ритм, соответствующий по частоте ритму стимуляции. При спектральном анализе можно выявить не только усвоение ритма по основной гармонике (частоте стимуляции), но и субгармоники, как правило, по частотам, четным основной частоте стимуляции. В норме перестройка ритма у людей выражена в разной степени. Но чаще усваиваются средние и быстрые ритмы, без выраженной асимметрии, преимущественно в задних или центральных отделах. По степени усвоения ритма, соблюдению частоты гармоник, симметричности можно оценить степень триггер-ной функции таламуса, подвижность процессов в коре. Триггерная стимуляция проводится путем подачи световых раздражении с частотой основного ритма ЭЭГ. Для этого используют специальные синхронизирующие устройства.
Дополнительные способы анализа ЭЭГ
В настоящее время основным способом анализа ЭЭГ остается визуальный анализ. Из дополнительных методов анализа используют расчет спектра мощности с применением быстрого преобразования Фурье. Спектр мощности показывает степень выраженности ритма данной частоты. Наглядно спектр мощности представляется в виде усредненных кривых, распределения спектров мощности по эпохам, спектральное картирование.
Другим дополнительным методом является расчет когерентности. Когерентность показывает степень схожести колебательных процессов в двух разных точках, независимо от их амплитудной представленности. Установлено, что среднее значение когерентности постоянно и отражает степень стабильности связей в системе.
Последнее время используется еще один способ обработки. Это локализация источников патологической активности методом Многошаговой дипольной локализации. Путем многочисленных расчетов создается математическая модель вероятного расположения источника данной волны. Данная модель сравнивается с амплитудным распределением тех же волн на скальпе. Для локализации ис¬пользуют только те срезы ЭЭГ, которые имеют заданную вероятность сходимости расчетной модели и скальповой записи. Достоверной считается вероятность 0,95 и более.
ЭЭГ-мониторинг или лекция для тех кому любопытно
1. Введение
Широкое распространение метода ЭЭГ-мониторинга в первой половине 90-х гг. произвело буквально революционные изменения в диагностике эпилепсии, позволило распознавать сложные в клиническом отношении судорожные припадки. Стало ясно, что многие виды судорожных приступов не укладываются в классическую картину, описанную в медицинских учебниках, что привело к пересмотру взглядов на диагностику и тактику лечения пациентов.
Проведение ЭЭГ назначается для получения ответов на следующие вопросы:
Прежде чем приступить к ответу на эти вопросы необходимо понять происхождение этого метода, а потом прийти к плодам, результатам многолетних исследований, которые в изобилии разрослись на этом мощном стволе.
2. Понятия, определяющие ВЭЭГ
2.1. ЭЭГ и эпилепсия
Основные понятия, которые можно выделить, разбирая понятие видео-ЭЭГ-мониторинг — ЭЭГ и эпилепсия.
Электроэнцефалография — метод исследования биоэлектрической активности головного мозга, основанный на определении разности электрических потенциалов, генерируемых нейронами в процессе их жизнедеятельности. Регистрирующие электроды располагают так чтобы на записи были представлены все основные отделы мозга. Получаемая запись — ЭЭГ — суммарная электрическая активность миллионов нейронов, представленной преимущественно потенциалами дендритов и тел нервных клеток: возбудительными и тормозными постсинаптическими потенциалами и частично — потенциалами дендритов и тел нервных клеток. То есть ЭЭГ — как бы визуализированный результат функциональной активности головного мозга.
Здесь наверное стоило бы уделить долю внимания анатомии нейрона и его физиологии.
Нейрон является главной клеткой центральной нервной системы. Формы нейронов чрезвычайно многообразны, но основные части неизменны у всех типов нейронов: тело и многочисленных разветвленных отростков. У каждого нейрона есть два типа отростков: аксон, по которому возбуждение передается от нейрона к другому нейрону, и многочисленные дендриты (от греч. дерево), на которых заканчиваются синапсами (от греч. контакт) аксоны от других нейронов. Нейрон проводит возбуждение только от дендрита к аксону.
Основным свойством нейрона является способность возбуждаться (генерировать электрический импульс) и передавать (проводить ) это возбуждение к другим нейронам, мышечным, железистым и другим клеткам.
