Для чего нужен ультразвук

Ультразвуковая терапия, методики, показания, ограничения к применению

Ультразвуковая терапия – это методика лечения при помощи ультразвука. УЗТ используют в физиотерапии для лечения и профилактики различных заболеваний. Методику применяют в разных областях медицины, таких как ортопедия, хирургия, гинекология, офтальмология, дерматология, отоларингология, стоматология, педиатрия. Ультразвуковая терапия позволяет снизить частоту обострений, а также сократить время восстановления после операции, острых патологий.

Для чего нужен ультразвук. Смотреть фото Для чего нужен ультразвук. Смотреть картинку Для чего нужен ультразвук. Картинка про Для чего нужен ультразвук. Фото Для чего нужен ультразвук

Ультразвуковые волны были открыты в 1899 году, их обнаружил К. Konig. Использовать на практике ультразвук пробовал русский инженер К. В. Шиловский и французский изобретатель Ланжевен в 1914-1918 годах. Исследования этих ученых привели к созданию излучателя ультразвука. Он работал на основе пьезоэлектрического эффекта в соответствии с разработкой братьев Кюри. После этого был сделан прибор на основе магнитострикции. Со временем лучи, исходящие из аппарата, стали более направленными на конкретный объект. Это позволило применять ультразвуковые волны в промышленности и медицине. В медицине начали применять ультразвук после 1927 года.

Толчком к использованию УЗТ стала работа ученых о биологическом воздействии ультразвука на организм. Есть мнение, что первым ультразвук начал применять Р. Польман. Он создал вибратор, излучающий ультразвуковые волны. Польман лечил УЗ-волнами ишиас, невралгию, миалгию. Результаты лечения были положительные. К 1945 году УЗТ стали использовать в Германии, Западной Европе, США, Японии. В нашей стране методику начали применять только 1953 году. Ученый В. А. Плотников впервые попробовал лечить контрактуру Дюпюитрена ультразвуком. В 1955 году УЗ-волны стали использовать в терапии неврологических, суставных патологий, кожных болезней. Начиная с 1961 года, начали производить отечественные ультразвуковые приборы. Производство их было серийным, что послужило толчком для развития ультразвуковой терапии. В 1986 году ученым из Белоруссии (Л. И. Богданович, В. С. Улащик, А. А. Чиркин) была присуждена премия в области науки и техники.
Методики ультразвуковой терапии в физиотерапии сегодня применяются очень широко для лечения различных заболеваний.


Характеристики ультразвуковых волн

Для физиотерапевтических процедур применяются УЗ-волны с частотой 800-3000 кГЦ. Для хирургических манипуляций частота колебаний составляет 20-100 кГЦ. Дозировка ультразвукового воздействия на организм зависит от интенсивности, продолжительности воздействия, а также типа генерации УЗ-волн (непрерывные, импульсные).


Механизм воздействия УЗ-излучения

Для чего нужен ультразвук. Смотреть фото Для чего нужен ультразвук. Смотреть картинку Для чего нужен ультразвук. Картинка про Для чего нужен ультразвук. Фото Для чего нужен ультразвук

Выделяют несколько механизмов воздействия ультразвука на организм. К ним относятся: механический, тепловой, физико-химический, нервно-рефлекторный. Они являются первичными механизмами ультразвуковой терапии. Механическое воздействие заключается в высокочастотных колебаниях, которые передаются тканям. При этом происходит очень мелкая, незаметная человеку вибрация. Вибрационное воздействие приводит к увеличению кровообращения, повышению метаболизма в клетках.

