Для чего бином ньютона
Для чего бином ньютона
Бином Ньютона
Автор работы награжден дипломом победителя II степени
Формула бинома Ньютона для целых положительных показателей была известна задолго до Исаака Ньютона, но он в 1676 году указал на возможность распространения этого разложения и на случай дробного или отрицательного показателя. Строгое обоснование указанных Ньютоном возможностей дал Н. Абель в 1826 году. В случае дробного или отрицательного n все биномиальные коэффициенты отличны от нуля, а правая часть формулы получает бесконечный ряд членов (биномиальный ряд). Бином Ньютона играет роль во многих областях математики, в частности в алгебре и теории чисел.
Бином Ньютона — формула разложения произвольной натуральной степени двучлена ( a + b ) n в многочлен. Каждый из нас знает наизусть формулы «квадрата суммы» ( a + b )2 и «куба суммы» ( a + b )3,но при увеличении показателя степени с определением коэффициентов при членах многочлена начинаются трудности, которые я рассматриваю в своей работе.
3. История бинома Ньютона
5. Свойства разложения бинома Ньютона
6. Решение задач с применением бинома Ньютона
8. Список используемой литературы
Изучить бином Ньютона и его свойства
Показать применение данных свойств при решении задач
Показать применение бинома Ньютона при решении технических задач
История бинома Ньютона
Долгое время считалось, что для натуральных показателей степени эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль, описавший её в XVII веке. Однако историки науки обнаружили, что формула была известна ещё китайскому математику Яну Хуэю (англ.), жившему в XIII веке, а также исламским математикам ат-Туси (XIII век) и ал-Каши (XV век). В середине XVI века Михаэль Штифель описал биномиальные коэффициенты и также составил их таблицу до степени 18.
Исаак Ньютон около 1677 года обобщил формулу для произвольного показателя степени (дробного, отрицательного и др.). Из биномиального разложения Ньютон, а позднее и Эйлер, выводили всю теорию бесконечных рядов.
Что означает фразеологизм «Бином Ньютона»?
Шутливая фраза, применяется по отношению к плевому делу, простой задаче, которую некоторые ошибочно считают непосильной для выполнения или архисложной.
Слова Коровьева, которые решил прокомментировать разговор Воланда с буфетчиком Соковым. Буфетчик жалуется на зрителей, которые расплатились с ним фальшивыми деньгами, чем «на сто девять рублей наказали буфет».
Тут уж буфетчик возмутился.
В художественной литературе
В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном.
В рассказе А. Конан Дойля «Последнее дело Холмса» Холмс говорит о математике профессоре Мориарти:
Когда ему исполнился двадцать один год, он написал трактат о биноме Ньютона, завоевавший ему европейскую известность. После этого он получил кафедру математики в одном из наших провинциальных университетов, и, по всей вероятности, его ожидала блестящая карьера.
В романе «Мастер и Маргарита» М. А. Булгакова:
«подумаешь, бином Ньютона! Умрёт он через девять месяцев, в феврале будущего года, от рака печени в клинике Первого МГУ, в четвёртой палате».
Позже это же выражение «Подумаешь, бином Ньютона!». упомянуто в фильме «Сталкер» А. А. Тарковского.
Роман Е. Н. Вильмонт получил название «Мимолетности, или Подумаешь, бином Ньютона!».
Рассмотрим произведения двух, трех и четырех биномов (двучленов) вида х-<- а. После умножения и приведения подобных членов по х получим
Рассматривая эти произведения, легко заметить, что произведение биномов, отличающихся только вторыми членами, есть многочлен, упорядоченный по убывающим степеням первого члена х, степень которого равна числу перемножаемых биномов. Коэффициент первого члена многочлена равен 1, а последующие образуются так: второй коэффициент равен сумме всех вторых членов биномов, третий — сумме всевозможных произведений вторых членов по два, четвертый — сумме всевозможных произведений вторых членов по три и т. д. 11оследний член многочлена равен произведению всех вторых членов биномов.
