Для чего нужен пропеллер на самолете
Для чего в самолете нужен небольшой загадочный винт
Получайте на почту один раз в сутки одну самую читаемую статью. Присоединяйтесь к нам в Facebook и ВКонтакте.
Как можно было уже догадаться, маленький пропеллер, торчащий из фюзеляжа самолета – это вовсе не предмет гардероба Карлсона, который живет на крыше. Данное приспособление называется «авиационная аварийная турбина» («ram air turbine») или просто RAT и является запасным электрическим генератором и гидравлическим насосом. Необходим в самолете RAT для того, чтобы в аварийной ситуации машина не лишилась электропитания, а также сохранила возможность поддерживать давление в гидравлической системе бустерного управления.
Выпуск аварийной турбины осуществляется автоматически, как только происходит отказ основного и запасного источников питания. Также RAT выпускается в том случае, если в самолете появляются проблемы с гидравлической системой (или происходит ее полный отказ). На борту самолета также есть механизм для ручного принудительного выпуска RAT. Примечательно, что первоначально аварийная турбина ставилась только на военных самолетах, однако сегодня ее ставят и на гражданские машины.
Принцип действия авиационной аварийной турбины очень прост. По сути, это обычный ветрогенератор, источник «чистой» энергии, который работает за счет раскручивания подвижных элементов потоками воздуха. Электричества производимого RAT вполне достаточно для того, чтобы не дать самолету потерпеть крушение при выходе из строя упомянутых выше узлов и агрегатов.
Как правило, габариты пропеллера RAT лежат в пределах 80-90 см. На военных машинах они еще меньше. Мощность генератора в зависимости от модели самолета варьируется от 5 до 70 кВт. Самая большая аварийная турбина в наше время стоит на самолетах Airbus А380 – габариты пропеллера составляют 1.63 метра. В некоторых советских самолетах аварийной турбины не было, так как вместо нее использовалась система автоматической ротации, которая выполняет те же самые функции.
Понравилась статья? Тогда поддержи нас, жми:
Винт самолета. Лопасти самолета. Пропеллер.
Лопастной винт самолета, он же пропеллер или лопаточная машина, которая приводится во вращение с помощью работы двигателя. С помощью винта происходит преобразование крутящего момента от двигателя в тягу.
Воздушный винт выступает движителем в таких летательных аппаратах, как самолеты, цикложиры, автожиры, аэросани, аппараты на воздушной подушке, экранопланы, а также вертолеты с турбовинтовыми и поршневыми двигателями. Для каждой из этих машин винт может выполнять разные функции. В самолетах он используется в качестве несущего винта, который создает тягу, а в вертолетах обеспечивает подъем и руление.
Все винты летательных аппаратов делятся на два основных вида: винты с изменяемым и фиксированным шагом вращения. В зависимости от конструкции самолета винты могут обеспечивать толкающую или тянущую тягу.
При вращении лопасти винта захватывают воздух и производят его отброс в противоположном направлении полета. В передней части винта создается пониженное давление, а позади – зона с высоким давлением. Отбрасываемый воздух приобретает радиальное и окружное направление, за счет этого теряется часть энергии, которая подводится к винту. Сама закрутка воздушного потока снижает обтекаемость аппарата. Сельскохозяйственные самолеты, проводя обработку полей, имеют плохую равномерность рассеивание химикатов из-за потока от пропеллера. Подобная проблема решена в аппаратах, которые имеют соосную схему расположения винтов, в данном случае происходит компенсация с помощью работы заднего винта, который вращается в противоположную сторону. Подобные винты установлены на таких самолетах, как Ан-22, Ту-142 и Ту-95.
Технические параметры лопастных винтов
Наиболее весомые характеристики винтов, от которых зависит сила тяги и сам полет, конечно же, шаг винта и его диаметр. Шаг – это расстояние, на которое может переместиться винт за счет ввинчивания в воздух за один полный оборот. До 30-х годов прошлого века использовались винты с постоянным шагом вращения. Только в конце 1930-х годов практически все самолеты оснащались пропеллерами со сменным шагом вращения
Параметры винтов:
Диаметр окружности винта – это размер, который описывают законцовки лопастей при вращении.