Под действием вибрации в клетке снижается вязкость цитоплазматической жидкости. В тканях начинает разрыхляться соединительная ткань. В клетках ускоряется диффузия микроэлементов, стимулируется работа лизосом. Из лизосом начинают выходить ферменты, которые повышают функцию белковых соединений. Эти процессы способствуют ускорению обмена веществ. При подаче волн высокой частоты увеличивается проницаемость гистогематических барьеров. Тепловой эффект подразумевает переход энергии УЗ-волн после поглощения тканями в тепло. Температура в них увеличивается на 1°С. При этом ускоряется ферментативная активность внутри тканей, стимулируются биохимические реакции. Тепло образуется только на границах разных по плотности тканей. Тепловую энергию больше поглощают органы с дефицитом кровотока, насыщенные коллагеновыми волокнами, а также нервная, костная ткань.

Физико-химическое воздействие вызвано механическим резонансом. Он увеличивает скорость движения молекулярных структур, повышается процесс распада молекул на ионы, появляются новые электрические поля. Ускоряется окисление липидов, улучшается работа митохондриальных структур клеток, стимулируются физические и химические процессы в тканях организма. Активируются биологически активные вещества, такие как гистамин, серотонин. Под действием УЗ-волн улучшается дыхание и окисление в органах. Все эти процессы ускоряют восстановление тканей.

Выделяют следующие фазы реакции организма:

Фаза непосредственного воздействия

Стимулируются все виды воздействия: механическое, физико-химическое, тепловое.

Фаза преобладания стресс-индуцирующей системы

Продолжается на протяжении 4 часов после действия на ткани УЗ-волн.

Стимулируется синтез различных гормонов, биологически активных веществ. Повышается потоотделение, увеличивается образование мочи, уменьшается рН кожи, увеличивается сокращение стенок пищеварительного тракта. Активируется фагоцитоз, повышается иммунитет.

Фаза преобладания стресс-лимитирующей системы

Действует на протяжении 4-12 часов. Уменьшается секреция кортизола, адренокортикотропного гормона, ускоряются метаболические и восстановительные процессы в органах.

Фаза усиления компенсаторно-приспособительных процессов

Длительность составляет 12-24 часа. Увеличивается работа митохондриальных структур, стимулируется дыхательная функция клеток и тканей, пентозно-фосфатный обмен, повышается процесс деления клеточных структур, улучшается лимфоотток от органов, ускоряется приток крови.

Поздний следовой период

Продолжительность до 3 месяцев. Ускоряются все обменные процессы.

УЗ-волны являются специфическим раздражителем при действии их на органы и ткани. Если воздействие ультразвука направлено на кожу, то формируется воспалительная реакция, покраснение кожи, увеличивается обмен веществ. Во время ультразвуковой терапии (УЗТ) повышается количество тучных клеток, стимулируется функция камбиальных (стволовых) клеточных структур, повышается концентрация мукополисахаридов.

На фоне терапии в коже увеличивается функция железистого аппарата (сальные потовые железы), реакция кожи на раздражители становится более яркой. Ткани нервной системы очень чувствительны к воздействию УЗ-волн. Ультразвук тормозит работу рецепторов синаптических щелей, что способствует снижению скорости передачи нервных импульсов. Улучшается общее состояние у пациентов с нарушениями вегетативной нервной системы. Если УЗ-волны действуют на области желез, это ведет к стимуляции синтеза гормонов. Повышается иммунная активность.

При воздействии на сердечно-сосудистую систему ультразвук способен усиливать кровоток, немного понижать артериальное давление, повышать частоту сердечного ритма. Реологические свойства крови становятся лучше, повышается функция эритроцитов и лейкоцитов.

Для чего нужен ультразвук. Смотреть фото Для чего нужен ультразвук. Смотреть картинку Для чего нужен ультразвук. Картинка про Для чего нужен ультразвук. Фото Для чего нужен ультразвук

Показания к назначению УЗТ

Техника проведения процедур

Во время применения ультразвукового метода лечения не следует направлять излучатель на область сердца, мозг, точки роста костей у детей. Техника проведения и аппараты УЗТ При проведении ультразвукового физиолечения необходимо устранить гнойные очаги инфекции. Это можно сделать при помощи лекарственных препаратов и дезинфицирующих растворов. Также следует пролечить инфекционные заболевания вирусной или бактериальной природы. Алгоритм физиопроцедуры следующий. Перед началом терапии кожу в месте контакта с аппаратной головкой излучателя необходимо смазать специальным веществом (вазелином, ланолином).