Нейроны разных отделов мозга выполняют очень разнообразную работу, и в соответствии с этим форма нейронов из разных частей головного мозга также многообразна.
Нейрон. Возбуждающие и тормозные ПСП, потенциал действия.
Обычная спонтанная ЭЭГ, ее основные ритмы возникают в результате пространственной и временной суммации постсинаптических потенциалов (ПСП ) большого количества корковых нейронов. Временные характеристики процесса суммации достаточны медленны по сравнению с длительностью ПД.
Определенная степень синхронизации задается различными подкорковыми структурами, которые выполняют роль «водителя ритма» или пейсмекера. Среди них наиболее значимую роль в генерации ритмов ЭЭГ играет таламус.
Таким образом, в генерации ЭЭГ принимают участие и постсинаптические потенциалы и потенциалы действия. Основная ритмика ЭЭГ определяется градуальными изменениями постсинаптических потенциалов благодаря пространственной и временной суммации отдельных ПСП в больших популяциях нейронов, которые относительно синхронизированы и находятся под воздействием подкоркового водителя ритма. Пароксизмальные же события, синхронизирующие значительное количество нейронов, которые продуцируют вспышки потенциалов действия, отвечают за формирование многих эпилептиформных феноменов ЭЭГ, в частности комплексов спайк-волна.
Собственно изучением всего этого процесса и занимается электроэнцефалография.
2.2. История изучения ЭЭГ
Начало изучению электрических процессов мозга было положено Д. Реймоном (Du Bois Reymond) в 1849 году, который показал, что мозг, также как нерв и мышца, обладает электрогенными свойствами.
Начало электроэнцефалографическим исследованиям положил В.В.Правдич-Неминский, опубликовав 1913 году первую электроэнцефалограмму записанную с мозга собаки. В своих исследованиях он использовал струнный гальванометр. Так же Правдич-Неминский вводит термин электроцереброграмма.
Первая запись ЭЭГ человека получена австрийским психиатром Гансом Бергером в 1928 году. Он же предложил запись биотоков мозга называть «электроэнцефалограмма ».
По мере совершенствования компьютерной техники в 1996 году осуществлена методика амбулаторной полиграфической записи посредством 17-канального электроэнцефалографа (16 каналов ЭЭГ и 1 канал ЭКГ) с использованием переносного персонального компьютера (ноутбука ) [Ebersole J. S. et al, 1996].
И наконец к концу 20 века у в арсенале эпилетологических и нейрофизиологических служб получается несколько видов методики ЭЭГ: рутинная ЭЭГ, холтеровское ЭЭГ и ВЭЭГ.
ЭЭГ стал «лезвием бритвы», наиболее качественным и информативным методом диагностики формы эпилепсии и позволяет регистрировать клинико-электроэнцефалографический коррелят эпилептического приступа, что дает возможность установить более точный диагноз и назначить рациональную схему антиэпилептической терапии.
3. Проведение ЭЭГ. Взгляд с 3 позиций
ЭЭГ мониторинг можно рассмотреть с 3 позиций: пациента, врача который проводит исследование в данный момент и со стороны врача, который расшифровывает видео-ЭЭГ-мониторинг постфактум.
Как предисловие стоит просто назвать показания и противопоказания к проведению этого исследования (Авакян )
Противопоказания:
Противопоказаний к проведению ЭЭГ нет.
3.1. Устройство ВЭЭГ-лаборатории
Сутью метода ВЭЭГ является непрерывная запись ЭЭГ сигнала и видеоизображения пациента в течение длительного времени. Минимальная продолжительность исследования 15 минут, максимальная не лимитирована (до 7-14 суток). Обязательным условием является идеальная синхронизация видеоизображения и ЭЭГ во времени.
Основой системы ЭЭГ-мониторинга является многоканальный усилитель сигналов, имеющий возможность записи 19-32-64-128-канальной ЭЭГ, ЭКГ-канала, датчика дыхания, электромиографических и электроокулографических каналов.
К усилителю подключаются соответствующие регистрирующие датчики. Крепление ЭЭГ-электродов для длительной регистрации производится с помощью специальной шапочки или клеящей пасты. Конструкция электродной системы позволяет пациенту перемещаться по палате, не доставляет неудобств и делает проведение исследования комфортным.