Поступь винта – реальное расстояние, проходящее винтом за один оборот. Данная характеристика зависит от скорости движения и оборотов.
Геометрический шаг пропеллера – это расстояние, которое мог бы пройти винт в твердой среде за один оборот. От поступи винта в воздухе отличается скольжением лопастей в воздухе.
Угол расположения и установки лопастей винта – наклон сечения лопасти к реальной плоскости вращения. За счет наличия крутки лопастей угол поворота замеряется по сечению, в большинстве случаев это 2/3 всей длины лопасти.
Лопасти пропеллера имеют переднюю – режущую – и заднюю кромки. Сечение лопастей имеет профиль крыльевого типа. В профиле лопастей имеется хорда, которая имеет относительную кривизну и толщину. Для повышения прочности лопастей винта используют хорду, которая имеет утолщение к корню пропеллера. Хорды сечения находятся в разных плоскостях, поскольку лопасть изготовлена закрученной.
Шаг винта является основной характеристикой гребного винта, он в первую очередь зависит от угла установки лопастей. Шаг измеряется в единицах пройденного расстояния за один оборот. Чем больший шаг делает винт за один оборот, тем больший объем отбрасывается лопастью. В свою очередь увеличение шага ведет за собой дополнительные нагрузки на силовую установку, соответственно, количество оборотов снижается. Современные летательные аппараты имеют возможность изменять наклон лопастей без остановки двигателя.
Преимущества и недостатки воздушных винтов
Коэффициент полезного действия винтов на современных самолетах достигает показателя в 86%, это делает их востребованными авиастроением. Также нужно отметить, что турбовинтовые аппараты значительно экономнее, чем реактивные самолеты. Все же винты имеют некоторые ограничения как в эксплуатации, так и в конструктивном плане.
Одним из таких ограничений выступает «эффект запирания», который возникает при увеличении диаметра винта или же при добавлении количества оборотов, а тяга в свою очередь остается на том же уровне. Это объясняется тем, что на лопастях пропеллера возникают участки со сверхзвуковыми или околозвуковыми потоками воздуха. Именно этот эффект не позволяет летательным аппаратам с винтами развить скорость выше чем 700 км/час. На данный момент самой быстрой машиной с винтами является отечественная модель дальнего бомбардировщика Ту-95, который может развить скорость в 920 км/час.
Еще одним недостатком винтов выступает высокая шумность, которая регламентируется мировыми нормами ICAO. Шум от винтов не вписывается в стандарты шумности.
Современные разработки и будущее винтов самолета
Технологии и опыт работы позволяют конструкторам преодолеть некоторые проблемы с шумностью и повысить тягу, миновав ограничения.
Таким образом удалось миновать эффект запирания за счет применения мощного турбовинтового двигателя типа НК-12, который передает мощность на два соосные винта. Их вращение в разные стороны позволило миновать запирание и повысить тягу.
Также используются на винтах тонкие саблевидные лопасти, которые имеют возможность затягивания кризиса. Это позволяет достичь более высоких показателей скорости. Такой тип винтов установлен на самолете типа Ан-70.
На данный момент ведутся разработки по созданию сверхзвуковых винтов. Несмотря на то что проектирование ведется очень долго при немалых денежных вливаниях, достичь положительного результата так и не удалось. Они имеют очень сложную и точную форму, что значительно затрудняет расчеты конструкторов. Некоторые готовые винты сверхзвукового типа показали, что они очень шумные.
Заключение винта в кольцо – импеллер – является перспективным направлением развития, поскольку снижает концевое обтекание лопастей и уровень шума. Также это позволило повысить безопасность. Существуют некоторые самолеты с вентиляторами, которые имеют ту же конструкцию, что и импеллер, но дополнительно оснащаются аппаратом направления воздушного потока. Это значительно повышает эффективность работы винта и двигателя.