Включают прибор, настраивают интенсивность волн, выставляют время. После этого излучатель устанавливают в необходимой области на поверхности кожи и начинают водить со скоростью 1 см в секунду. На начальном этапе лечения можно обрабатывать не больше 1-2 полей за 1 сеанс. После двух дней лечения можно облучать до 3-4 полей. Продолжительность процедуры в первые двое суток не должна превышать 5 минут. Длительность последующих сеансов составляет до 15 минут. Детям процедуру рекомендуется проводить не более 10 минут.

При обработке ультразвуком конечностей (стопы, кисти, суставы, предплечье, голень) процедуру проводят в воде. Больной опускает руку или ногу в ванну, туда же погружают излучатель. Температурный режим для воды составляет 32-36°С. Длительность физиопроцедуры до 15 минут. Во время терапии необходимо обеспечить безопасность медицинского персонала. Медсестра, которая держит в воде излучатель, должна надеть шерстяную рукавицу, а сверху на нее резиновую перчатку. Это защищает руку медработника от воздействия на руку ультразвукового воздействия. Варежка из шерсти имеет в порах воздух, который полностью поглощает УЗ-волны.

Применение ультразвука у детей

Ультразвуковая терапия детям назначается только с 7-летнего возраста. В более раннем возрасте применять методику не следует. Терапию используют по тем же показаниям, что и для взрослых.

Для чего нужен ультразвук. Смотреть фото Для чего нужен ультразвук. Смотреть картинку Для чего нужен ультразвук. Картинка про Для чего нужен ультразвук. Фото Для чего нужен ультразвук

Подросткам-девочкам УЗТ применяют для лечения нарушения менструального цикла. Пациентам младшего возраста ультразвук показан при аденоидите и других ЛОР-патологиях. Ультразвуковое лечение детям также необходимо при энурезе. УЗ-волны улучшают состояние ткани мочевого пузыря, что помогает сформировать нормальный рефлекс на мочеиспускание, снизить реактивность мочевого пузыря.

Ультразвуковая терапия – это относительно безопасный метод лечения. Его используют при различных заболеваниях. Применять методику лечения ультразвуком разрешено больницам, а также санаторно-курортным учреждениям. Для проведения УЗ-терапии обязательно нужно обратиться к доктору. Он определит длительность сеансов, интенсивность воздействия ультразвуковых волн, продолжительность курса.

Наши менеджеры всегда готовы проконсультировать и ответить на все вопросы: приобретение, доставка, эксплуатация, постпродажный сервис и т.п.

Компания «Вита Техника»
Тел. 8 (800) 550 22 67 / 8 (343) 288 51 46
Эл. почта sales@vt66.ru

Источник

Применение ультразвука в промышленности и требования к защите от ультразвука.

Современный человек непрерывно находится под воздействием физических факторов: дома, на работе, в транспорте, на улице. Физические факторы также широко представлены в производственной среде, они же являются одной из основных причин вредных условий труда, почти половины случаев всех профессиональных заболеваний, а также многочисленных обращений населения

Одним из важных физических факторов, влияющим на здоровье работающего человека, является ультразвук.

В определенных условиях и в зависимости от их интенсивности или уровней ультразвук может наносить вред здоровью и работоспособности человека.

В науке о физической природе звука акустике под звуком понимают механические колебания в сплошной упруго-инерционной среде. В соответствии с определением звуковые колебания охватывают диапазон частот теоретически от нуля до бесконечности.

В зависимости от частоты колебаний совершенно условно звуковые колебания подразделяются на инфразвуковые, акустические, ультразвуковые.

