Для чего нужен контур обогрева двери в холодильнике
Для чего нужен контур обогрева двери в холодильнике
Охлаждение и нагревание – два противоположных физических процесса. С первого взгляда, кажется, что они не могут сосуществовать вместе. Однако противоположности притягиваются: современная холодильная техника предусматривает наличие нескольких нагревательных элементов, каждый из которых выполняет различные функции.
Возможно, вы замечали, что тыльная сторона холодильника тёплая. Это происходит, потому что устройство отводит тепло от продуктов во внешнюю среду. В этой статье мы объясним, зачем нужны нагревательные элементы в холодильнике и какую роль они играют в процессе охлаждения.
Нагревательные элементы в холодильнике выполняют 4 функции:
1. Предотвращение образования конденсата
Неоспоримый факт, что влага конденсируется на холодных поверхностях. Возможно, вы замечали, что после горячего душа зеркала в ванной запотевают, так как являются самыми холодными поверхностями в помещении. Схожий эффект происходит в холодильнике. При открытии двери прибора, во внутреннее пространство из внешней среды проникает тёплый воздух, что может стать причиной образования конденсата на уплотнителе двери.
Чтобы этого избежать в некоторых моделях холодильников Liebherr предусмотрен подогрев периметра двери с помощью тепла, выделяющегося во время работы холодильной системы. Такой способ позволяет избежать затраты дополнительной энергии на обогрев, так как нет необходимости использовать электрический нагреватель.
Синие стрелки указывают на расположение нагревателя для обогрева двери.
2. Контроль температуры
В холодильниках с одним контуром охлаждения и четырехзвездочной морозильной камерой установка температуры происходит в зависимости от холодильного отделения. Когда температура окружающей среды становится ниже +16, в холодильная камеру поступает намного меньше теплопритоков. Это может привести к повышению температуры в морозильной камере. В таких случаях холодильная камера искусственно нагревается с помощью нагревательных элементов или лампы накаливания. Такой способ позволяет запустить процесс охлаждения, чтобы поддерживать необходимую температуру в четырёхзвёдочной морозильной камере.
3. Испарение конденсата
Излишки влаги собираются в специальном контейнере. Под ним находятся трубки конденсатора, по которым проходит сжатый хладагент, что приводит к его нагреванию, позволяя ускорить испарение конденсата. Как и в первом случае происходит использование остаточного тепла от работы холодильной системы. Это простое решение не требует дополнительной энергии.
4. Размораживание испарителя
Большинство холодильников Liebherr с технологией NoFrost имеют электрический нагреватель для удаления образовавшегося льда на испарителе. Работа нагревателя управляется в соответствии с эксплуатацией устройства (например, с учётом частоты открытия дверей), вследствие чего оттаивание происходит только при образовании льда, что существенно снижает общее потребление электроэнергии.
Гениальное решение было реализовано в нашей коммерческой холодильной технике: инженеры Liebherr разработали способ применения горячего газа, который образуется во время цикла охлаждения, для разморозки испарителя, практически без использования дополнительной энергии. Это позволило сократить цикл разморозки до 10 минут, устранить колебания температуры и существенно снизить энергопотребление.
Подробнее о том, как работает холодильник вы можете узнать, посмотрев наше видео о цикле охлаждения:
Как работает холодильное оборудование?
Содержание
Содержание
Вы никогда не задумывались, почему в холодильнике — холодно, и что общего у морозильного шкафа и кондиционера? В этом материале разбираемся, как работает холодильное оборудование.
Замечали, что, когда вы выходите из душа, вам всегда прохладно? Дело в том, что влага при испарении поглощает тепло. А при конденсации, наоборот, тепло выделяется. На этих явлениях и основан принцип действия паровых компрессорных холодильных машин– в них по замкнутому кругу двигается специальная жидкость (хладагент). Хладагент испаряется в испарителе и конденсируется в конденсаторе. При этом испаритель охлаждается, а конденсатор греется.
Чтобы хладагент испарялся и конденсировался в нужных местах, в холодильном контуре должны присутствовать еще два элемента – компрессор и дросселирующее устройство.
Компрессор сжимает газообразный хладагент в конденсаторе, где он под действием высокого давления переходит в жидкую форму, выделяя тепло. А дросселирующее устройство (капиллярная трубка или терморегулирующий вентиль) затрудняет движение хладагента и поддерживает высокое давление в конденсаторе. После дросселя давление в контуре намного ниже, и попавший туда хладагент начинает испаряться внутри испарителя, поглощая тепло. Далее он, уже в газообразном виде, снова попадает в компрессор, и цикл повторяется.