Методом математической индукции можно доказать, что правило образования произведения биномов, отличающихся только вторыми членами, установленное из рассмотрения произведений двух, трех II четырех биномов, верно для произведения любого конечного числа биномов.
Для произведения n биномов справедлива формула:
Эта формула верна и в том случае, если вторые члены равны между собой.
(x+a) n =x n +C 1 n ax n-1 +…+C k n a k x n-k +…+C n-1 n a n-1 x+a n
Свойства разложения бинома Ньютона
1) Количество членов разложения бинома на единицу больше показателя степени бинома.
2) Все члены разложения имеют одну и ту же степень n относительно первого и второго членов бинома, т. е. разложение есть однородный многочлен, причем показатели первого члена убывают от n до 0, а показатели второго члена возрастают от 0 до п.
5) Из свойств 1 и 4 следует, что если показатель бинома четный, то в разложении бинома средний член имеет наибольший биномиальный коэффициент, а если показатель бинома нечетный, то в разложении имеется два средних члена с одинаковым наибольшим коэффициентом.
6) Последующий биномиальный коэффициент разложения равен предыдущему, умноженному на показатель первого члена бинома и предыдущем члене и деленному на число предыдущих членов
Сумма всех биномиальных коэффициентов равна 2 п , где п — показатель бинома.
Если в формуле бинома Ньютона положить х = а = 1, то получим
Если в формуле бинома Ньютона заменить а на -а, то получим
Сумма биномиальных коэффициентов, стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах.
Для определения биномиальных коэффициентов удобно пользоваться так называемым треугольником Паскаля или арифметическим треугольником. Это треугольная таблица биномиальных коэффициентов, составленная так, что каждый ее элемент равен сумме двух над ним стоящих.
Решение задач с применением бинома Ньютона
Возведите в степень: (2t + 3/t)4.
Решение У нас есть (a + b)n, где a = 2t, b = 3/t, и n = 4. Мы используем 5-й ряд треугольника Паскаля:
Пример 5 Сеть ресторанов Венди предлагает следующую начинку для гамбургеров:
Сколько разных видов гамбургеров может предложить Венди, исключая размеры гамбургеров или их количество?
Начинки на каждый гамбургер являются элементами подмножества множества всех возможных начинок, а пустое множество это просто гамбургер. Общее число возможных гамбургеров будет равно
Таким образом, Венди может предложить 512 различных гамбургеров.
Решение технических задач
Тяга воздушного винта и потребляемая им мощность вычисляются по формулам: P = apn 2 s D 4 N = bpn 3 s D 5
Определить, на сколько снизилась тяга этого винта и потребляемая им Мощность при тех же секундных оборотах, если полагать все остальные параметры, входящие в формулы, неизменными.
откуда ∆ T = T 1[1- 1/(1+∆ Q / Q 1) 9 ]= T 1[1-1/1+9∆ Q / Q 1+36(∆ Q / Q 1) 2 +82(∆ Q / Q 1) 3 +126(∆ Q / Q 1) 4 +126(∆ Q / Q 1) 5 +82(∆ Q / Q 1) 6 +36(∆ Q / Q 1) 7 +9(∆ Q / Q 1) 8 +(∆ Q / Q 1) 9 ]
Если ∆ Q / Q 1 Q / Q 1 выше первой очень малы. В Этом случае ∆ T ≈ T 1(1-1/1+9∆ Q / Q 1)= 9 T 1 *∆ Q / Q 1 /1+9∆ Q / Q 1
Газ сжимается в сосуде, стенки которого хорошо проводят тепло. При этом абсолютная температура и давление газа связаны следующим уравнением:
где п= 1,2—показатель политропы; р1 и р2 — соответственно давления первого и второго состояния; T 1и T 2— соответственно абсолютные температуры первого и второго состояния.
