Для чего нужен спарк
Apache Spark: гайд для новичков
Mar 13, 2020 · 8 min read
Что такое Apache Spark?
Специалисты компании Databricks, основанной создателями Spark, собрали лучшее о функционале Apache Spark в своей книге Gentle Intro to Apache Spark ( очень рекомендую прочитать):
“Apache Spark — это целостная вычислительная система с набором библиотек для п араллельной обработки данных на кластерах компьютеров. На данный момент Spark считается самым активно разрабатываемым средством с открытым кодом для решения подобных задач, что позволяет ему быть полезным инструментом для любого разработчика или исследователя-специалиста, заинтересованного в больших данных. Spark поддерживает множество широко используемых языков программирования (Python, Java, Scala и R), а также библиотеки для различных задач, начиная от SQL и заканчивая стримингом и машинным обучением, а запустить его можно как с ноутбука, так и с кластера, состоящего из тысячи серверов. Благодаря этому Apache Spark и является удобной системой для начала самостоятельной работы, перетекающей в обработку больших данных в невероятно огромных масштабах.”
Что такое большие данные?
Посмотрим-ка на популярное определение больших данных по Гартнеру. Это поможет разобраться в том, как Spark способен решить множество интересных задач, которые связаны с работой с большими данными в реальном времени:
“Большие данные — это информационные активы, которые характеризуются большим объёмом, высокой скоростью и/или многообразием, а также требуют экономически эффективных инновационных форм обработки информации, что приводит к усиленному пониманию, улучшению принятия решений и автоматизации процессов.”
Заметка: Ключевой вывод — слово “большие” в больших данных относится не только к объёму. Вы не просто получаете много данных, они поступают в реальном времени очень быстро и в различных комплексных форматах, а ещё — из большого многообразия источников. Вот откуда появились 3-V больших данных: Volume (Объём), Velocity (Скорость), Variety (Многообразие).
Причины использовать Spark
Основываясь на самостоятельном предварительном исследовании этого вопроса, я пришёл к выводу, что у Apache Spark есть три главных компонента, которые делают его лидером в эффективной работе с большими данными, а это мотивирует многие крупные компании работать с большими наборами неструктурированных данных, чтобы Apache Spark входил в их технологический стек.
Apache Spark или Hadoop MapReduce…Что вам подходит больше?
Если отвечать коротко, то выбор зависит от конкретных потребностей вашего бизнеса, естественно. Подытоживая свои исследования, скажу, что Spark выбирают в 7-ми из 10-ти случаев. Линейная обработка огромных датасетов — преимущество Hadoop MapReduce. Ну а Spark знаменит своей быстрой производительностью, итеративной обработкой, аналитикой в режиме реального времени, обработкой графов, машинным обучением и это ещё не всё.
Хорошие новости в том, что Spark полностью совместим с экосистемой Hadoop и работает замечательно с Hadoop Distributed File System (HDFS — Распределённая файловая система Hadoop), а также с Apache Hive и другими похожими системами. Так что, когда объёмы данных слишком огромные для того, чтобы Spark мог удержать их в памяти, Hadoop может помочь преодолеть это затруднение при помощи возможностей его файловой системы. Привожу ниже пример того, как эти две системы могут работать вместе:
Это изображение наглядно показывает, как Spark использует в работе лучшее от Hadoop: HDFS для чтения и хранения данных, MapReduce — для дополнительной обработки и YARN — для распределения ресурсов.
Дальше я пробую сосредоточиться на множестве преимуществ Spark перед Hadoop MapReduce. Для этого я сделаю краткое поверхностное сравнение.
Скорость
Просто пользоваться
Обработка больших наборов данных
Функциональность
Apache Spark — неизменный победитель в этой категории. Ниже я даю список основных задач по анализу больших данных, в которых Spark опережает Hadoop по производительности:
Машинное обучение. В Spark есть MLlib — встроенная библиотека машинного обучения, а вот Hadoop нужна третья сторона для такого же функционала. MLlib имеет алгоритмы “out-of-the-box” (возможность подключения устройства сразу после того, как его достали из коробки, без необходимости устанавливать дополнительное ПО, драйверы и т.д.), которые также реализуются в памяти.
А вот и визуальный итог множества возможностей Spark и его совместимости с другими инструментами обработки больших данных и языками программирования:
Заключение
Вместе со всем этим массовым распространением больших данных и экспоненциально растущей скоростью вычислительных мощностей инструменты вроде Apache Spark и других программ, анализирующих большие данные, скоро будут незаменимы в работе исследователей данных и быстро станут стандартом в индустрии реализации аналитики больших данных и решении сложных бизнес-задач в реальном времени.