Сигналы с усилителя посредством проводной или беспроводной связи направляются на рабочую компьютерную станцию.
Видеоизображение записывается посредством цифровых видеокамер, количество их может быть произвольным, в большинстве систем предусмотрена возможность использования 1-2 камер.
Обработка результатов производится изучением синхронного изображения ЭЭГ и видеоизображения, скорость прокрутки изображения выбирается произвольно. Программа обработки ЭЭГ включает возможности спектрального и когерентного анализа, программ трехмерной локализации диполя, и других вариантов компьютерного анализа.
Отделение видео-ЭЭГ-мониторинга должно включать в себя 3 основных звена:
3.2. Схемы монтажа, подготовка пациента и начало исследования
В соответствии с системой «10 –20» у испытуемого делают три измерения черепа:
Электроды, расположенные по средней линии, отмечаются индексом Z; отведения на левой половине головы имеют нечетные индексы, на правой — четные.
Отведения в системе «10 –20»:
Крепление и наложение электродов осуществляется в следующем порядке:
После правильной установки и калибровки начинается само ВЭЭГ-исследование. В сегодняшней практике используются ВЭЭГ исследования длиной 4-5 часов (утренние /дневные/вечерние), длиной 9-10 часов (ночные ), длиной 24 часа и более (холтеровские ВЭЭГ-мониторинги). Наиболее распространенными сегодня, являются короткие ВЭЭГ-исследования (60 %), далее ночные — 36%, холтеровские — 4-5%
Премедикация перед исследованием, как правило, не проводится, поскольку введение препаратов, не входящих в схему лечения, может менять картину ЭЭГ, что не позволит оценить истинные параметры биоэлектрической активности мозга.
Не рекомендуется отмена или изменение схемы лечения в день исследования, что не позволит оценить эффекты терапии.
Принципиальное значение в диагностике эпилепсии имеет ЭЭГ сна. По мнению ведущих специалистов».. регистрация ЭЭГ в течение одной минуты поверхностного сна дает больше информации для диагностики эпилепсии, чем час исследования в состоянии бодрствования».
4. Понятия нормы и патологии в ВЭЭГ
Стойкое увеличение амплитуды бета активности свыше 25 мкВ, особенно с распространением её на задние отведения — признак патологии, однако, нозологически не специфичной. Традиционно усиление бета активности ( «excessive fast») связывалось с текущим эпилептическим процессом.
Тета ритм. Ритм частотой 4-7 Гц, по амплитуде, обычно превышающий основную активность фоновой записи. Встречается различной степени выраженности на ЭЭГ у всех здоровых детей. Тета активность начинает регистрироваться в центральных отделах уже с 3-недельного возраста, постепенно нарастая с возрастом и достигая максимума в 4-6 лет. В этом возрасте тета ритм является доминирующим на ЭЭГ у детей. Большинство исследователей считают, что у подростков и молодых взрослых при бодрствовании с закрытыми глазами низкоамплитудная тета активность (не превышающая амплитуды фона) частоты 6-7 Гц с бифронтальным преобладанием является нормальной, если она не превышает 35% фоновой записи.
Сон является мощным активатором эпилептиформной активности. Неврологу, а тем более эпилептологу, важно уметь идентифицировать фазы и стадии сна. Известно, что эпилептиформная активность отмечается преимущественно в I и II стадии медленного сна, тогда как во время «дельта сна» и в периоде ФБС она чаще всего подавляется.
В настоящее время для дифференциации стадий сна применяется классификация Dement & Kleitman в модификаций Recbtshaffen & Kales (1968 ), Согласно этой классификации выделяются 2 фазы сна: фаза медленного сна (ФМС ) и фаза быстрого сна (ФБС ),
ФМС (в англоязычной литературе — non-REM sleep) развивается на фоне ослабления влияния активизирующей коры, восходящей ретикулярной формации и усиления активности синхронизирующих тормозящих структур.
В ФМС выделяют 4 стадии.
I стадия сна (дремота ) характеризуется умеренным замедлением основной активности на ЭЭГ. Проявляется постепенным исчезновением альфа ритма и появлением ритмичной тета активности в центральной и лобно-центральной области, Может появляться периодическая ритмическая высокоамплитудная медленная активность частотой 4-6 Гц в лобных отведениях. Длительность I стадии сна у здорового человека составляет не более 10-15 минут.