Температура в сосуде измеряется посредством помещенной в нем термопары. Пусть во втором состоянии при сжатии температура получила небольшое приращение ∆ t = 5° против первого состояния. Определить, какое приращение получило при этом давление. Температура Т1 = 300° и давление р1 = 2 кГ/см 2 — первого состояния известны.
Подставляя значения T 2и p 2 в формулу, получаем:
откуда ∆ T = T 1[1- 1/(1+∆ Q / Q 1) 9 ]= T 1[1-1/1+9∆ Q / Q 1+36(∆ Q / Q 1) 2 +82(∆ Q / Q 1) 3 +126(∆ Q / Q 1) 4 +126(∆ Q / Q 1) 5 +82(∆ Q / Q 1) 6 +36(∆ Q / Q 1) 7 +9(∆ Q / Q 1) 8 +(∆ Q / Q 1) 9 ]
Если ∆ Q / Q 1 Q / Q 1 выше первой очень малы. В Этом случае ∆ T ≈ T 1(1-1/1+9∆ Q / Q 1)= 9 T 1 *∆ Q / Q 1 /1+9∆ Q / Q 1
где Q —вес поднимаемого груза; k = 1,02 — коэффициент сопротивления блока; n — число ветвей полиспаста. Вывести упрощенную формулу для вычисления Р и, применив ее, определить Р, если Q = 1500 кГ и п = 5.
Заметим, что 0.02 2 =0.0004; 0.02 3 =0.000008 и т.д.
Видно, что члены разложения по формуле Ньютона быстро убывают. Для практики достаточно учесть первые 3 числа разложения, пренебрегая следующими. Тогда получаем:
Для нас получаем : P =1.02 5 *1500/5[1+(5-1)*0.01]≈ 318 кГ
При изучении математики решение задач играет огромную роль. И не только потому,что необходимо выработать умение применять полученные знания на практике (а ведь это одна из основных целей изучения математики в школе). Без решения задач нельзя владеть и теорией. Именно в процессе решения задач математические понятия, аксиомы и теоремы, формулы и правила, геометрические фигуры предстают перед нами в самых разнообразных ракурсах, не в застывшем виде, а в движении, в различных связях и взаимозависимостях, которые отображают диалектику самой действительности. Подобно тому, как грамматическими правилами можно овладеть лишь в процессе живой языковой практики, так и математическую теорему, определение, формулу можно усвоить по-настоящему, научиться применять на практике только в процессе решения задач.
1. А.Б. Шкарин, А.М. Федянов, Б.Г. Сандлер «алгебраические задачи в технике»
2. А.П. Савин «Энциклопедический словарь»
3. Г.И. Глейзер «История математики в школе»
4. Ф.П. Яремчук, П.А. Рудченко «Алгебра и элементарные функции»
Бином Ньютона.
Навигация по странице.
Коэффициенты бинома Ньютона, свойства биномиальных коэффициентов, треугольник Паскаля.
Треугольник Паскаля.
Биномиальные коэффициенты для различных n удобно представлять в виде таблицы, которая называется арифметический треугольник Паскаля. В общем виде треугольник Паскаля имеет следующий вид:
Треугольник Паскаля чаще встречается в виде значений коэффициентов бинома Ньютона для натуральных n :
Боковые стороны треугольника Паскаля состоят из единиц. Внутри треугольника Паскаля стоят числа, получающиеся сложением двух соответствующих чисел над ним. Например, значение десять (выделено красным) получено как сумма четверки и шестерки (выделены голубым). Это правило справедливо для всех внутренних чисел, составляющих треугольник Паскаля, и объясняется свойствами коэффициентов бинома Ньютона.
Свойства биномиальных коэффициентов.
Первые два свойства являются свойствами числа сочетаний.
Доказательство формулы бинома Ньютона.
Приведем доказательство формулы бинома Ньютона, то есть докажем справедливость равенства .