Для тех, кому интересно погрузиться глубоко в технологию, которая стоит за всеми этими внешними функциями, почитайте книгу Databricks — “ A Gentle Intro to Apache Spark” или “ Big Data Analytics on Apache Spark”.
Spark
Описание термина: Apache Spark или просто Spark — это фреймворк (ПО, объединяющее готовые компоненты большого программного проекта), который используют для параллельной обработки неструктурированных или слабоструктурированных данных.
Например, если нужно обработать данные о годовых продажах одного магазина, то программисту хватит одного компьютера и кода на Python, чтобы произвести расчет. Но если обрабатываются данные от тысяч магазинов из нескольких стран, причем они поступают в реальном времени, содержат пропуски, повторы, ошибки, тогда стоит использовать мощности нескольких компьютеров и Spark. Группа компьютеров, одновременно обрабатывающая данные, называется кластером, поэтому Spark также называют фреймворком для кластерных вычислений.
Зачем нужен Spark
Области использования Spark — это Big Data и технологии машинного обучения, поэтому им пользуются специалисты, работающие с данными, например дата-инженеры, дата-сайентисты и аналитики данных.
Примеры задач, которые можно решить с помощью Spark:
Spark поддерживает языки программирования Scala, Java, Python, R и SQL. Сначала популярными были только первые два, так как на Scala фреймворк был написан, а на Java позже была дописана часть кода. С ростом Python-сообщества этим языком тоже стали пользоваться активнее, правда обновления и новые фичи в первую очередь доступны для Scala-разработчиков. Реже всего для работы со Spark используют язык R.
Data Scientist с нуля
Всего за год вы получите перспективную профессию, пополните портфолио рекомендательной системой и нейросетями, примете участие в соревнованиях на Kaggle и в хакатонах.
В структуру Spark входят ядро для обработки данных и набор расширений:
Как работает Spark
Спарк интегрирован в Hadoop — экосистему инструментов с открытым доступом, в которую входят библиотеки, система управления кластером (Yet Another Resource Negotiator), технология хранения файлов на различных серверах (Hadoop Distributed File System) и система вычислений MapReduce. Классическую модель Hadoop MapReduce и Spark постоянно сравнивают, когда речь заходит об обработке больших данных.
Принципиальные отличия Spark и MapReduce
Пакетная обработка данных
Хранит данные на диске
В 100 раз быстрее, чем MapReduce
Обработка данных в реальном времени
Хранит данные в оперативной памяти
Пакетная обработка в MapReduce проходит на нескольких компьютерах (их также называют узлами) в два этапа: на первом головной узел обрабатывает данные и распределяет их между рабочими узлами, на втором рабочие узлы сворачивают данные и отправляют обратно в головной. Второй шаг пакетной обработки не начнется, пока не завершится первый.
Читайте также: Какой язык учить аналитику данных?
Обработка данных в реальном времени с помощью Spark Streaming — это переход на микропакетный принцип, когда данные постоянно обрабатываются небольшими группами.
Кроме этого, вычисления MapReduce производятся на диске, а Spark производит их в оперативной памяти, и за счет этого его производительность возрастает в 100 раз. Однако специалисты предупреждают, что заявленная «молниеносная скорость работы» Spark не всегда способна решить задачу. Если потребуется обработать больше 10 Тб данных, классический MapReduce доведет вычисление до конца, а вот у Spark может не хватить памяти для такого вычисления.
Но даже сбой в работе кластера не спровоцирует потерю данных. Основу Spark составляют устойчивые распределенные наборы данных (Resilient Distributed Dataset, RDD). Это значит, что каждый датасет хранится на нескольких узлах одновременно и это защищает весь массив.
Освойте самую перспективную профессию 2021 года. После обучения вы будете обладать навыками middle-специалиста и рассчитывать на среднюю зарплату по отрасли.
Разработчики говорят, что до выхода версии Spark 2.0 платформа работала нестабильно, постоянно падала, ей не хватало памяти, и проблемы решались многочисленными обновлениями. Но в 2021 году специалисты уже не сталкиваются с этим, а обновления в основном направлены на расширение функционала и поддержку новых языков.
✅ «Наша компания использует Spark для прогнозирования финансовых рисков»
❌ «Я учусь работать в программе Spark»