II стадия сна (стадия «сонных веретен»). Наблюдаются следующие феномены. 1. Характерный признак II стадии сна — появление «сонных веретен» или сигма-ритма. Этот феномен представляет собой ритмические веретенообразно нарастающие и снижающиеся по амплитуде вспышки с частотой 12-16 Гц и амплитудой 20-40 мкВ, преимущественно в центрально-париетальных отделах. Длительность «сонных веретен» колеблется от 0 до 2 сек. Высокоамплитудные и продолжительные (около 3 сек) сонные веретена с преобладанием в лобных отведениях — обычно признак патологии.
III стадия сна характеризуется нарастанием амплитуды и количества медленных волн, преимущественно, дельта диапазона. Регистрируются К-комплексы и «сонные веретена». Дельта волны на эпохе анализа ЭЭГ занимают до 50% записи. Отмечается снижение индекса бета активности.
IV стадия сна характеризуется исчезновением «сонных веретен» и К-комплексов, появлением высокоамплитудных (не менее 50 мкВ> дельта волн, которые на эпохе анализа ЭЭГ составляют более 50% записи. III и IV стадии сна являются наиболее глубоким сном. Они объединены под общим названием «дельта сон».
В фазе быстрого сна (парадоксальный сон, REM-сон) отмечается ослабление влияния тормозящей ретикулярной формации и усиление десинхронизирующих активизирующих механизмов. При входе в ФБС нарастает бета активность. Данная фаза сна характеризуется появлением на ЭЭГ картины десинхронизации в виде нерегулярной активности с одиночными низкоамплитудными тета волнами, редкими группами замедленного альфа ритма и острыми «пилообразными » волнами. ФБС сопровождается быстрыми движениями глазных яблок и диффузным снижением мышечного тонуса. Именно в эту фазу сна у здоровых людей происходят сновидения. Начало сна с фазы быстрого сна или возникновение ее менее, чем через 15 минут после засыпания — признак патологии.
Нормальный сон взрослых и детей состоит из чередования серии циклов ФМС и ФБС. ФМС наиболее выражена в первую половину ночи и занимает 75% всего сна. Во второй половине ночи наиболее представлена ФБС (фаза сновидений), которая занимает около 25% ночного сна. Продолжительность одного цикла сна у детей младшего возраста составляет 45-55 минут; у взрослых 75-100 минут. За ночь у здорового человека возникает от 4 до 6 циклов сна.
4.3. Медленноволновая активность.
Медленноволновая активность. Этот термин включает в себя активность на ЭЭГ в форме замедления ритма по сравнению с возрастной нормой. Согласно международной классификации выделяют следующие варианты медленноволновой активности:
Замедление основной активности констатируется, когда основные ритмы имеют более медленные частотные характеристики по сравнению с возрастной нормой: в 1 год — частота менее 5Гц, в 4 года — менее 6 Гц, в 5 лет — менее 7Гц, в 8 лет и старше — менее 8 Гц.
Периодическое замедление. Периодическое замедление может быть нерегулярным и ритмическим, генерализованным и региональным. Выраженное периодическое ритмическое генерализованное замедление (обычно с преобладанием в лобных отведениях) иногда наблюдается при генерализованных формах эпилепсии. Нерегулярное региональное замедление (чаще в височных отведениях) может быть косвенным ЭЭГ признаком парциальной эпилепсии или локального органического поражения головного мозга.
4.4. Провоцирующие пробы
Провоцирующие пробы. Фоновая запись биоэлектрической активности головного мозга осуществляется в состоянии пассивного бодрствования пациента с закрытыми глазами. С целью выявления нарушений ЭЭГ применяются провоцирующие пробы, Наиболее значимые из них следующие:
Подробно остановимся на первых.