Технические параметры и устройство винта самолета
Винт самолета (пропеллер) представляет собой агрегат, приводимый в действие двигателем. За счет вращения возникает тяговая сила, заставляющая летательный аппарат двигаться. Винтовые самолеты обладают как преимуществами, так и недостатками. Они гораздо экономичнее реактивных аналогов, однако при этом у них имеется ряд конструктивных ограничений.
Зачем самолету винт?
Самолетный винт ответственен за преобразование крутящего момента двигателя в тяговую силу. Сочетание двигателя с пропеллером именуется винтомоторной установкой. Винт состоит из лопастей, которые при вращении захватывают воздух и отбрасывают его назад.
Воздушные винты подразделяются на тянущие и толкающие. При создании самолетов толкающие пропеллеры применяются крайне редко. Винтовые изделия применяются также для создания вертолетов, винтокрылов, винтопланов и автожиров. Для их поднятия в воздух используются несущие и рулевые изделия.
Отдельно стоит выделить винтопланы, которые сочетают в себе характеристики самолета и вертолета за счет поворотных двигателей. Лопасти несущих винтов винтоплана могут преобразовывать крутящий момент как в тянущую, так и в подъемную силу.
Технические параметры и устройство винта самолета
Пропеллер состоит из ступицы и лопастей. Количество лопастей может быть от 2 до 8. Изделие создается из высокопрочного материала. Как правило, используется термообработанный алюминиевый сплав. Скорость вращения воздушного пропеллера может составлять 1200 оборотов в минуту, поэтому для создания применяются максимально прочные материалы.
Среди основных технических характеристик изделия выделяют:
Работа пропеллера приводит к появлению разворачивающего эффекта. Среди причин появления данного эффекта выделяют реактивный и гироскопический момент винта, а также закручивание струи воздуха. Для того чтобы противостоять разворачивающему эффекту, винтовые самолеты делаются асимметричными.
Тяга воздушных винтов варьируется за счет изменения оборотов двигателя или шага винта. Изменение шага позволяет изменять тягу, не меняя оборотов двигателя. Стоит отметить, что увеличение оборотов, и как следствие, ускорение вращения пропеллера, считается наиболее быстрым способом увеличить тягу.
КПД воздушных винтов составляет примерно 85%. КПД называется отношение полезной мощности к мощности двигателя. Несмотря на высокий КПД, у них имеются недостатки, среди которых выделяют повышенный уровень шума и так называемый эффект запирания (тяга винта после определенных оборотов двигателя перестает увеличиваться, несмотря на возрастание мощности).
Виды самолетных винтов
Для создания винтовых самолетов практически всегда применяются только тянущие варианты. В более редких случаях можно встретить самолеты с толкающими пропеллерами. Толкающие винтовые изделия располагаются в задней части самолета. Стоит отметить, что КПД тянущего винта больше, чем у толкающего.
Несущий вид не встречается на самолетах. Исключением является гибрид, который именуется винтопланом. Лопасти несущих винтов конвертоплана обладают большей длиной. Их примерный размер сопоставим с лопастями вертолета.
Винты с разным количеством лопастей
Лопастной винт самолета должен обладать высокой прочностью и надежностью. Для создания безопасных воздушных суден применяются винтовые изделия с регулируемым шагом, который позволяет изменять положение лопастей. При необходимости это позволяет осуществить флюгирование, чтобы уменьшить лобовое сопротивление при отказе двигателя.
На современном самолете может быть до 4 винтомоторных установок. Средняя скорость винтовых самолетов составляет 500 километров в час. Быстрейшим турбовинтовым самолетом считается Ту-95.
Преимущества и недостатки
Среди главных преимуществ выделяют высокий коэффициент полезного действия и низкий расход топлива у винтовых самолетов. Среди недостатков использования винтомоторных установок выделяют:
Из-за низких скоростей винтовых самолетов их применяют только для ограниченного ряда задач. Турбовинтовые самолеты практически не применяются в пассажирской авиации. В большинстве случаев их используют для транспортировки грузов.
Как пулемет стреляет через винт самолета?