Многие холодильные установки комплектуются дополнительными элементами.
Фильтр-осушитель устанавливается перед дросселирующим устройством. Его задачей является извлечение из хладагента воды и механических частиц. При его отсутствии капилляр может засориться или замерзнуть.
Терморегулятор (термостат) выключает компрессор при достижении необходимой температуры.
Ресивер повышает эффективность холодильной установки. Без терморегулирущего вентиля (с капиллярной трубкой) скорость выработки холода является постоянной. И, если она будет слишком большой, компрессор будет часто включаться–выключаться, а если слишком маленькой — охлаждение будет идти слишком долго. Использование ТРВ позволяет изменять скорость охлаждения в больших пределах, но требует наличия ресивера для компенсирования колебаний расхода хладагента.
Различные датчики температуры и давления, управляемые электроникой регуляторы давления и клапаны используются для повышения эффективности устройства и поддержания специфических режимов работы.
Из холода в жар
Чаще всего холодильная машина используется именно для охлаждения — испаритель расположен в охлаждаемом объеме, а конденсатор вынесен в окружающую среду. Так работают кондиционеры, холодильники и морозильники. Но холодильный контур не только поглощает тепло на испарителе, но и выделяет его на конденсаторе. Нельзя ли использовать холодильную машину «наоборот» — для обогрева, расположив конденсатор в обогреваемом помещении, а испаритель вынеся наружу?
Еще как можно. Холодильная машина использует электроэнергию не для непосредственного нагрева (как ТЭН), а для переноса тепла, поэтому эффективность ее выше, чем у обычного электронагревателя. Многие современные кондиционеры могут работать «наоборот», используя теплообменник внутреннего блока как конденсатор, а теплообменник внешнего блока – как испаритель. В таком режиме на 1 кВт потребленной мощности кондиционер может произвести 2–6 кВт тепла. Греть комнату кондиционером может быть значительно выгоднее, чем электрообогревателем!
В местах с более холодным климатом в последнее время все большую популярность получают тепловые насосы – паровые компрессорные холодильные машины, у которых испаритель помещен под землю на глубину, большую глубины промерзания. Поскольку там всегда сохраняется положительная температура, эффективность теплового насоса не зависит от времени года. Такие устройства намного экономичнее электрических обогревателей и могут использоваться для отопления жилища круглый год при любой температуре. К сожалению, высокая стоимость тепловых насосов пока препятствует их популярности.
Виды компрессоров
Поршневые компрессоры устанавливаются в основном в холодильниках и морозильниках. В большинстве моделей поршень приводится в движение обычным электродвигателем, двигающим поршень через шатунно-кривошипный, кулачковый или кулисный механизм.
Существуют также электромагнитные (линейные) поршневые компрессоры. В них цилиндр расположен внутри катушки, создающей электромагнитное поле, которое приводит в движение поршень.
Поршневые компрессоры способны создавать высокое давление, обеспечивая большой перепад температур на испарителе и конденсаторе. Кроме того, обычный поршневой компрессор имеет достаточно простую конструкцию, не требующую высокой точности изготовления деталей, соответственно стоят они недорого. Однако недостатков у поршневых компрессоров тоже хватает:
Поэтому поршневой компрессор можно повторно запускать только через несколько минут после остановки, когда давление в системе выровняется. Защитой от повторного пуска снабжены далеко не все модели, поэтому холодильное оборудование рекомендуется подключать через реле времени с задержкой включения в 5–10 минут.
Ротационные компрессоры (иногда называемые роторными) создают давление за счет изменяющегося зазора между вращающимся ротором и корпусом компрессора.
Существуют различные модификации этого вида компрессоров — с эксцентричным ротором, с подвижными лепестками, с качающимся ротором, спиральный и т. п.
Все они обладают небольшими габаритами, низким уровнем шума и увеличенным ресурсом за счет снижения количества подвижных деталей. К недостаткам этого вида можно отнести сложность изготовления (ротор и корпус должны быть изготовлены с высокой точностью) и низкое максимальное давление. Такие компрессоры чаще используются в климатической технике, для которой не требуется создавать очень низкую температуру.
Ротационными и поршневыми список компрессоров не исчерпывается — существуют еще центробежные, винтовые, кулачковые и другие. Но в бытовой технике они используются реже.