Проба на открывание-закрывание глаз служит для установления контакта с пациентом. При этом медицинский работник убеждается, что пациент находится в сознании и выполняет инструкции. Данная проба позволяет выявить реактивность альфа-ритма и других видов активности на открывание глаз. В норме при открывании глаза блокируется альфа ритм, нормальная и условно нормальная медленноволновая активность. Наоборот, отсугсгвие реакции паттернов на открывание глаз — как правило, признак патологической активности. Блокирование при открывании глаз затылочной пик-волновой активности у пациентов с доброкачественной затылочной эпилепсией Гасто является важным дифференциальным признаком с симптоматической затылочной эпилепсией. Следует помнить, что при некоторых формах фотосенситивной эпилепсии, эпилепти-формная активность на ЭЭГ возникает в момент закрывания глаз. Это может быть связано с исчезновением фиксации взора при закрытых глазах. Данный феномен был описан Panayiotopoulos (1998 ) и назван им «fixation off» или фотосенситивностью.
Гипервентиляция реально проводима у детей после 3-х лет. Продолжительность от 3 мин у детей до 5 мин у взрослых. Гипервентиляцию нельзя проводить в самом конце записи ЭЭГ, так как патологическая активность нередко появляется спустя некоторое время после окончания пробы. Основное назначение гипервентиляции — выявление генерализованной пик-волновой активности, а иногда и визуализация самого приступа (обычно абсанса). Реже появляется региональная эпилептиформная активность. Согласно наблюдениям Благо-склоновой Н.К. и Новиковой Л. А. (1994 ), появление пароксизмальных вспышек медленных волн при гипервентиляции свойственно здоровым детям и подросткам и является вариантом нормы. По мнению Daly & Pediey (1997 ), патологическая реакция на гипервентиляцию включает только появление на ЭЭГ пик-волновой активности или выраженной асимметрии паттернов. Принципиально важно, что любая другая реакция, в том числе и появление дельта активности, — индивидуальный вариант нормы. Таким образом, согласно современным воззрениям, оценка пароксизмальной генерализованной (нередко с бифронтальным преобладанием) ритмической тета-дельта активности при гипервентиляции как гипотетической «дисфункции мезо-диэнцефальных структур» несостоятельна. Подобная оценка нормальных, по своей сути, паттернов не имеет никакого значения для клиники, приводит к терминологической путанице и напрасному беспокойству, как врачей неврологов, так и самих пациентов.
Ритмическая фотостимуляция (РФС ) является важнейшей пробой для выявления патологической активности при фотосенситивных формах эпилепсии. Используется классическая методика Jeavons & Harding (1975 ). Лампа стробоскопа должна находиться на расстоянии 30 см от закрытых глаз пациента. Необходимо использование широкого спектра частот, начиная от 1 вспышки в сек и, заканчивая частотой 50 Гц. Наиболее эффективна в выявлении эпилептиформной активности стандартная РФС с частотой 16 Гц. Возможны следующие реакции на РФС:
Артефакты представляют собой любые графоэлементы на ЭЭГ, не являющиеся отражением электрической активности головного мозга. Подразделяются на механические и биоэлектрические. Механические артефакты бывают инструментальные, электродные и от электросети. Наиболее распространен артефакт вследствие «наводки » от сети переменного тока (отсутствие заземления, использование рядом различной медицинской аппаратуры) в виде появления синусоидальных колебаний частоты 50 Гц.
Биоэлектрические артефакты подразделяются на следующие:
При этом врач осуществляющий мониторинг должен уметь дифференцировать эти артефакты. Если, например, артефакт не уходит с течением времени, необходимо проверить электрод на полноценность соединения с усилителем, с пациентом и в случае необходимости заменить его/настроить.
5. Эпилептиформная активность
Эпилептиформная активность характеризуется появлением на ЭЭГ острых волн или пиков, которые резко отличаются от основной активности фона и возникают преимущественно у лиц, страдающих эпилепсией. Классификация нарушений ЭЭГ, принятая Американской ассоциацией нейрофизиологов [Daly & Pedley, 1997], придерживается строгой терминологии в обозначении патологических феноменов. В классификации общепринят термин «эпилептиформная активность», в связи с его исключительным применением к электроэнцефалографическим феноменам.
Согласно классификации нарушений ЭЭГ различают 9 межприступных (интериктальных ) и два приступных (иктальных ) эпилептиформных паттерна.