Получили верное равенство.
Докажем, что верно равенство , основываясь на предположении второго пункта.
Поехали!
Раскрываем скобки
Группируем слагаемые
Так как и
, то
; так как
и
, то
; более того, используя свойство сочетаний
, получим
Подставив эти результаты в полученное выше равенство
придем к формуле бинома Ньютона .
Этим доказана формула бинома Ньютона.
Рассмотрим подробные решения примеров, в которых применяется формула бинома Ньютона.
Напишите разложение выражения (a+b) 5 по формуле бинома Ньютона.
Найдите коэффициент бинома Ньютона для шестого члена разложения выражения .
В заключении рассмотрим пример, в котором использование бинома Ньютона позволяет доказать делимость выражения на заданное число.
Доказать, что значение выражения , где n – натуральное число, делится на 16 без остатка.
Представим первое слагаемое выражение как и воспользуемся формулой бинома Ньютона:
Бином Ньютона
Из Википедии — свободной энциклопедии
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n <\displaystyle (a+b)^
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома для более общего случая, когда показатель степени — произвольное действительное число (позднее она была распространена и на комплексные числа). В общем случае бином представляет собой бесконечный ряд (см. ниже).
( x + y ) 2 = x 2 + 2 x y + y 2 ( x + y ) 3 = x 3 + 3 x 2 y + 3 x y 2 + y 3 ( x + y ) 4 = x 4 + 4 x 3 y + 6 x 2 y 2 + 4 x y 3 + y 4 ( x + y ) 5 = x 5 + 5 x 4 y + 10 x 3 y 2 + 10 x 2 y 3 + 5 x y 4 + y 5 <\displaystyle <\begin
Для быстрого разложения бывает удобно воспользоваться треугольником Паскаля.
Бином ньютона
Бином Ньютона — это формула
,
где — биномиальные коэффициенты, n — неотрицательное целое число.
Содержание
Доказательство
Докажем это равенство, используя метод математической индукции:
Пусть утверждение для n верно:
Тогда надо доказать утверждение для n + 1 :
Извлечём из первой суммы слагаемое при k = 0
Извлечём из второй суммы слагаемое при k = n
Теперь сложим преобразованные суммы:
Что и требовалось доказать
— одно из тождеств биномиальных коэффициентов
Для ненатуральных степеней
где r может быть комплексным числом (в частности, отрицательным или вещественным). Коэффициенты находятся по формуле:
.
сходится при .
В частности, при и
получается тождество
Переходя к пределу при и используя второй замечательный предел
, выводим тождество
именно таким образом впервые полученное Эйлером.
История
Считается, что эту формулу, как и треугольник, позволяющий находить коэффициенты, изобрёл Блез Паскаль, описавший её в XVII веке. Тем не менее, она была известна ещё китайскому математику Яну Хуэю, жившему в XIII веке. Возможно, её открыл персидский учёный, поэт и философ Омар Хайям.
Исаак Ньютон обобщил формулу для прочих показателей степени.
В художественной литературе
В художественной литературе «бином Ньютона» появляется в нескольких запоминающихся контекстах, где речь идёт о чём-либо сложном.
Об этой специфической роли бинома Ньютона в культуре писал известный математик В. А. Успенский [1].