Первые военные истребители были винтовыми. Авиационные инженеры столкнулись с проблемой вращающегося пропеллера. Покрывать огнем цели, находящиеся во фронтальной области, было невозможно. Первое решение проблемы — металлические уголки на лопастях. Если пуля попадала в лопасти, то она рикошетила, при этом не нанося вреда винтовому изделию и экипажу самолета.
Более продвинутое решение изобретено нидерландским авиаконструктором. Для решения поставленной задачи стал использоваться синхронизатор стрельбы. Посредством этой разработки полностью решалась проблема. Стрельба велась только в нужный момент, когда лопасти винтового изделия не мешали выстрелу. Специализированный синхронизатор определял момент вылета пули. Синхронизатор стрельбы уменьшал скорострельность, но при этом позволял вести огонь прямо через лопасти винта несущегося самолета.
На современных истребителях используются реактивные двигатели, поэтому потребности в применении синхронизаторов нет. Винтовые гражданские и военные самолеты не несут на себе пулеметов, поэтому эта проблема их тоже не касается.
Отличия винта от пропеллера
Воздушные винты и пропеллеры являются равнозначными понятиями в авиации, однако винтовые изделия используются во многих других сферах. Лопастные изделия используются при создании:
Пропеллером называются только винтовые изделия, которые применяются для создания самолетов. Например, лопасть несущего винта вертолета нельзя назвать пропеллером. Зная об основных отличиях, можно будет легко классифицировать изделие.
Перспективные разработки
Авиаконструкторы стараются избавиться от недостатков винтовых самолетов. Среди наиболее перспективных разработок выделяют:
Разработка турбовентиляторного двигателя — реализованный проект, который позволил получить высококачественные двигатели. Многие турбовентиляторные двигатели сейчас используются на пассажирских авиалайнерах. Эти двигатели отличает повышенная экономичность, что является существенным фактором в пассажироперевозках.
Для решения проблемы эффекта запирания крутящий момент двигателя разделяется между двумя соосными винтовыми изделиями. Таким образом достигается более высокая скорость при полете. Наиболее успешным самолетом, который использует данный метод, считается Ту-95. Стоит отметить, что для решения проблемы реактивных моментов на вертолете также используются соосные лопасти несущих винтов.
Создание усовершенствованных винтомоторных установок ведется до сих пор, однако составить конкуренцию турбовентиляторным или реактивным вариантам они не могут. Несмотря на это, винтовые судна обладают некоторыми особенностями, которые позволяют использовать их для решения узкоспециализированных задач.
masterok
Мастерок.жж.рф
Хочу все знать
На сколько я выяснил причина собственно одна.
Турбовинтовые двигатели используются в тех случаях, когда скорости полета самолета относительно невелики. На большом количестве современных транспортных самолетов применяются именно ТВД. Их преимущество прежде всего в экономичности. Двигатель снабжен воздушным винтом, который устанавливается впереди компрессора.
Воздушный винт с валом связан редуктором, так как его скорость вращения значительно меньше скорости вращения компрессора-турбины. Для турбовинтовых двигателей сила тяги состоит из тяги воздушного винта и силы тяги, возникающей при истечении газа из сопла. В зависимости от скорости полета самолета изменяются доли двух составляющих тяги. При малых скоростях (крейсерских для транспортных самолетов) доля тяги от воздушных винтов значительно превышает вторую составляющую. В ТВД часто используется комбинация компрессоров.
Стандартом современной гражданской авиации являются турбовентиляторные двигатели. По сути это разновидность двухконтурного турбореактивного двигателя, общий принцип работы которого достаточно прост. При полете самолета набегающий воздух всасывается внутрь двигателя компрессором низкого давления (имеющего привод от вала турбины). Далее часть воздуха направляется внутрь двигателя и участвует как окислитель в сжигании топлива, а другая часть идет в обход камеры сгорания и вырывается назад через сопло, создавая реактивную тягу.