Вне зависимости от вида компрессор может быть неинверторным (стандартным) или инверторным. У обычных компрессоров скорость вращения двигателя постоянна, для поддержания заданной температуры он периодически включается и выключается. В инверторных компрессорах двигатель подключен через частотный преобразователь (инвертор), с помощью изменения частоты напряжения меняющий скорость вращения электродвигателя. Такой компрессор поддерживает заданную температуру выставлением нужной скорости вращения. Инверторные компрессоры дороже, но экономичнее, эффективнее и имеют больший ресурс.
Типы хладагентов
Чем ниже температура кипения хладагента, тем более низкую температуру можно получить на испарителе холодильной машины. Однако, понизить температуру в морозильнике, просто поменяв фреон на более «холодный», скорее всего, не выйдет — хладагенты с низкой температурой кипения требуют большего давления для конденсации. Компрессор, рассчитанный на фреон с высокой температурой кипения, просто не сможет создать такое давление. Поэтому при замене хладагента следует придерживаться рекомендаций из инструкции, и не заправлять хладагент с характеристиками, сильно отличающимися от рекомендованных.
В бытовых устройствах чаще всего используются следующие хладагенты:
Фреон R22 (хладон 22, хлордифторметан) до недавних пор часто использовался в холодильных и морозильных установках. Обладает достаточно низкой температурой кипения (-40,8°С), при утечке возможна дозаправка системы. Однако из-за вреда, наносимого окружающей среде (разрушение озонового слоя) R22 в последнее время используется редко, а во многих странах вообще запрещен.
R600a (изобутан) все чаще используется в холодильной технике вместо менее экологичного R134. Его преимуществами являются низкое давление конденсации и высокая удельная теплота парообразования – холодильники, использующие этот фреон, дешевле и экономичнее. Однако из-за высокой температуры кипения (-12°С) заправленную им технику нельзя использовать на улице при отрицательных температурах.
Следует также помнить о том, что каждый тип фреона требует использования определенного вида масла для смазки деталей компрессора. Обычно тип (а иногда и марка масла) приводятся в сопроводительной документации к фреону. Использование других масел может привести к поломке компрессора.
Как видно, ничего сложного в холодильной технике нет, а понимание принципов ее работы может значительно продлить жизнь технике, позволить сэкономить на электроэнергии и уберечь от неправильных действий, могущих привести к поломке прибора.
Зачем в вашем холодильнике стоит нагреватель?
Холодильник должен холодить, а тут речь про нагревание. Может дело в притягивающихся противоположностях и «минусе», который ну никак не может жить без «плюса»?
Оказывается, без тепла не было бы такого эффективного охлаждения в нашем незаменимом хранителе продуктов. Ниже рассмотрим каждый нагревательный элемент и его функционал.
Почему конденсат – зло
Дверь холодильника – одна из самых часто открываемых в доме, помимо туалетной и входной. И вот каждый раз, когда вы залезаете в свою «фабрику холода», теплый воздух извне попадает внутрь. Это чревато образованием конденсата, который со временем может привести к поломке холодильника.
Но решение найдено. В места, где больше всего вероятность выпадения конденсата, подается нагретый за счет сжатия в компрессоре хладагент. Грубо говоря, это грамотное использование побочно образующегося тепла.
А куда девать излишки?
Замечали небольшой желоб с отверстием на задней стенке холодильника? Он там специально для сбора конденсата в холодильной камере.
Через отверстие влага по трубке стекает в специальный бачок. Через него проходят трубки конденсатора, по которым движется нагретый хладагент, способствующий испарению собранной жидкости.
Опять же весь процесс происходит за счет остаточного тепла и не требует дополнительных энергозатрат.
Холодильник и его контуры
Для справки. Бытовые холодильники бывают одноконтурные и двухконтурные. Если контур охлаждения один, то он «обслуживает» и холодильное, и морозильное отделения. Плюс каждому холодильнику присваивают от 0 до 4 звезд-снежинок. Чем их больше, тем ниже температуру можно выставлять в морозилке.
Так вот у моделей с одноконтурным охлаждением и 4-звездочной морозильной камерой температура устанавливается в зависимости от холодильного отделения. Именно в нем находится датчик температуры. А это отделение нагревается гораздо медленнее морозильного.
Чтобы поддерживать «холодную погоду» в морозилке на оптимальном уровне, нагревательные элементы искусственно повышают температуру в холодильной камере. В таком случае быстрее срабатывает датчик, запускающий процесс охлаждения.