См. также
Полезное
Смотреть что такое «Бином ньютона» в других словарях:
бином ньютона — БИНОМ, а, м. (или бином ньютона). Ирон. О чем л. кажущемся сложным, запутанным. Возм. распространилось под влиянием романа М. Булгакова «Мастер и Маргарита» … Словарь русского арго
БИНОМ НЬЮТОНА — БИНОМ НЬЮТОНА, математическое правило разложения алгебраического выражения (а+b)n в ряд степеней численных значений х и у (где n положительное число). При n 2 разложение выглядит таким образом: (х+у)2=х2+2ху+у2 … Научно-технический энциклопедический словарь
Бином Ньютона — алгебраическая формула, открытая Ньютоном, выражающая какую угодно степень двучлена, а именно: (х + а)n = хn + n/1(axn 1) + [n/(n 1)/1.2](а2хn 2) + …[n(n 1)(n 2)…(n m+1)/1.2.3…m](anxn m) + … или, в компактной форме, пользуясь символом n! =… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона
Бином Ньютона — Разг. Шутл. О чём л. сложном, запутанном. Елистратов, 41 … Большой словарь русских поговорок
Подумаешь, бином Ньютона! — Из романа (гл. 18 «Неудачливые визитеры») «Мастер и Маргарита» (1940) Михаила Афанасьевича Булгакова (1891 1940). Слова Коровьева Фагота, комментирующего диалог между Воландом и буфетчиком Андреем Фокичем Соковым. Последний пришел жаловаться на… … Словарь крылатых слов и выражений
бином — а, м. binôme, лат. binomia m. 1. мат. Алгебраическое выражение, представляющее сумму или разность одночленов; двучлен. БАС 2. Боюсь, еслиб я и осмелился представить здесь самое простое развитие двучленника (бинома) Ньютонова необходимого для сего … Исторический словарь галлицизмов русского языка
БИНОМ — (от лат. bis дважды, и греч. nomos часть, отдел). Двучлен (в алгебре). Бином Ньютона общая формула для возведения двучленного количества в любую степень. Словарь иностранных слов, вошедших в состав русского языка. Чудинов А.Н., 1910. БИНОМ в… … Словарь иностранных слов русского языка
Бином — (лат. bis дважды, nomen имя) или двучлен частный случай полинома (многочлена), состоящего из двух слагаемых мономов (одночленов). Например: Для вычисления степеней биномов используется бином Ньютона: А также … Википедия
Для чего бином ньютона
Школьный курс комбинаторики обычно имеет дело с задачами выбора и расположения элементов некоторого, обычно конечного, множества, согласно неких правил.
Для формулирования и решения задач по комбинаторике используют следующие конфигурации: перестановки, размещения, сочетания.
Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Перестановкой из n элементов называется такой набор элементов множества, которые отличаются от исходного лишь порядком элементов. Обычно перестановка обозначается как P n и рассчитывается по формуле:
Найти число перестановок множества, состоящего из трех элементов: A, B, C.
Согласно формуле, количество перестановок будет равно 3! = 6.
Действительно, это наборы (ABC),(ACB),(BAC),(BCA),(CAB),(CBA).
Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Размещением из n элементов по k будет называться упорядоченное подмножество из k не повторяющихся элементов выбранные из множества, состоящего изn элементов. Обычно перестановка обозначается как A n k и рассчитывается по формуле:
Найти число размещений множества, состоящего из четырех элементов: A, B, C, D по два, т.е. сколько различных размещений по два элемента можно составить из указанного множества.
Согласно формуле, количество размещений будет равно 4! / (4-2)! = 24 / 2 = 12.
Действительно, это наборы (AB),(BA),(AC),(CA),(AD),(DA),(BC),(CB),(BD),(DB),(CD),(DC).
Пусть мы имеем некое упорядоченное множество N состоящее из n различных элементов. Сочетанием из n элементов по k будет называться подмножество из k не повторяющихся элементов выбранные из множества, состоящего из n элементов. Подмножества, отличающиеся только порядком следования элементов (но не составом), считаются одинаковыми, этим сочетания отличаются от размещений. Обычно сочетание обозначается как С n k и рассчитывается по формуле:
Найти число сочетаний множества, состоящего из четырех элементов: A, B, C, D по два.
Согласно формуле, количество сочетаний будет равно 4! / 2!(4-2)! = 24 / 4 = 6.
Действительно, это наборы (AB),(AC),(AD),(BC),(BD),(CD).
Сочетание играет важную роль в математике. В частности, он используется в биноме Ньютона.