Межприступные эпилептиформные изменения:
Иктальные эпилептиформные изменения:
Рассмотрим все указанные варианты эпилептиформных нарушений на ЭЭГ:
1. Пики (спайки ) — эпилептиформный феномен, отличный от основной активности и имеющий пикообразную форму. Период пика составляет от 40 до 80 мсек. Это специфичный эпилептиформный паттерн, который наблюдается в рамках различных форм эпилепсии (генерализованных и парциальных). Одиночные пики встречаются исключительно редко; обычно они предшествуют появлению волн. Согласно базисным принципам электрофизиологии, появление спайков на ЭЭГ отражает процессы возбуждения корковых нейронов, а медленных волн — процессы торможения.
4. Комплексы пик-медленная волна — представляют паттерн, состоящий из пика и следующей за ним медленной волны. Наиболее часто комплексы пик-медленная волна регистрируются в виде генерализованных разрядов, представленность и амплитуда которых усиливается в ФМС, при ГВ и РФС. Данная ЭЭГ картина высоко специфична для идиопатических генерализованных форм эпилепсии детского и юношеского возраста. Однако по данным Doose & Baier (1987 ), в 10-17% случаев генерализованные комплексы пик-медленная волна могут быть обнаружены у клинически здоровых лиц, в основном, у родственников пробандов с абсансными формами эпилепсии.
В виде единичных паттернов комплексы пик-медленная (или острая-медленная) волна встречаются при криптогенных и симптоматических формах парциальной эпилепсии.
5. Комплексы пик-медленная волна с частотой 3 Гц — представляют регулярный разряд генерализованных паттернов, состоящих из единичных спайков со следующей медленной волной с частотой от 2,5 до 3,5 Гц. Согласно классификации нарушений ЭЭГ, для отнесения паттернов в данную группу, продолжительность этих комплексов должна составлять более 3 секунд. Частота комплексов во время разряда непостоянна. В начале разряда она составляет 3-4 Гц, тогда как к финалу снижается до 2,5-2,25 Гц. Характерно амплитудное преобладание паттернов в лобных отведениях. Медленный сон вызывает активацию пик-волновых комплексов. При этом продолжительность разрядов во время сна укорачивается и одновременно возможно некоторое замедление частоты комплексов. Данный ЭЭГ паттерн характерен для абсансных форм эпилепсии, особенно — детской абсанс эпилепсии. Продолжительность разряда пик-волновых комплексов более 3 сек с высокой вероятностью является иктальным феноменом типичных абсансов.
11. ЭЭГ статуса определяется в случае продолженных эпилептиформных паттернов ЭЭГ приступа или часто повторяющихся паттернов ЭЭГ приступа без восстановления нормального ритма фоновой записи между ними. Следует отметить, что ЭЭГ статуса может не коррелировать с клиническими симптомами эпилептического статуса. Классический тому пример — электрический эпилептический статус медленного сна; тяжелая форма эпилепсии с выраженными когнитивными нарушениями, при которой частота и выраженность эпилептических приступов может быть минимальна или приступы отсутствуют вовсе. Таким образом, даже высоко специфичные паттерны ЭЭГ приступа и ЭЭГ статуса, следует рассматривать только в контексте с клиническими данными. Особенности иктальной ЭЭГ при различных типах эпилептических приступов в рамках отдельных форм эпилепсии будут рассмотрены в следующих главах.
6. Расшифровка и заключение ЭЭГ
Таким образом мы подошли к интерпретации ЭЭГ-нарушений
Эти рекомендации не являются строгими правилами. Они относятся в первую очередь к стандартной ЭЭГ. При описании более специализированных записей (неонатальные записи, электроцеребральное молчание) представление технических деталей должно быть более полным — в соответствии со стандартами ACNS (1 — «Minimum Technical Requirements (MTR ) for Performing Clinical EEG»; 2 — «Minimal Technical Standards for Pediatric Electroencephalography»; 3 — «Minimum Technical Standards for EEG Recording in Suspected Cerebral Death»).
Отчет ВЭЭГ должен состоять из 3 основных частей:
1. Введение.
Введение должно начинаться с описания специальной подготовки, если таковая предпринималась перед записью.
2. Описание.
Описание ЭЭГ должно включать все характеристики записи, включая нормальные и аномальные, представленные объективным способом, максимально избегая утверждений об их значимости.