Реактивную тягу также создает струя раскаленных газов, выходящая из сопла двигателя. Отношение объемов воздуха, прокачиваемых через внешний контур и через камеру сгорания, называется «степенью двухконтурности». Двигатели, у которых степень двухконтурности высока и составляет от 2 до 10, называют турбовентиляторными, а имеющее сравнительно большой диаметр первое колесо компрессора низкого давления — вентилятором.
Преимущества турбовентиляторного двигателя от турбореактивного (так ведь?) таковы: во‑первых, если большая часть реактивной тяги создается продуваемым воздухом, а не реактивными газами, повышается топливная эффективность, а значит, экономичность и экологичность всей силовой установки. Во‑вторых, на выходе из сопла (или сопл) холодный воздух смешивается с горячими газами, снижая общее давление смеси. Это делает двигатель менее шумным.
Правильно ли сделать вывод, что турбовинтовые ставят все же на более медленные самолеты? А по какой причине? В результате получается экономия топлива при такой конструкции двигателя?
С турбореактивными все и так понятно. Это в основной своей массе военная техника и вертолеты.
Туробореактивные двигатели ставят на самолеты с требованием значительной скорости и соответственно мощности. Конструкция двухконтурных турбореактивных двигателей обеспечивает поступление воздуха в значительных количествах, что на высоких скоростях обеспечивает большую тягу. Второй контур, контур низкого давления, таким образом, дает дополнительную силу тяги. Соотношение двух составляющих общей тяги зависит от конструкции двигателей и режимов работы.
Есть еще какие то причины, по которым на самолете ставят турбовинтовой или турбовентиляторный двигатель?
И вот еще про будущий региональный самолет. Первый опытный Ил-114-300 в настоящее время находится в ангаре филиала ПАО «Ил» (головного разработчика самолета) в Жуковском, где проходит его сборка на основе существующего задела.
Пассажирский самолет Ил-114-300 предназначен для эксплуатации на местных воздушных линиях и является модернизированной версией турбовинтового самолета Ил-114. Самолет будет производиться на отечественных авиапредприятиях.
Серийное производство таких самолетов планируется начать в 2021 году.
IT News
Last update Вс, 29 Янв 2017 11pm
Как действует винтовой самолет
До того как были разработаны реактивные двигатели, на всех самолетах стояли пропеллеры, то есть воздушные винты, приводимые в движение двигателями внутреннего сгорания наподобие автомобильных.
Все лопасти воздушного винта имеют в поперечном сечении форму, напоминающую сечение крыла самолета. При вращении пропеллера воздушный поток обтекает переднюю поверхность каждой лопасти быстрее задней. И получается, что перед воздушным винтом давление меньше, чем за ним. Так возникает сила тяги, направленная вперед. А величина этой силы тем больше, чем выше скорость вращения воздушного винта.
(На изображении сверху)Воздушный поток двигается быстрее по передней поверхности лопасти вращающегося пропеллера. Это уменьшает давление воздуха спереди и заставляет самолет двигаться вперед.
Винтовой самолет взлетает в воздух благодаря силе тяги, создаваемой при вращении лопастей воздушного винта.
Концы вращающихся лопастей пропеллера описывают в воздухе спираль. Количество воздуха, которое гонит через себя пропеллер, зависит от размера лопастей и скорости вращения. Дополнительные лопасти и более мощные двигатели могут увеличить полезную работу воздушного винта.
Почему лопасти у воздушного винта имеют закрученную форму
Если бы эти лопасти были плоскими, воздух равномерно бы распределялся по их поверхности, вызывая лишь сопротивление вращению винта. Но когда лопасти искривлены, то воздушный поток, соприкасающийся с их поверхностью, в каждой точке на поверхности лопасти приобретает свое направление. Такая форма лопасти позволяет ей более эффективно рассекать воздух и сохранять самое выгодное соотношение между силой тяги и сопротивлением воздуха.
Воздушные винты с изменяемым углом наклона. Угол, под которым лопасть установлена во втулке несущего винта, называется углом начального конуса. На некоторых самолетах это угол можно менять и таким образом делать максимально полезной работу винта при различных полетных условиях, то есть при взлете, наборе высоты или в крейсерском полете.