Получается, сначала нужно что-то нагреть, чтобы что-то другое заморозить.
Холодильник лучше знает!
Большинство современных холодильников имеют интеллектуальную систему, которая распознает, когда скапливается достаточное количество льда на испарителе. Специально для этого в прибор встроен электрический нагреватель. Он удаляет образовавшуюся наледь.
Режим работы нагревателя настраивается в зависимости от условий эксплуатации конкретного холодильника. Даже такой фактор, как часто открывающаяся дверь, имеет значение.
Тема: Удаление контура
Опции темы
Поиск по теме
Отображение
часто попадаются заявки когда приходится удалять контур обогрева морозильной камеры. вот сегодня обрезал и подумал, а ведь когда мотор долго работает без хладагента ( ну или когда его мило и но пашет на вакууме) он постепенно выгоняеет масло из картера (из себя) мало разгоняеется по системе и оседает в том числе и в контуке. а когда его обрезаешь оно остаётся там.
отсюда вопрос: как его вернуть в мотор и стоит ли вообще об этом заморачиватся?
и второй вопрос, немного не в тему. сколько вы берёте за такую процедуру.
villain, Во первых-масло остаётся в испарителе(потому что низкая сторона). Засосать компрессор масло обратно не может (потому что нет газа или мало). Во вторых-масла в СК-140 370 грамм. Уходит в испаритель 50-70 грамм. При удалении контура обогрева двери масла нет! А при зарядке после удаления контура масло возвращается в компрессор (вместе с газом)-при условии что холодильнику от поломки до ремонта не более 10 дней! Иначе масло превращается в некое подобие одного из компонентов эпоксидного клея! И в третьих! Как в авто-есть мин. есть максимум зарядки маслом! При добавлении масла (ПРОВЕРЕНО. ) забивает испаритель и КТ! А беру я за такой ремонт-как за заправку (где как).
при удалении теплового контура теряется не так уж много масла и пытатся его вернуть из отрезанного контура в компрессор только время терять. за удаление контура берём так же как и за заправку. если устанавливаем электричесий нагреватель перемычки, то берём конечно больше.
применительно к атланту. контур обогрева двери или тепловой контур (называйте как хотите) называется трубка тепловая. если удаляется тепловая трубка то для устранения отпотевания перемычки должен устанавливатся ремкомплект состоящий из нагревателя и декоративной накладки. мы устанавливаем нагреватель только когда клиент жалуется на большое образование влаги на перемычке между камерами. влага образуется не всегда, да и некоторые клиенты на это не обращают внимание.
CatIVan, Какие размеры-(соотношение камер) должны быть, что бы вместо контура обогрева двери можно было поставить нагреватель перемычки? и этот нагреватель (с заменой) стоит дороже заправки?
Тема: Контур обогрева
Опции темы
Поиск по теме
Отображение
Замена контура обогрева хол-ка Индезит.
Сильно
![]()
Видно-зима.
Ты не показал место утечки. Этот холодос стоит, как две утечки
. на х. с ним связываться
.
ded t, спасибо за позитив!
Сильно! Сам догадался или сервисники подсказали?
Можно не петлю между дверями делать, а сделать две дырки в шкафу.
И сверло метровое прикупи .
Я к чему. А имеем ли мы право поганить холодос, даже не поставив клиента перед выбором, с умным видом ставя перемычку, а уж тем более скрывать от него, чем чревато иссечение.
делов на полчаса больше. клиент выбирал с двух вариантов(ценников).
зачем сверло? так трубку и толкал. одна почему-то ушла.
Э то точно-когда прижмет не так раскорячишся.
Красота.Да и медь видно еще совейская.
скорее самотёком,там же высокое.
Один мой знакомый, говорит, что можно во весех. Он меняет на всех без исключения.
А ты не попадал на клиентов у которых через пару лет после иссечения отваливались двери? И возмущения, почему меня не предупредили, что такое будет.
Я говорю, про когда он есть. Ясен пень, что перемычку поставить проще.
вот с этими можно и не откровенничать)) им надо быстро и сразу. Да они и не станут переплачивать))
Может быть в этом случае говорить перед ремонтом: «не совсем правильно, но другого выхода нет.»?
Если другого выхода нет, то лучше не СТРАЩЩАТЬ, могут вообще отказаца.
А так есть вид дополнительного заработка. Если допустим протендерили по городу цену, а ты ради бога, но можно и так. И ты чист и заработал))