Целью является полный и объективный отчет, который позволит другим ЭЭГ-специалистам придти к выводу касательно нормальности или степени аномальности записи по описанию — без необходимости просматривать исходную ЭЭГ. Этот вывод может отличаться от исходного вывода, поскольку в определенной мере субъективен.
Если проводились тесты — должны быть описаны реакции на открытие и закрытие глаз, а также произвольных, целенаправленных движений. Включается описание указания на симметрию или асимметрию, полноту или неполноту, устойчивость или неустойчивость.
Если аномалия является эпизодической, необходимо обратить внимание на отсутствие или наличие периодичности между эпизодами, ритмичность или иррегулярность паттерна внутри каждого эпизода. Необходимо представить временной диапазон продолжительности эпизодов.
Нет нужды указывать на отсутствие определенных характеристик, за исключением нормальных, — таких как низкоамплитудная быстрая активность, сонные веретена, и др. Такие фразы как «отсутствие фокальной патологии» или «нет эпилептиформных нарушений» могут использоваться только в разделе интерпретации — при наличии явного или предполагаемого запроса направляющего доктора. Они не должны использоваться в описательной части.
3. Интерпретация.
(I ) Впечатление — это субъективное мнение специалиста о степени нормальности записи. Описание записи предназначено, в первую очередь, для электроэнцефалографиста, который использует его для последующего вывода, или другого эксперта, и должно быть детальным и объективным. Впечатление, с другой стороны, пишется в первую очередь для направляющего врача, и, следовательно, должно быть по возможности сжатым. Большинство клиницистов из предшествующего опыта предполагают, что чтение детального описания не дает им существенно новой информации, и поэтому ограничиваются интерпретаций. Если оно слишком большое и выглядит иррелевантно клинической картине, клиницист может потерять интерес, что в итоге приводит в снижению пользы от всего ЭЭГ отчета. Если запись считается аномальной, желательно указывать ее степень — с целью облегчить сравнение между повторными исследованиями. Поскольку эта часть отчета носит довольно субъективный характер, степень нарушений может варьировать от лаборатории к лаборатории. Однако в каждой лаборатории следует четко определять критерии степени нарушения и строго следовать им.
После определения степени нарушений, необходимо указать причины, на основе которых строится вывод. Если присутствуют несколько видов нарушений, желательно ограничиться списком из двух или трех главных нарушений, которые наиболее характерны для данной записи. Если перечислять все нарушения, наиболее существенные «растворяются » в тексте и теряется значимость выводов. При наличии данных предыдущих ЭЭГ записей, необходимо включать их сравнение с результатами данного исследования.
(II ) Клиническая корреляция — это попытка показать насколько данные ЭЭГ укладываются (или нет) в общую клиническую картину. Оно может варьировать — в зависимости от того, кому оно адресуется. Для адресата, далекого от неврологии или ЭЭГ, оно должно быть более тщательным и выверенным.
Если ЭЭГ аномальная — это указывает на церебральную дисфункцию, поскольку ЭЭГ является отражением церебральной функции. Тем не менее, фраза «церебральная дисфункция» может звучать излишне угрожающе и должна использоваться только когда нарушение квалифицируется как «более чем легкое» и когда имеется достаточно клинической информации, чтобы считать такой вывод реалистичным в данном клиническом контексте. В остальных случаях допустимы предложения типа «Запись указывает на легкую иррегулярность церебральной функции». Определенные паттерны ЭЭГ являются подтверждающими для более или менее специфических клинических ситуаций; дельта фокус может говорить о структурном поражении в соответствующем клиническом контексте; определенные типы спайков или острых волн подтверждают потенциальный эпилептогенез. Если нарушение ЭЭГ соответствует клинической информации, которая содержит диагноз или подозрение на наличие подобного состояния, можно указать, что данные ЭЭГ согласуются или подтверждают диагноз.
Цифровые способы записи, генерации и передачи отчета позволяют, при необходимости, включать в отчет короткие отрезки реальной записи, в том числе с примерами нарушений.
7. ВЭЭГ-мониторинг в оценке эффективности противосудорожной терапии
Одним из основных критериев объективизации действия противоэпилептических препаратов является изменение биоэлектрической активности мозга, регистрируемое с помощью ЭЭГ.
Эти изменения носят различный характер и зависят от формы эпилепсии и применяемой терапии.