Ультразвук – это упругие колебания и волны с частотой выше 20 кГц, неслышимые человеческим ухом. В настоящее время удаётся получать ультразвуковые колебания с частотой до 10 ГГц.

Ультразвуковые волны способны вызывать разнонаправленные биологические эффекты, характер которых определяется интенсивностью ультразвуковых колебаний, частотой, временными параметрами колебаний, длительностью воздействия, чувствительностью тканей

При систематическом воздействии интенсивного низкочастотного ультразвука с уровнями, превышающими предельно допустимые, у работающих могут наблюдаться функциональные изменения центральной и периферической нервной системы, сердечно-сосудистой, эндокринной систем, слухового и вестибулярного анализаторов.

К техногенным источникам ультразвука относятся все виды ультразвукового технологического оборудования, ультразвуковые приборы и аппаратура промышленного, медицинского и бытового назначения, которые генерируют ультразвуковые колебания в диапазоне частот от 18 кГц до 100 МГц и выше.

В соответствии с гигиенической классификацией ультразвук подразделяется на воздушный и контактный.

Воздушный – ультразвук, который воздействует на человека через воздушную среду.

При воздействии на работающих ультразвука с уровнями, превышающими нормативные, для предупреждения неблагоприятных эффектов должны применяться режимы труда, отдыха и другие меры защиты.

При проведении предварительных медицинских осмотров следует учитывать противопоказания для работы в ультразвуковых профессиях к числу которых, наряду с общими медицинскими противопоказаниями к допуску на работу в контакте с вредными, опасными веществами и производственными факторами, отнесены фонические заболевания периферической нервной системы, облитерирующие заболевания артерий и периферический ангиоспазм. Помимо предварительных медицинских осмотров, комплекс лечебно-профилактических мер по ограничению и предупреждению неблагоприятного воздействия ультразвука, включает проведение диспансеризации работающих, периодические медицинские осмотры, физиопрофилактические процедуры (тепловые воздушные процедуры с микромассажем рук и тепловые гидропроцедуры для рук, массаж верхних конечностей и др.)

Важное место в системе мер по ограничению неблагоприятного воздействия на работающих ультразвуковых колебаний, распространяющихся воздушным и контактным способом, отводится средствам индивидуальной защиты. Для защиты рук от воздействия ультразвука при контактной передаче операторы используют в настоящее время рукавицы или перчатки, что касается средств индивидуальной защиты органа слуха от воздействия шума и воздушного ультразвука, то в этом случае надлежит применять противошумы – вкладыши, наушники.

Источник

Koltso-Energo

Что такое ультразвук.

Нижней границей ультразвукового диапазона называют упругие колебания частотой от 18 кГц. Верхняя граница ультразвука определяется природой упругих волн, которые могут распространяться только при том условии, что длина волны значительно больше длины свободного пробега молекул (в газах) или межатомных расстояний (в жидкостях и газах). В газах верхний предел составляет »106 кГц, в жидкостях и твёрдых телах »1010 кГц. Как правило, ультразвуком называют частоты до 106 кГц. Более высокие частоты принято называть гиперзвуком.

Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

История ультразвука. Кто открыл ультразвук.

В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт корабля. Результаты опыта оказались неутешительными. Звук колокола (как, впрочем, и подрыв в воде пороховых патронов), давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон. Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо «пьезоэлектричество» от греческого слова, означающего «нажать». Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Получение ультразвука.

Излучатели ультразвука можно разделить на две большие группы:

1) Колебания возбуждаются препятствиями на пути струи газа или жидкости, или прерыванием струи газа или жидкости. Используются ограниченно, в основном для получения мощного УЗ в газовой среде.

2) Колебания возбуждаются преобразованием в механические колебаний тока или напряжения. В большинстве ультразвуковых устройств используются излучатели этой группы: пьезоэлектрические и магнитострикционные преобразователи.

Применение ультразвука.