Помимо воздействия антиконвульсантов на эпилептическую активность, они также оказывают влияние на характер фоновой ритмической активности. Хорошо описаны изменения фоновой ритмики, появляющиеся при длительном приеме бензодиазепинов и барбитуратов.
При прогрессирующем течении заболевания отмечается нарастание индекса эпилептической активности в очаге.
Другим маркером отрицательной динамики является появление дополнительных очагов эпилептической активности. Они могут быть зависимы от первичного очага или существовать независимо.
К характеристикам проградиентного течения заболевания относится появление феномена вторичной билатеральной синхронизации (ВБС ).
К ЭЭГ-критериям, отражающим положительное влияние ПЭП, относятся: снижение индекса пароксизмальности в очаге, уменьшение количества эпилептических очагов и регресс эффекта ВБС.
Динамические ВЭЭГ-исследования в период отмены терапии с высокой точностью позволяют оценить риск возобновления приступов.
8. Эффективность ЭЭГ-мониторинга
Была проанализирована достоверность направляющего диагноза «Эпилепсия » у первичных пациентов, поступающих в эпилептологический стационар (НПЦ медицинской помощи детям, ДЗ Москвы).
Исследуемая группа составила 1154 пациента в возрасте от 0 до 18 лет. Всем пациентам проводились следующие методы обследования: оценка нервно-психического статуса, видео-ЭЭГ-мониторинг продолжительностью 6 и более часов, и, в большинстве случаев, МРТ головного мозга.
9. Заключение
Успешное лечение эпилепсии напрямую зависит от своевременно и правильно установленного диагноза. Использование неинформативных методов диагностики на стартовом этапе лечения эпилепсии приводит к трудностям в подборе адекватной терапии, прогрессированию заболевания. В ЭЭГ это проявляется в виде появления множественных вторичных очагов эпилептической активности, развитию феномена вторичной билатеральной синхронизации при фокальных формах и значительному нарастанию индекса генерализованных разрядов при генерализованных формах эпилепсии.
Нередко наличие у пациента эпилептических приступов, несмотря на их очевидную курабельность, побуждает врача необоснованно вводить социальные ограничения, применять полипрагмазию в лечении.
С другой стороны, необоснованная констатация ремиссии у пациентов с эпилепсией также имеет неблагоприятные для пациента последствия, поскольку сохраняются клинически «невидимые » виды приступов или эпилептиформная активность на ЭЭГ.
Отсутствие изменений в записанном фрагменте ЭЭГ бодрствования длительностью до 30 мин (рекомендации ILAE) может создать ложное впечатление о положительной динамике на фоне лечения. Опираясь на полученные данные, врач может ошибочно констатировать клинико-энцефалографическую ремиссию. С другой стороны, выявление эпилептической активности на контрольной динамической ЭЭГ на фоне подобранной терапии может содержать фрагмент эпилептической активности, которую врач ошибочно трактует как «отрицательную динамику». В некоторых случаях на коротких фрагментах записи ЭЭГ-характеристики могут выглядеть как «нормальные » при сохраняющихся приступах. При этом объективный анализ продолженной записи свидетельствует, что характер биоэлектрической активности у пациента значимо не менялся. Ошибки при интерпретации связаны с чередованием нормальных и патологических фрагментов ЭЭГ.
Можно утверждать, что объективная трактовка изменений ЭЭГ может проводиться только при проведении ВЭЭГ-мониторинга.
Введение в алгоритм диагностики и динамического обследования ВЭЭГ-мониторинга позволяет, используя объективные клинико-нейрофизиологические критерии, своевременно диагностировать заболевание, оценивать состояние больного на разных этапах лечения, оптимизировать терапевтическую тактику и избегать диагностических ошибок у пациентов с эпилепсиями и эпилептическими синдромами.
Анализ длительного катамнеза больных эпилепсией (взрослых и детей) позволил разработать и внедрить в специализированных отделениях и кабинетах высокодостоверный комплексный клинико-нейрофизиологический подход к дифференциальной диагностике эпилепсий и судорожных синдромов, значительно повысить качество проводимой терапии в этой сложной группе пациентов.
Врач-педиатр, врач высшей категории,
невролог Тамбиев И. Е..
Ковалев И. Г.