Многообразные применения ультразвука можно условно разделить на три направления:

Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется в таких исследованиях:

Измерение скорости звука в твёрдых телах позволяет определять упругие и прочностные характеристики конструкционных материалов. Такой косвенный метод определения прочности удобен простотой и возможностью использования в реальных условиях.

Ультразвуковые газоанализаторы осуществляют слежение за процессами накопления опасных примесей. Зависимость скорости УЗ от температуры используется для бесконтактной термометрии газов и жидкостей.

На измерении скорости звука в движущихся жидкостях и газах, в том числе неоднородных (эмульсии, суспензии, пульпы), основаны ультразвуковые расходомеры, работающие на эффекте Допплера. Аналогичная аппаратура используется для определения скорости и расхода потока крови в клинических исследованиях.

Большая группа методов измерения основана на отражении и рассеянии волн ультразвука на границах между средами. Эти методы позволяют точно определять местонахождение инородных для среды тел и используются в таких сферах как:

Отражение, преломление и возможность фокусировки ультразвука используется в ультразвуковой дефектоскопии, в ультразвуковых акустических микроскопах, в медицинской диагностике, для изучения макронеоднородностей вещества. Наличие неоднородностей и их координаты определяются по отражённым сигналам или по структуре тени.

Методы измерения, основанные на зависимости параметров резонансной колебательной системы от свойств нагружающей его среды (импеданс), применяются для непрерывного измерения вязкости и плотности жидкостей, для измерения толщины деталей, доступ к которым возможен только с одной стороны. Этот же принцип лежит в основе УЗ твердомеров, уровнемеров, сигнализаторов уровня. Преимущества УЗ методов контроля: малое время измерений, возможность контроля взрывоопасных, агрессивных и токсичных сред, отсутствие воздействия инструмента на контролируемую среду и процессы.

Воздействие ультразвука на вещество.

Воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, широко используется в промышленности. При этом механизмы воздействия ультразвука различны для разных сред. В газах основным действующим фактором являются акустические течения, ускоряющие процессы тепломассообмена. Причём эффективность УЗ перемешивания значительно выше обычного гидродинамического, т.к. пограничный слой имеет меньшую толщину и как следствие, больший градиент температуры или концентрации. Этот эффект используется в таких процессах, как:

В ультразвуковой обработке жидкостей основным действующим фактором является кавитация. На эффекте кавитации основаны следующие технологические процессы:

Акустические течения — один из основных механизмов воздействия ультразвука на вещество. Он обусловлен поглощением ультразвуковой энергии в веществе и в пограничном слое. Акустические потоки отличаются от гидродинамических малой толщиной пограничного слоя и возможностью его утонения с увеличением частоты колебаний. Это приводит к уменьшению толщины температурного или концентрационного погранслоя и увеличению градиентов температуры или концентрации, определяющих скорость переноса тепла или массы. Это способствует ускорению процессов горения, сушки, перемешивания, перегонки, диффузии, экстракции, пропитки, сорбции, кристаллизации, растворения, дегазации жидкостей и расплавов. В потоке с высокой энергией влияние акустической волны осуществляется за счёт энергии самого потока, путём изменения его турбулентности. В этом случае акустическая энергия может составлять всего доли процентов от энергии потока.

При прохождении через жидкость звуковой волны большой интенсивности, возникает так называемая акустическая кавитация. В интенсивной звуковой волне во время полупериодов разрежения возникают кавитационные пузырьки, которые резко схлопываются при переходе в область повышенного давления. В кавитационной области возникают мощные гидродинамические возмущения в виде микроударных волн и микропотоков. Кроме того, схлопывание пузырьков сопровождается сильным локальным разогревом вещества и выделением газа. Такое воздействие приводит к разрушению даже таких прочных веществ, как сталь и кварц. Этот эффект используется для диспергировании твёрдых тел, получения мелкодисперсных эмульсий несмешивающихся жидкостей, возбуждения и ускорения химических реакций, уничтожения микроорганизмов, экстрагирования из животных и растительных клеток ферментов. Кавитация определяет также такие эффекты как слабое свечение жидкости под действием ультразвука – звуколюминесценция, и аномально глубокое проникновение жидкости в капилляры – звукокапиллярный эффект.

Кавитационное диспергирование кристаллов карбоната кальция (накипи) лежит в основе акустических противонакипных устройств. Под воздействием ультразвука происходит раскалывание частиц, находящихся в воде, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности частиц. Это приводит к переносу процесса образования накипи с теплообменной поверхности в непосредственно в жидкость. Ультразвук так же воздействует и на сформированный слой накипи, образуя в нем микротрещины способствующие откалыванию кусочков накипи с теплообменной поверхности.

В установках по ультразвуковой очистке с помощью кавитации и порождаемых ею микропотоков удаляют загрязнения как жёстко связанные с поверхностью, типа окалины, накипи, заусенцев, так и мягкие загрязнения типа жирных плёнок, грязи и т.п. Этот же эффект используется для интенсификации электролитических процессов.

Под действием ультразвука возникает такой любопытный эффект, как акустическая коагуляция, т.е. сближение и укрупнение взвешенных частиц в жидкости и газе. Физический механизм этого явления ещё не окончательно ясен. Акустическая коагуляция применяется для осаждения промышленных пылей, дымов и туманов при низких для ультразвука частотах до 20 кГц. Возможно, что благотворное действие звона церковных колоколов основано на этом эффекте.

Механическая обработка твёрдых тел с применением ультразвука основана на следующих эффектах:

Различают четыре вида мехобработки с помощью ультразвука:

Действия ультразвука на биологические объекты вызывает разнообразные эффекты и реакции в тканях организма, что широко используется в ультразвуковой терапии и хирургии. Ультразвук является катализатором, ускоряющим установление равновесного, с точки зрения физиологии состояния организма, т.е. здорового состояния. УЗ оказывает на больные ткани значительно большее влияние, чем на здоровые. Также используется ультразвуковое распыление лекарственных средств при ингаляциях. Ультразвуковая хирургия основана на следующих эффектах: разрушение тканей собственно сфокусированным ультразвуком и наложение ультразвуковых колебаний на режущий хирургический инструмент.

Ультразвуковые устройства применяются для преобразования и аналоговой обработки электронных сигналов и для управления световыми сигналами в оптике и оптоэлектронике. Малая скорость ультразвука используется в линиях задержки. Управление оптическими сигналами основывается на дифракции света на ультразвуке. Один из видов такой дифракции – т.н.брегговская дифракция зависит от длины волны ультразвука, что позволяет выделить из широкого спектра светового излучения узкий частотный интервал, т.е. осуществлять фильтрацию света.

Ультразвук чрезвычайно интересная вещь и можно предположить, что многие возможности его практического применения до сих пор не известны человечеству. Мы любим и знаем ультразвук и будем рады обсудить любые идеи, связанные его применением.

Для чего нужен ультразвук. Смотреть фото Для чего нужен ультразвук. Смотреть картинку Для чего нужен ультразвук. Картинка про Для чего нужен ультразвук. Фото Для чего нужен ультразвук

Наше предприятие, ООО «Кольцо-энерго», занимается производством и монтажом акустических противонакипных устройств «Акустик-Т». Устройства, выпускаемые нашим предприятием, отличаются исключительно высоким уровнем ультразвукового сигнала, что позволяет им работать на котлах без водоподготовки и пароводяных бойлерах с артезианской водой. Но предотвращение накипи – очень малая часть того, что может ультразвук. У этого удивительного природного инструмента огромные возможности и мы хотим рассказать вам о них. Сотрудники нашей компании много лет работали в ведущих российских предприятиях, занимающихся акустикой. Мы знаем об ультразвуке очень много. И если вдруг возникнет необходимость применить ультразвук в вашей технологии, мы будем рады вам помочь.

Источник

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *